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INTRODUCTION 
 
Gliomas are the most common malignant primary brain 
tumors, accounting for 27% of all central nervous system 
(CNS) tumors [1]. According to the World Health 
Organization (WHO) classification of CNS tumors,  

 

gliomas are pathologically categorized into four grades, 
of which Grade II to IV are considered diffusely 
infiltrating gliomas [2, 3]. 
 
Research on molecular alterations in gliomas has 
revealed three noteworthy biomarkers, namely codeletion 
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ABSTRACT 
 
The prediction of clinical outcome for patients with infiltrative gliomas is challenging. Although preoperative 
hematological markers have been proposed as predictors of survival in glioma and other cancers, systematic 
investigations that combine these data with other relevant clinical variables are needed to improve prognostic 
accuracy and patient outcomes. We investigated the prognostic value of preoperative hematological markers, 
alone and in combination with molecular pathology, for the survival of 592 patients with Grade II-IV diffuse 
gliomas. On univariate analysis, increased neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio 
(PLR), and monocyte-to-lymphocyte ratio (MLR), and decreased albumin-to-globulin ratio (AGR), all predicted 
poor prognosis in Grade II/III gliomas. Multivariate analysis incorporating tumor status based on the presence of 
IDH mutations, TERT promoter mutations, and 1p/19q codeletion showed that in lower-grade gliomas, high NLR 
predicted poorer survival for the triple-negative, IDH mutation only, TERT mutation only, and IDH and TERT 
mutation groups. NLR was an independent prognostic factor in Grade IV glioma. We therefore propose a 
prognostic model for diffuse gliomas based on the presence of IDH and TERT promoter mutations, 1p/19q 
codeletion, and NLR. This model classifies lower-grade gliomas into nine subgroups that can be combined into 
four main risk groups based on survival projections. 
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of chromosome arms 1p and 19q (1p/19q codeletion), 
and mutations in IDH and the TERT promoter, that can 
be used to classify Grade II-IV gliomas into five 
principal molecular groups (triple-positive, IDH and 
TERT mutations, IDH mutation only, triple-negative, 
and TERT mutation only). These groups are associated 
with distinct prognosis, germline variants, and median 
age at diagnosis, highlighting different pathogenic 
mechanisms [3]. Although most glioma patients receive 
standard treatments, significant variations in clinical 
outcomes are often seen due to the heterogeneity of the 
tumors [4]. Therefore, it is necessary to identify more 
appropriate and effective biomarkers for predicting 
prognosis in glioma patients. 
 
Inflammation and immunity are critically involved in 
glioma initiation and progression [5, 6], and several 
studies demonstrated that inflammatory response cells 
such as neutrophils [7], lymphocytes [8] and platelets [9] 
are associated with the prognosis of cancer patients. In 
recent years, the prognostic value of preoperative 
hematological markers, such as neutrophil-to-lymphocyte 
ratio (NLR), platelet-to-lymphocyte ratio (PLR), 
monocyte-to-lymphocyte ratio (MLR), median platelet 
volume (MPV), platelet distribution width (PDW), and 
albumin-to-globulin ratio (AGR), has been investigated 
in several cancers, including gliomas [10–17]. However, 
there is a lack of studies systematically investigating the 
prognostic value of hematological markers in a large 
cohort of gliomas, particularly in relation to the different 
molecular subtypes.  
 
Therefore, we investigated the prognostic value of 
preoperative hematological markers (NLR, PLR, MLR, 
MPV, PDW, and AGR), alone and in combination with 
the 5 glioma molecular groups, on the clinical outcomes 
of a relatively large cohort (n = 592) of Grade II-IV 
glioma patients. Based on these findings, we propose a 
prognostic model for Grade II-IV infiltrative gliomas 
based on molecular pathology and NLR, and identify for 
lower-grade (WHO Grade II and III) gliomas, four risk 
groups with distinct overall survival. Further validation 
of the model in more extensive cohorts should confirm its 
usefulness and possibly open the way to new therapeutic 
strategies. 
 
RESULTS 
 
Clinico-pathological characteristics of the cohort 
 
A total of 592 cases (adult patients, age ≥ 16) of WHO 
Grade II-IV supratentorial gliomas were analyzed. The 
median age of the cohort was 42 years (interquartile 
range = 39–58 years). There were 335 male patients 
(56.6%) and 257 female patients (43.4%). The cohort 
included 404 patients (68.2%) with Grade II-III glioma 

and 188 patients (31.8%) with Grade IV glioma. 
Median duration of follow-up was 32.0 months. 
Complete resection was achieved in 456 patients 
(77%), and incomplete resection was performed in 136 
patients (23%). Four hundred and fifty-nine patients 
(77.5%) received postoperative primary radiation 
therapy (RT) and 342 patients (57.8%) received 
postoperative primary chemotherapy (CHT). In patients 
with astrocytoma, 14 (9.0%) received postoperative 
primary RT, 10 (6.5%) received postoperative primary 
CHT, 113 (72.9%) received postoperative primary RT 
and CHT, and 18 (11.6%) received no postoperative 
treatment. Among patients with oligodendroglioma or 
oligoastrocytomas, 31 (12.5%) received postoperative 
primary RT, 24 (9.7%) received postoperative primary 
CHT, 166 (66.9%) received postoperative primary  
RT and CHT, and 27 (10.9%) received no 
postoperative treatment (Supplementary Table 3). 
Molecular pathology analyses were available for 573 
cases. IDH mutations were found in 246 cases (42.9%), 
mutations in TERT promoter were detected in 286 
cases (49.9%), and chromosome 1p/19q codeletion was 
detected in 139 cases (34.4%). Hematological markers 
were defined in 528/592 cases, as 64 cases were 
excluded due to conditions that could influence 
peripheral blood counts. Detailed information on the 
clinico-pathological features of the cohort is listed in 
Supplementary Table 1. 
 
