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Ultrasound image analysis using deep learning
algorithm for the diagnosis of thyroid nodules
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Abstract
Fine needle aspiration (FNA) is the procedure of choice for evaluating thyroid nodules. It is indicated for nodules>2cm, even in cases
of very low suspicion of malignancy. FNA has associated risks and expenses. In this study, we developed an image analysis model
using a deep learning algorithm and evaluated if the algorithm could predict thyroid nodules with benign FNA results.
Ultrasonographic images of thyroid nodules with cytologic or histologic results were retrospectively collected. For algorithm

training, 1358 (670 benign, 688 malignant) thyroid nodule images were input into the Inception-V3 network model. The model was
pretrained to classify nodules as benign or malignant using the ImageNet database. The diagnostic performance of the algorithmwas
tested with the prospectively collected internal (n=55) and external test sets (n=100).
For the internal test set, 20 of the 21 FNA malignant nodules were correctly classified as malignant by the algorithm (sensitivity,

95.2%); and of the 22 nodules algorithm classified as benign, 21 were FNA benign (negative predictive value [NPV], 95.5%). For the
external test set, 47 of the 50 FNA malignant nodules were correctly classified by the algorithm (sensitivity, 94.0%); and of the 31
nodules the algorithm classified as benign, 28 were FNA benign (NPV, 90.3%).
The sensitivity and NPV of the deep learning algorithm shown in this study are promising. Artificial intelligence may assist clinicians

to recognize nodules that are likely to be benign and avoid unnecessary FNA.

Abbreviations: DLA = deep learning algorithm, FNA = fine needle aspiration, US = ultrasonography.
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1. Introduction

Thyroid nodular disease is very common and its prevalence
increases with age.[1] Fine needle aspiration (FNA) is the
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diagnostic procedure of choice. According to the 2015 American
Thyroid Association guidelines, FNA is clinically indicated for
nodules>1cmwith suspicious features on ultrasonography (US),
and for nodules >2cm, even with a very low suspicion of
malignancy.[2] However, 59% to 85% of nodules subject to FNA
are shown to be benign and do not require further manage-
ment.[3,4] In addition, FNA has significant associated risks and
medical expenses.[5] Thus, the ability to predict thyroid nodules
which are likely to be benign would be beneficial as it would
decrease the rate of unnecessary FNA.
Computerized image analysis based on deep learning algo-

rithms (DLAs) has been broadly and rapidly applied across
medical fields.[6–10] The process of computerized image analysis is
based on artificial neural networks. Artificial neural networks use
a multi-step process to automatically learn features of an image,
then extract the features, and classify them using an algorithm.
This process does not need manual engineering.
Because the thyroid glands are small and located superficially,

obtaining representative US images of thyroid nodules is easy, even
for inexperienced clinicians. This makes thyroid US images highly
suitable for medical image analysis using DLA. Numerous studies
analyzed thyroid US images using traditional machine learning or
deep learning and showed promising results.[11–13] However, the
validity of such publications is limited because the predictive
algorithms were trained and tested using radiologists’ interpreta-
tion, not FNA cytology or surgical pathology. Radiologists’
interpretation is oftennot congruentwithFNAcytologyor surgical
pathology,[14,15] and has inter- and intraobserver variability.
In this study, we investigated the applicability of DLA for the

diagnosis of thyroid nodules using US images. We then evaluated
the ability of the algorithm to predict benignity or malignancy.
For this end, we developed a DLA using US images labeled with
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the results of cytologic or histologic results, and evaluated the
performance of the algorithm using internal and external test sets.
2. Patients and methods

2.1. Patients

The institutional review board at SMG-SNU Boramae Medical
Center, Seoul, Korea, approved this study (L-2017-426). Images of
thyroid nodules with FNA cytologic or histologic results obtained
from January 2013 toMay 2017 were collected consecutively and
reviewed. Nodules were selected for FNA according to the Korean
Society of Thyroid Radiology (KSThR) FNA guideline recom-
mendations at the time the procedure was performed.[16,17]

Of these cases, between 2013 and 2015, FNA was performed
for all suspicious malignant nodules regardless of size, as well as
for nodules that were >1cm even if they seemed benign,
according to KSThR guidelines. In 2016, the KSThR adopted the
Korean Thyroid Imaging Reporting and Data System (K-
TRIADS).[18] Therefore, from 2016, K-TIRADS was used to
choose nodules for FNA.
Nodules were labeled as “benign” if their FNA cytology was

Bethesda Category II or surgical histology was benign. Nodules
were labeled as “malignant” if their FNA cytology was Bethesda
Category V/VI or surgical histology was papillary thyroid
carcinoma. Nondiagnostic or indeterminate nodules (Bethesda
Category I, III, IV) were categorized as benign or malignant
according to surgical pathology. They were excluded if not
surgically proven to be benign or malignant. A total of 1358 US
images (670 benign, 688malignant) were collected and labeled as
benign or malignant (see Images, Supplemental Content, which
demonstrates all US images for training and test sets; http://links.
lww.com/MD/C929)

2.2. Data preprocessing

TheUS images containing representative features of thyroid nodules
were downloaded in DICOM or TIFF format (Fig. 1). Then the
nodules on the images were cropped into squares (299� 299 pixel)
bya single clinician (YJC).Wedidnot implementdataaugmentation
techniques such as flip, changing brightness, or changing scale.

2.3. Training and validation for DLA establishment

Using the preprocessed US images, we trained our neural net to
classify benign and malignant nodules. To do so, we used a
Figure 1. Image analysis process u
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transfer learning method using the Inception-v3 model, which is
themost popular image recognitionmodel and hasbeenpreviously
successfully adapted for medical image analysis.[19–21] The
Inception-v3 model was pretrained with >1.2 million images
labeled with 1000 semantic classes from the ImageNet Large
Scale Visual Recognition Challenge repository.[22] Inception-v3
model architecture consists of the following layers which are
pretrained, and contain information that can discriminate between
images: a stem layer, 3 � Inception-A layers, 5 � Inception-B
layers, 2 � Inception-B layer, a pooling layer, a dropout layer, a
fully connected layer, and a softmax layer. For this study, we
trained the fully connected layer with 1358 US images to create a
new fully connected layer.
We used a “bottleneck layer,” with an extremely small number

of units (compared with the adjacent layers). A small number of
units can aggregate the propagated information and extract
fundamental features from the input data.[23] The new fully
connected layerwas trainedwith hyperparameters,with a learning
rate of 0.01, a batch size of 100, model store frequency of 300, and
7000 training steps. We used validation data, which were 10% of
the total training data, in a holdout cross-validation manner. We
recorded training accuracy and validation accuracy every 10
training steps for 7000 steps. We identified training step 2100 as
the point where the gap between the training accuracy and
validation accuracy began to spread. We selected training step
2100 as the final model without overfitting. Benignity or
malignancy was presented based on a probability threshold of 0.5.
2.4. US image analysis by radiologists and deep learning
algorithm