Molecular groups 
 
Among the 573 cases of Grade II-IV gliomas, 103 
(18.0%) were triple-positive, 19 (3.3%) had mutations in 
both IDH and TERT, 108 (18.8%) had IDH mutation 
only, 144 (25.1%) were triple-negative, 155 (27.1%) had 
TERT mutation only, and 44 (7.7%) had other 
combinations of the three biomarkers (Figure 1A). For 
lower-grade glioma cases (n = 392), 103 (26.3%) were 
triple-positive, 19 (4.8%) had both IDH and TERT 
mutations, 100 (25.5%) had IDH mutation only, 48 
(12.24%) had TERT mutation only, 78 (19.9%) were 
triple-negative, and 44 (11.2%) had other combinations 
(Figure 1B). For Grade IV glioma cases (n = 181), 8 
(4.4%) had IDH mutation only, 107 (59.1%) had TERT 
mutation only, and 66 (36.5%) were triple-negative 
(Figure 1C). Univariate survival analysis demonstrated 
that molecular groups significantly influenced the OS of 
patients with lower-grade gliomas. The triple-positive 
group had favorable prognosis, whereas the TERT 
mutation group had a dismal survival expectancy (Figure 
1D, univariate analysis in Supplementary Table 2), 
although this relationship was not found for Grade IV 
gliomas (Figure 1E, Supplementary Table 5). In 
subsequent multivariate analysis, molecular group was 
revealed as an independent prognostic factor in lower-
grade gliomas (Table 1). 
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Prognostic value of hematological markers in lower-
grade and Grade IV gliomas 
 
The prognostic value of the hematological markers was 
evaluated in lower-grade gliomas and Grade IV gliomas. 
Optimal cut-off values of NLR, PLR, MLR, MPV, PDW, 
and AGR were computed by X-tile software. Univariate 
analysis demonstrated that high NLR (P < 0.001), PLR (P 
= 0.013), and MLR (P = 0.046), and low AGR (P = 
0.043) were associated with shorter survival in lower-
grade gliomas (Figure 2A–2D), while MPV (P = 0.204) 
and PDW (P = 0.422) had no prognostic significance. 
Because hematological markers were strongly correlated 
and interfered with each other [14], they were separately 
analyzed with other potential prognostic factors in 
multivariate analysis. The latter revealed that NLR (P = 
0.046, Table 2) is a prognostic factor for lower-grade 
gliomas independent of age, extent of resection, and 
adjuvant therapies. Conversely, neither PLR (P = 0.102), 
MLR (P = 0.188), nor AGR (P = 0.621) were 
independent prognostic factors (Supplementary Table 4). 
In Grade IV gliomas, only NLR emerged as a significant 
prognostic factor in univariate (P = 0.001, Figure 2E) and 
multivariate (P = 0.002, Table 3) analyses. 

Prognostic value of hematological markers within 
molecular groups of lower-grade gliomas 
 
Since molecular subtype is an independent factor 
influencing survival in lower-grade gliomas but not 
Grade IV glioma, we evaluated the prognostic value of 
hematological markers for each molecular group in 
lower-grade gliomas. Optimal cut-off values for NLR, 
PLR, MLR, and AGR in each group were computed by 
X-tile software. As shown in Figure 2F–2L, univariate 
analysis showed that high NLR predicted shorter OS in 
lower-grade glioma groups defined by IDH and TERT 
mutations (P = 0.009), IDH mutation only (P = 0.047), 
TERT mutation only (P = 0.005), and in the triple-
negative group (P = 0.005). In turn, high PLR predicted 
shorter OS in the IDH mutation only (P = 0.014) and 
TERT mutation only (P = 0.001) groups, while high 
MLR was associated with shorter OS in gliomas with 
IDH and TERT mutations (P = 0.006). In contrast, none 
of the hematological markers impacted OS in the triple-
positive group of lower-grade gliomas (Supplementary 
Figure 1A–1D). Likewise, no prognostic significance 
was found for PLR and AGR in the IDH and TERT 
mutation group (Supplementary Figure 1E, 1F), MLR 

 

 
 

Figure 1. Proportion and Kaplan-Meier survival analyses of molecular groups in diffuse infiltrative gliomas. Survival proportions 
in infiltrative (Grade II-IV) gliomas (A), lower-grade (Grade II-III) gliomas (B), and Grade IV glioma (C). (D) Kaplan-Meier OS curves in lower-
grade gliomas. OS estimates for the 5 molecular groups are significantly different (P < 0.001). (E) Kaplan-Meier OS curves in Grade IV glioma. 
No differences in OS were detected for the 3 molecular groups (P = 0.285). 



www.aging-us.com 6255 AGING 

Table 1. Multivariate analysis of adjusting putative prognostic factors for molecular group (n=348a) and risk group 
(n=348a) in lower-grade gliomas. 

Factors 
OS 

HR (95%CI) P-value 
Molecular group 1.578 (1.366–1.822) <0.001 
Age  1.883 (1.220–2.908) 0.004 
Extent of resection 1.262 (0.813–1.960) 0.300 
RT (Yes or No) 1.770 (1.147–2.732) 0.010 
Grade (II or III) 3.408 (2.300–5.049) <0.001 
KPS (≤80 or >80) 0.693 (0.478–1.006) 0.054 
   
Risk group 1.214 (1.149–1.283) <0.001 
Age (≤40 or >40) 1.630 (1.061–2.504) 0.026 
Extent of resection 1.122 (0.721–1.745) 0.610 
RT (Yes or No) 1.772 (1.153–2.724) 0.009 
KPS (≤80 or >80) 0.742 (0.510–1.079) 0.118 
Grade (II or III) 3.112 (2.091–4.634) <0.001 

a12 cases were excluded due to unavailability of FFPE tissues of the tumors, and 44 cases of other combinations of the three 
molecular markers were excluded. 
Molecular group: the five molecular groups based on the statuses of IDH mutations, TERT promoter mutations and 1p/19q co-
deletion, which include triple positive, IDH and TERT mutations, IDH mutation only, TERT mutation only and triple negative). 
Risk group: the four groups based on the statuses of IDH mutations, TERT promoter mutations, 1p/19q codeletion and the 
levels of NLR in each molecular subgroup 
OS: overall survival 
RT: radiation therapy, indicating postoperative radiation therapy after first operation 
KPS: Karnofsky Performance Status 
HR: Hazard-ratio 
 

and AGR in the IDH mutation only group 
(Supplementary Figure 1G, 1H), MLR and AGR in the 
TERT mutation only group (Supplementary Figure 2A, 
2B), and PLR, MLR, and AGR in the triple-negative 
group (Supplementary Figure 2C–2E) of lower-grade 
gliomas. 
 
A glioma prognostic model combining molecular 
pathology and hematological markers 
 
Based on combined data derived from survival analyses 
of molecular pathology and hematological markers, we 
propose a prognostic model to predict survival in glioma 
patients (Figure 3A). In the model, infiltrative gliomas 
include lower-grade gliomas and Grade IV glioma. 
Lower-grade gliomas were divided into 5 primary 
molecular groups associated with distinct OS [3]. Since 
NLR is a prognostic factor independent of putative 
clinical variables in lower-grade gliomas, and predicts 
survival in 4 tumor subtypes (triple-negative, IDH and 
TERT mutations, IDH mutation only, and TERT 
mutation only), this hematological marker is proposed to 
further stratify the prognosis of these 4 molecular 

groups. In contrast, high NLR arises as an independent 
predictor of worse survival for Grade IV glioma. 
 
Molecular pathology and NLR stratify lower-grade 
gliomas into four risk groups 
 
According to the prognostic model proposed in Figure 
3A, lower-grade gliomas were categorized into nine 
subgroups based on the status of IDH and TERT 
promoter mutations, 1p/19q codeletion, and NLR. 
Survival analyses revealed significantly different OS  
for these nine subgroups (P < 0.001, Figure 3B, 
Supplementary Table 6). Furthermore, subgroups with 
non-significant differences in OS between them were 
integrated into individual risk groups: Subgroups 1, 2, 
and 4 conformed the Low risk group, Subgroups 3, 5, 6, 
and 8 conformed the Intermediate-I risk group, 
Subgroup 9 was defined as the Intermediate-II risk 
group, and Subgroup 7 represented the High risk group 
(Figure 3B, 3C). Univariate (P < 0.001, Figure 3C, 
Supplementary Table 7) and multivariate (P < 0.001, 
Table 1) analyses yielded significantly different OS for 
these four risk groups. 
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DISCUSSION 
 
In the present study, data from a large cohort of gliomas 
(n = 592) were used to corroborate previous findings on 
the 5 glioma molecular groups defined by three robust 
markers, 1p/19q codeletion, IDH mutations, and TERT 

promoter mutations [2] and to demonstrate, for lower-
grade gliomas, the differential prognostic value of 
hematological markers in each molecular group. Based 
on these findings, we propose a prognostic model for 
infiltrative gliomas that combines molecular and 
hematological markers. 

 

 
 

Figure 2. Kaplan-Meier survival curves of glioma subgroups based on hematological markers. Lower-grade gliomas: (A) NLR > 
2.00 is associated with worse OS (P < 0.001); (B) PLR > 169.23 is associated with worse OS (P = 0.013); (C) MLR > 0.34 is associated with worse 
OS (P = 0.046); and (D) AGR > 1.79 is associated with better OS (P = 0.043). (E) In Grade IV glioma, NLR > 7.25 is associated with better OS (P = 
0.001). (F, G) In the IDH and TERT mutations group of lower-grade gliomas, NLR > 2.00 and MLR > 0.29 predict worse OS (P < 0.009 and P = 
0.006, respectively). (H, I) In the IDH mutation only group of lower-grade gliomas, NLR > 2.18 and PLR > 164.00 predict worse OS (P = 0.047 
and P = 0.014, respectively). (J, K) In the TERT mutation only group of lower-grade gliomas, NLR > 3.36 and PLR > 165.65 predict worse OS (P = 
0.005 and P = 0.001, respectively). (L) In triple-negative lower-grade gliomas, NLR > 1.64 predicts worse OS. 
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Table 2. Multivariate analysis of adjusting putative prognostic factors for NLR (n=358a) in lower-grade gliomas. 

Factors 
OS 

HR (95%CI) P-value 
NLR 1.502 (1.007–2.240) 0.046 
Age  1.042 (1.024–1.060) <0.001 
Extent of resection 0.907 (0.540–1.524) 0.713 
RT (Yes or No) 0.860 (0.514–1.440) 0.567 
Grade (II or III) 3.746 (2.499–5.618) <0.001 
KPS (≤80 or >80) 0.618 (0.416–0.916) 0.017 

a46 cases were excluded due to conditions that could influence hematological makers 
OS: overall survival 
RT: radiation therapy, indicating postoperative radiation therapy after first operation 
KPS: Karnofsky Performance Status 
HR: Hazard-ratio 
 

Table 3. Multivariate analysis of adjusting putative prognostic factors for NLR in Grade IV glioma (n=170a). 

Factors 
OS 

HR (95%CI) P-value 
NLR  2.228 (1.329–3.733) 0.002 
Extent of resection 2.815 (1.952–4.059) <0.001 
RT (Yes or No) 1.213 (0.772–1.907) 0.402 
CHT (Yes or No) 1.339 (0.871–2.061) 0.184 
Age (≤62 or >62) 1.587(1.103–2.284) 0.013 

a18 cases were excluded due to conditions that could influence hematological makers 
OS: overall survival 
RT: radiation therapy, indicating postoperative radiation therapy after first operation 
CHT: chemotherapy, indicating postoperative chemotherapy after first operation 
HR: Hazard-ratio 
 

The involvement of tumor-associated inflammatory cells 
in carcinogenesis has been firmly established [5, 7]. 
Cancer cells secrete chemokines and cytokines that 
attract host inflammatory cells such as neutrophils and 
lymphocytes, and these cells produce in turn pro-
inflammatory cytokines, growth factors, and chemokines 
that contribute to tumor progression [18–20]. Unlike 
genetic biomarkers, preoperative hematological markers 
can be easily calculated from routine blood tests and may 
have important clinical significance for cancer prognosis. 
In recent years the prognostic value of NLR, PLR, MLR, 
and AGR has been investigated and corroborated in 
several cancers, such as hepatocellular carcinoma [21], 
pancreatic carcinoma [22], renal carcinoma [11], 
esophageal cancer [23], gastric carcinoma [24], colorectal 
cancer [25], lung cancer [26] and gliomas [14–17, 27, 
28]. 
 
Our study demonstrated that NLR, PLR, MLR, and AGR 
are prognostic factors in univariate analysis for lower-

grade gliomas. Also, for these tumors, multivariate 
analysis revealed that NLR is an independent prognostic 
factor after adjusting for age, grade, histology, extent of 
resection, and adjuvant therapies. 
 
Studies demonstrated that neutrophil-induced immuno-
suppression can promote glioma progression, and that 
certain subsets of T-lymphocytes can instead inhibit it via 
induction of cytotoxic cell death and cytokine production 
[20, 29, 30]. Accordingly, Han et al. reported that high 
neutrophil and low CD3+ T-cell infiltration (elevated 
NLR) in glioblastomas was correlated with poorer 
outcomes [15]. Evidence for the importance of PLR in 
oncogenesis comes from studies showing that platelet 
activation contributes to tumor angiogenesis, disruption 
of the extracellular matrix and release of adhesion 
molecules to promote cancer cell proliferation and 
metastasis [31, 32]. As for AGR, its relevance in cancer 
may be related to the antioxidative effects of albumin 
against carcinogens such as nitrosamines and aflatoxins 
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[33], and the association of elevated globulin levels 
with the progression and metastasis of some cancers 
[34]. 
 
Although predicting the clinical outcome of infiltrative 
gliomas is challenging, considerable progress in the 
classification of gliomas based on molecular markers has 
been made in the past several years [2, 3, 35–39]. 
Particularly, three robust molecular alterations, namely 
1p/19q codeletion and IDH and TERT promoter 
mutations, were used to categorize five principal 
molecular groups of gliomas with distinct clinical traits 
and mechanisms of carcinogenesis [2]. Chromosome 
1p/19q codeletion is associated with oligodendrogliomas, 

sensitivity to adjuvant therapies, and favorable survival 
[35, 40]. Mutations in IDH genes (IDH1 and IDH2) have 
been revealed in the majority of lower-grade gliomas and 
in secondary glioblastoma multiforme, and predict better 
survival [36, 41]. In a previous study we demonstrated 
that TERT promoter mutations could identify among 
lower-grade gliomas a group of IDH-mutated-1p/19q-
intact tumors with better survival and a subset of IDH 
wild-type tumors with worse prognosis [42]. At present, 
the classification of infiltrative gliomas based on these 
three molecular markers is routinely conducted and of 
vital significance in clinical practice [3]. Based on this 
scheme, through multivariate survival analysis on 573 
adult infiltrative gliomas we confirmed in lower-grade 

 

 
 

Figure 3. Prognostic model combining molecular pathology and hematological markers for gliomas. (A) In the model, infiltrative 
gliomas include lower-grade gliomas and Grade IV glioma. Lower-grade gliomas are divided into 5 molecular groups with different OS. NLR is 
proposed to further stratify the OS of 4 of these groups (triple-positive tumors are excepted). In Grade IV glioma, high NLR independently 
predicts worse OS. (B) Kaplan-Meier OS curves of the 9 subgroups of lower-grade gliomas. The OS of the 9 subgroups are significantly 
different (P < 0.001). (C) Kaplan-Meier OS curves of the 4 risk groups in lower-grade gliomas: Subgroups 1, 2, and 4 were integrated into a 
Low risk group; Subgroups 3, 5, 6, and 8 were integrated into an Intermediate-I risk group; Subgroup 9 comprises the Intermediate-II risk 
group; and Subgroup 7 constitutes the High risk group. The OS of the 4 risk groups differs significantly (P < 0.001). 
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tumors the prognostic significance of the principal 
molecular groups independent of age, histology, and 
clinical variables. Our results further corroborate the 
findings reported by Eckel-Passow et al. [3] while 
adding several key clinical variables omitted in their 
research. Meanwhile, consistent with Eckel-Passow et 
al., for WHO Grade IV gliomas the molecular groups 
lacked independent prognostic significance. 
 
We investigated for the first time, to the best of our 
knowledge, the prognostic value of hematological 
markers within the 5 primary glioma molecular groups 
and found that for lower-grade gliomas, high NLR and 
MLR predicted worse survival in the IDH and TERT 
mutations group, high NLR and PLR predicted worse 
survival in the IDH mutation only and TERT mutation 
only groups, and high NLR was associated with shorter 
survival in the triple-negative group. Interestingly, no 
predictive value was found for any hematological 
marker in triple-positive tumors. We speculate that any 
potential contribution to prognosis may be masked by 
the favorable survival characteristic of lower-grade 
gliomas within this molecular group. The differential 
prognostic values found for these hematological 
markers may be related to distinct immune micro-
environments associated with specific molecular 
groups. For example, Qian et al. reported that immune 
responses in lower-grade gliomas are regulated by IDH 
mutations [43]. In Grade IV glioma, NLR was revealed 
as an independent prognostic factor in multivariate 
analysis, while the predictive values of PLR, MLR,  
and AGR were not significant in univariate analyses. 
We therefore developed a prognostic model for 
infiltrative gliomas by combining molecular and 
hematological markers. The model identified four risk 
groups based on molecular pathology and NLR in 
lower-grade gliomas, and two risk groups based  
on NLR in Grade IV glioma. The model only  
requires information of routine preoperative blood tests 
and molecular analysis of 1p/19q codeletion and  
IDH and TERT promoter mutations, which is also 
available in most medical centers. We think the  
model can be used readily and easily in the clinic,  
after corroboration from a multi-center, prospective 
clinical trial. 
 
The present study has some limitations. First, due to the 
retrospective nature of the study, systematic bias might 
influence the accuracy of the results. Second, although 
the current study enrolled a relatively large sample size, 
it was carried out in a single research center. Thus, 
multi-center, prospective studies are necessary to 
corroborate our findings. Lastly, more extensive 
research is needed to clarify the detailed mechanisms 
through which hematological markers influence the 
prognosis of molecular groups in gliomas. 

In summary, our study corroborates the prognostic 
significance of glioma subtypes based on 1p/19q 
codeletion and IDH and TERT promoter mutations in a 
large Chinese cohort. Moreover, we propose a novel 
prognostic model for diffuse infiltrative gliomas that 
combines molecular pathology and hematological 
markers, and may increase prognostic accuracy and 
improve patient outcomes. 
 
MATERIALS AND METHODS 
 
Study cohort 
 
This study was approved by the Human Scientific 
Ethics Committee of the First Affiliated Hospital of 
Zhengzhou University. Five hundred and ninety-two 
cases of infiltrative gliomas (WHO II, III and IV) with 
complete follow-up data were enrolled in the study. 
Patients in the cohort were surgically treated in the First 
Affiliated Hospital of Zhengzhou University from 2011 
to 2016. The diagnosis was made by pathological 
examination and centrally reviewed by two pathologists 
according to the 2016 WHO classification of tumors of 
the CNS [2]. All patients enrolled in the current study 
were treatment-naïve (i.e. neither surgical resection, 
chemotherapy, nor radiotherapy were administered 
before the first operation). For survival analysis of 
hematological markers, patients with hematological 
diseases, serious infections, surgery, trauma, and anti-
coagulant therapy were excluded. All clinical data, 
including gender, age, preoperative Karnofsky 
Performance Status (KPS) score, extent of resection, 
histological grade, and adjuvant therapies were 
collected from the medical record system. Follow-up 
data were acquired by telephone or out-patient follow-
up. Overall survival (OS) was calculated as the time 
interval between the date of surgery and the date of 
death or the end of follow-up. 
 
Molecular classification 
 
Formalin-fixed, paraffin embedded (FFPE) tissues were 
available in 573 cases. The detection of molecular 
markers was centrally conducted with standardized 
protocols. Mutational hotspots in IDH1, IDH2, and the 
TERT promoter were detected by Sanger sequencing. 
Chromosome 1p/19q status was evaluated by 
fluorescence in situ hybridization in all WHO Grade II 
and Grade III gliomas. Detailed protocols are described 
in the Supplementary Materials. According to the status 
of the three molecular markers, infiltrative gliomas were 
categorized into five principal groups: triple-positive 
(mutations in TERT promoter and IDH, plus 1p/19q 
codeletion); mutations in both TERT and IDH; mutation 
in IDH only; mutation in TERT only; and triple- 
negative [3]. 
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Hematological markers 
 
Routine preoperative blood and hepatic function tests 
prior to the first surgical resection were centrally 
performed at the Department of Clinical Laboratory 
within 2 hours of blood sample collection. Blood test 
results included neutrophil, lymphocyte, mononuclear 
cell, and platelet counts, as well as mean platelet 
volume and platelet distribution width. Results of the 
hepatic function test included albumin and globulin 
levels to calculate AGR. Hematological markers 
included: NLR = neutrophil-to-lymphocyte ratio, PLR = 
platelet-to-lymphocyte ratio, MLR = monocyte-to- 
lymphocyte ratio, MPV = median platelet volume, 
PDW = platelet distribution width, and AGR = albumin-
to-globulin ratio.  
 
Statistical methods 
 
SPSS 19.0 (IBM Corp., Armonk, NY, USA), Graph-
Pad Prism 6.0 (Graph-pad Inc, La Jolla, USA) and X-
tile 3.6.1 (http://medicine.yale.edu/lab/rimm/research/ 
software.aspx) were used to analyze the data. The 
Kaplan-Meier method and the log-rank test were used to 
calculate survival rates. Post-hoc Bonferroni test was 
used for multiple comparisons. Multivariate analysis 
using Cox regression was performed to evaluate 
independent prognostic factors. P < 0.05 was considered 
statistically significant. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Methods 
 
Mutation analysis of IDH1/IDH2 
 
Mutational hotspots of IDH1/IDH2 were evaluated by 
direct sequencing. Tissues from representative tumor area 
(the proportion of tumor cells>20%) were scrapped off 
from dewaxed sections and treated with PCR reaction 
solution A 10μl (reaction mixture containing 1μl of cell 
lysate, 0.3mM of each dNTP, 2.5mM MgCl2, 0.3μM of 
each primer and 0.2U of KAPA HiFi HotStart DNA 
Polymerase (Kapa Biosystems Inc., Wilmington, USA)), 
Shrimp Alkaline Phosphatase (SAP) enzyme (NEB, 
Ipswich, MA, USA) 2μl and BigDye (BigDye™ 
Terminator v3.1 Cycle Sequencing Kit, Thermo Fisher 
Scientific, Waltham, MA, USA) 1μl for centrifugation at 
2000 rpm for 10 sec. The crude cell lysate was 
centrifuged and supernatant was used for subsequent PCR 
analysis. The forward primer primers (IDH1-F:5’-
CGGTCTTCAGAGAAGCCATT-3’,IDH1-R:5’-CACAT 
TATTGCCAACATGAC-3’,IDH2-F:5’-AGCCCATCAT 
CTGCAAAAAC-3’,IDH2-R:5’-CTAGGCGAGGAGCT 
CCAGT-3’) were used to amplify the region of 
mutational hotspots of IDH1/IDH2. ①PCR was 
performed was initiated at 95°C for 5 min, followed by 40 
cycles of 95°C for 20 sec, 57°C for 30 sec and 72°C for 
1min, and a final extension of 72°C for 5 min and 10°C 
for 10 min. ②5μl PCR products were then mixed with 
2μl SAP enzyme and reacted at 37°C for 40min and then 
at 80° C for 15min. ③ Then 18μl PCR reaction solution 
C (CWBIO, Beijing, Chima), 1μl products from ② step, 
and 1μl BigDye were mixed and reacted at 96°C for 1 
min, followed by 30 cycles of 96°C for 10 sec, 50° C for 5 
sec and 60° C for 2 min, and a final extension of 25°C for 
1 min and 10°C for 10 min. Then 50μl natrium 
asceticism-ethanol mixture (3M NaAc: ethanol=1:15) 
were added and the mixture was centrifuged for 30min 
(12000 rpm, 4°C), with the supernatant being discarded. 
Then 70μl 75% ethanol were added and the mixture was 
centrifugated for 15min (12000 rpm, 4°C), with the 
supernatant being discarded. After complete volatilization 
of the ethanol at room temperature, 12μl Hi-Di™ 
Formamide (Thermo Fisher Scientific, Waltham, MA, 
USA) were added into the precipitate to dissolve the 
DNA. The dissolved products were sequenced on Applied 
Biosystems™ 3500DxGenetic Analyzer (Thermo Fisher 
Scientific, Waltham, MA, USA), and analyzed by 
Chromas software (Technelysium, South Brisbane, 
Australia). The sequencing results were compared with 
wild-type sequences of IDH1/IDH2 for analysis. 
 
Mutation analysis of TERT promoter  
 
Tissues sample were prepared according to the “Mutation  

Analysis of IDH1/IDH2 protocol” protocol previous 
described. The crude cell lysate was centrifuged and 
supernatant was used for subsequent PCR analysis. The 
forward primer TERT-F (5’-GTCCTGCCCCTTCACC 
TT-3’) and reverse primer TERT-R (5’-CAGCGCTGCC 
TGAAACTC-3’) were used to amplify a 163bp fragment 
spanning the two mutational hotspots [chr5, 1,295,228 
(C228T) and 1,295,250 (C250T)] in TERT promoter 
region. ①PCR was performed was initiated at 95°C for 
5 min, followed by 40 cycles of 95°C for 20 sec, 57°C 
for 30 sec and 72°C for 1min, and a final extension of 
72°C for 5 min and 10°C for 10 min. ②5μl PCR 
products were then mixed with SAP enzyme and reacted 
at 37°C for 40 min and then at 80° C for 15 min. ④Then 
18μl PCR reaction solution C, 1μl products from ② 
step, and 1μl BigDye were mixed and reacted at 96°C for 
1 min, followed by 30 cycles of 96°C for 10 sec, 50° C 
for 5 sec and 60° C for 2min, and a final extension of 
25°C for 1 min and 10°C for 10 min. The following steps 
were performed according to the “Mutation Analysis of 
IDH1/IDH2 protocol” protocol previous described. The 
sequencing results were compared with wild-type 
sequences of TERT for analysis. 
 
Chromosome 1p/19q status by Fluorescence in Situ 
Hybridization (FISH) 
 
Chromosome 1p/19q status was examined by 
fluorescence in situ hybridization. 4μm thick FFPE 
sections were baked at 65°C for 2-3h and deparaffinized 
in xylene for 10 minutes for 2 times. The sections were 
hydrated by 100% ethanol for 2 min, 85% ethanol for 2 
min and 70% ethanol for 2 min orderly, and then 
immerged in deionized water for 3 min. The sections 
were processed with citrate repair solution in (pH6.0) 
for 4 min in high pressure condition, and then rinsed in 
2×SSC solution for 5 min for 2 times. The sections were 
immerged in protease K fluid (200µg/ml) and incubated 
for 2 min at 37°C, and then rinsed in 2×SSC solution 
for 5 min for 2 times. 10μl probes (GP Medical 
Technologies, Beijing, China) mixture was added to the 
hybridization zone of the section, and the denaturation 
and hybridization process was carried out on the 
ThermoBrite®hybridization instrument (Leica 
Biosystems, Nussloch, Germany), with denaturation 
temperature at 83°C for 5 min and hybridization 
temperature at 42°C for 16h. Sections were immerged 
in 0.4×SSC plus 0.3% NP-40 cleaning solution 
(65±1°C) and vibrated for 3 sec. Sections were then 
retrieved 2 min later and put into 0.1% NP-40 plus 
2×SSC cleaning solution at room temperature, vibrated 
for 3 sec and cleansed for 1 min. Then the sections were 
immerged in 70% ethanol for 3 min and dried avoiding 
light at room temperature. 15μl DAPI redyeing agent 
was added into the hybridization zone of the section, 
and the section was placed avoiding light for 10 min. At 
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last, the section was placed under the BX51TRF 
fluorescence microscope (Olympus, Tokyo, Japan) for 
analysis by expert pathologist (Dr. Wei-wei Wang). 
Hybridizing signals in at least 100 non-overlapping 
nuclei were counted. The loci interrogated were  
1p36.3 (RP11-62M23 labeled red)/1q25.3-q31.1 (RP11-
162L13 labeled green) and 19q13.3 (CTD-2571L23 

labeled red)/19p12 (RP11-420K14 labeled green). A 
sample was considered 1p or 19q deleted according to 
the ratio of number of red signal to green signal. In 
1p36 or 19q13, positive loss of heterozygosity (LOH) 
was determined when the ratio of number of red signal 
to green signal was less than 0.7. 
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Supplementary Figures 
 
 

 
 

Supplementary Figure 1. Kaplan-Meier overall survival curves of subgroups divided by hematological markers in triple-
positive, IDH and TERT mutations, and IDH mutation only molecular groups of lower-grade gliomas. (A–D) In triple-positive 
group of lower-grade gliomas, the OS of patients with NLR>2.00 or PLR>166.15 or MLR>0.33 or AGR>1.78does not significantly differ from 
that of patients with NLR≤2.00 or MLR≤0.29or MLR≤0.33 or AGR≤1.78  (NLR P=0.257, PLR P=0.270, MLR P=0.497, AGR P=0.885). (E, F) In IDH 
and TERT mutations group of lower-grade gliomas, the OS of patients with PLR>166.00 or AGR>1.76 does not significantly differ from that of 
patients with PLR≤166.00 or AGR≤1.76  (PLR P=0.599, AGR P=0.493). (G, H) In IDH mutation only group of lower-grade gliomas, the OS of 
patients with MLR>0.33 or AGR>1.89 does not significantly differ from that of patients with MLR≤0.33 or AGR≤1.89 (MLR P=0.776, AGR 
P=0.251). 
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Supplementary Figure 2. Kaplan-Meier overall survival curves of subgroups divided by hematological markers in TERT 
mutation only, and triple-negative groups of lower-grade gliomas. (A–B) In TERT mutation only group of lower-grade gliomas, the OS 
of patients with MLR>0.18 or AGR>1.75 does not significantly differ from that of patients with MLR≤0.18 or AGR≤1.75 (MLR P=0.821, AGR 
P=0.116). (C–E) In triple-negative group of lower-grade gliomas, the OS of patients with PLR>204.70 or MLR>0.17 or AGR>1.78 does not 
significantly differ from that of patients with PLR≤204.70 or MLR≤0.17 or AGR≤1.78 (PLR P=0.060, MLR P=0.255, AGR P=0.307). 
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Supplementary Tables 
Supplementary Table 1. Clinico-pathological features of the cohort (n=592). 

Baseline characteristics Number 

Gender  

Male 335 (56.59%) 

Female 257 (43.41%) 

Age  

Mean ±SD 48.26±1.503 

Median (range) 42 (16-82) 

Extent of resection  

Complete 456 (77.03%) 

Incomplete 136 (22.97%) 

RT  

Yes 459 (77.53%) 

No 133 (22.47%) 

CHT  

TMZ 186 (31.42%) 

NMST/FMST 156 (26.35%) 

No 250 (42.23%) 

Tumor grade  

II 282 (47.64%) 

III 122 (20.61%) 

IV 188 (31.76%) 

IDH mutations  

IDH1 mutation 235 (41.01%) 

R132C 2 (0.35%) 

R132G 1 (0.17%) 

R132H 227 (39.62%) 

R132S 2 (0.35%) 

R133H 1 (0.17%) 

R134H 1 (0.17%) 

R135H 1 (0.17%) 

IDH2 mutation 11 (1.92%) 

R132S 1 (0.17%) 

R172G 1 (0.17%) 

R172K 5 (0.87%) 

R172W 4 (0.70%) 

IDH wild type 327 (57.07%) 

TERT promoter mutations  

TERT promoter mutation 286 (49.91%) 
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C228T 212 (37.00%) 

C250T 74 (12.91%) 

TERT promoter wild type 287 (50.09%) 

1p/19q deletion  

Only 1p deletion 15 (2.62%) 

Only 19q deletion 35 (6.11%) 

1p/19q codeletion 139 (24.26%) 

1p/19q intact 384 (67.02%) 

Hematological marker (n=528) a  

NLR (Mean ±SD) 3.02±2.81 

PLR (Mean ±SD) 129.28±62.17 

MLR (Mean ±SD) 0.28±0.13 

AGR (Mean ±SD) 1.77±0.36 

MPV (Mean ±SD) 8.46±0.05 

PDW (Mean ±SD) 16.47±0.02 

Molecular group   

Grade II-IV (n=573) b  

Triple-positive 103 (17.98%) 

IDH and TERT mutations 19 (3.32%) 

IDH mutation only 108 (18.85%) 

TERT mutation only 155 (27.05%) 

Triple-negative 144 (25.13%) 

Other 44 (7.7%) 

Lower-grade gliomas (n=392)  

Triple-positive 103 (26.28%) 

IDH and TERT mutations 19 (4.85%) 

IDH mutation only 100 (25.51%) 

TERT mutation only 48 (12.24%) 

Triple-negative 78 (19.90%) 

Other 44 (11.22%) 

Grade IV glioma (n=181)  

IDH mutation only 8 (4.42%) 

TERT mutation only 107 (59.12%) 

Triple-negative 66 (36.46%) 

a64 cases were excluded from the 592 cases due to conditions that could influence hematological makers 
b19 cases were excluded from the 592 cases due to unavailability of FFPE tissues of the tumors. 
RT: radiation therapy, indicating postoperative radiation therapy after first operation 
CHT: chemotherapy, indicating postoperative chemotherapy after first operation 
TMZ: temozolomide, FMST: fotemustine, NMST: nimustine 
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Supplementary Table 2. Univariate analysis of prognostic factors for OS in lower-grade gliomas (n=404). 

Factors No. of cases 5-year OS (%) P-value 
Sex    

Male 228 59.6 P=0.276 
Female 176 66.8  

Age    
≤40 146 73.7 P<0.001 
>40 258 56.1  

KPS    
≤80 149 56.7 P=0.019 
>80 255 66.7  

Extent of resection    
Gross total 326 65.2 P=0.004 
Subtotal 78 49.9  

RT    
Yes 324 65.9 P=0.019 
No 80 48.1  

CHT    
Yes 313 64.7 P=0.129 
No 91 54.4  

Grade    
II 282 76.3 P<0.001 
III 122 27.8  

Molecular group(n=348) a, b    
Triple-positive 103 90.2 P<0.001 
IDH and TERT mutations 19 67.4  
IDH mutation only 100 70.0  
TERT mutation only 48 24.0  
Triple-negative 78 38.3  

a 12 cases were excluded due to unavailability of FFPE tissues of the tumors, and 44 cases of other combinations of the three 
molecular markers were excluded. 
b multiple comparisons for molecular groups are listed in Supplementary Table 3 
OS: overall survival; KPS: Karnofsky Performance Status; RT: radiation therapy, indicating postoperative radiation therapy 
after first operation; CHT: chemotherapy, indicating postoperative chemotherapy after first operation 
 

Supplementary Table 3. The classification of radiotherapy, chemotherapy and chemotherapy program in WHO II-III 
gliomas (n=403). 

 Astrocytoma (%) Oligodendroglioma or Oligoastrocytomas (%) 
Only RT 14 (9.03) 31 (12.5) 
Only CHT 10 (6.45) 24 (9.68) 
RT and CHT 113 (72.90) 166 (66.94) 
No RT nor CHT 18 (11.61) 27 (10.89) 
CHT program   
  TMZ 36 (29.27) 68 (35.79) 
  FMST/NMST 49 (39.84) 81 (42.63) 
  NA 38 (30.89) 41 (21.58) 

RT: radiotherapy; CHT: chemotherapy; TMZ: temozolomide; FMST: fotemustine; NMST: nimustine; NA: not available 
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Supplementary Table 4. Univariate analysis of molecular groups of lower-grade gliomas with multiple comparisons 
(n=348a). 

Molecular group 1 vs Molecular group 2 No. of cases 5-year OS (%) P-valueb 

Triple-positive vs IDH and TERT mutations 103 vs 19 90.2 vs 67.4 P=0.096 

Triple-positive vs IDH mutation only 103 vs 100 90.2 vs 70.0 P=0.009 

Triple-positive vs TERT mutation only 103 vs 48 90.2 vs 24.0 P<0.001 

Triple-positive vs Triple negative 103 vs 78 90.2 vs 38.3 P<0.001 

IDH and TERT mutations vs IDH mutation only 19 vs 100 67.4 vs 70.1 P=0.994 

IDH and TERT mutations vs TERT mutation only 19 vs 48 67.4 vs 24.0 P=0.002 

IDH and TERT mutations vs Triple negative 19 vs 78 67.4 vs 38.3 P=0.011 

IDH mutation only vs TERT mutation only 100 vs 48 70.0 vs 24.0 P<0.001 

IDH mutation only vs Triple negative 100 vs 78 70.0 vs 38.3 P<0.001 

TERT mutation only vs Triple negative 48 vs 78 24.0 vs 38.3 P=0.162 

a12 cases were excluded due to unavailability of FFPE tissues of the tumors, and 44 cases of other combinations of the three 
molecular markers were excluded. 
bTo correct for multiple comparisons, a Bonferroni adjusted P value of 0.05/10(number of times of comparisons) =0.005 was 
adopted as the significance threshold 

Supplementary Table 5. Univariate analysis of prognostic factors for OS in Grade IV glioma (n=188). 

Factors No. of cases 5-year OS (%) P-value 
Sex    

Male 107 4.8 P=0.488 
Female 81 2.2  

Age    
≤62 50 3.5 P=0.037 
>62 138 4.0  

KPS    
≤80 45 9.7 P=0.151 
>80 143 2.6  

Extent of resection    
Gross total 130 4.4 P<0.001 
Subtotal 58 1.9  

RT    
Yes 135 6.6 P=0.006 
No 53 6.3  

CHT    
Yes 125 0.0 P<0.001 
No 63 3.2  

Molecular group (n=181)a    
IDH mutation only 8 25.0 P=0.285 
TERT mutation only 107 2.7  
Triple-negative 66 3.7  

a7 cases were excluded due to unavailability of FFPE tissues of the tumors. 
OS: overall survival; KPS: Karnofsky Performance Status; RT: radiation therapy, indicating postoperative radiation therapy 
after first operation CHT: chemotherapy, indicating postoperative chemotherapy after first operation 
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Supplementary Table 6. P-value in the univariate analysis of subgroups of lower-grade gliomas with multiple 
comparisons (n=348a). 

Subgroup 1 vs Subgroup 2 P-valueb 

Triple positive vs IDH and TERT mutation-Low NLR P<0.001 

Triple positive vs IDH mutation only-Low NLR P<0.001 

Triple positive vs TERT mutation only-High NLR P<0.001 

Triple positive vs TERT mutation only-Low NLR P<0.001 

Triple positive vs Triple-negative-Low NLR P<0.001 

IDH and TERT mutation-High NLR vs TERT mutation only-Low NLR P<0.001 

IDH and TERT mutation-High NLR vs Triple-negative-Low NLR P=0.001 

IDH and TERT mutation-Low NLR vs Triple-negative-Low NLR P<0.001 

IDH mutation only-High NLR vs TERT mutation only-High NLR P<0.001 

IDH mutation only-High NLR vs TERT mutation only-Low NLR P<0.001 

IDH mutation only-High NLR vs Triple-negative-Low NLR P<0.001 

IDH mutation only-Low NLR vs TERT mutation only-Low NLR P<0.001 

IDH mutation only-Low NLR vs Triple-negative-Low NLR P=0.001 

TERT mutation only-High NLR vs TERT mutation only-Low NLR P<0.001 

TERT mutation only-Low NLR vs Triple-negative-High NLR P<0.001 

TERT mutation only-Low NLR vs Triple-negative-Low NLR P<0.001 

Triple-negative-High NLR vs Triple-negative-Low NLR P=0.001 

a12 cases were excluded due to unavailability of FFPE tissues of the tumors, and 44 cases of other combinations of the three 
molecular markers were excluded. 
bTo correct for multiple comparisons, a Bonferroni adjusted P value of 0.05/36(number of times of comparisons) =0.0014 was 
adopted as the significance threshold 
We removed the date that P>0.05 for a more streamlined form. 
 

Supplementary Table 7. Univariate analysis of risk group of lower-grade gliomas with multiple comparisons (n=348a). 

Risk group 1 vs Risk group 2 No.of cases 5-year OS (%) P-valueb 
Low risk vs Intermediate-I 179 vs 98 85.5 vs 53.0 P<0.001 
Low risk vs High risk 179 vs 18 85.5 vs 0.0 P<0.001 
Low risk vs Intermediate-II 179 vs 53 85.5 vs 23.4 P<0.001 
Intermediate-I vs High risk 98 vs 18 53.0 vs 0.0 P<0.001 
Intermediate-I vs Intermediate-II 98 vs 53 53.0 vs 23.4 P<0.001 
High risk vs Intermediate-II 18 vs 53 0.0 vs 23.4 P<0.001 

a12 cases were excluded due to unavailability of FFPE tissues of the tumors, and 44 cases of other combinations of the three 
molecular markers were excluded. 
bTo correct for multiple comparisons, a Bonferroni adjusted P value of 0.05/6(number of times of comparisons) =0.0083 was 
adopted as the significance threshold 


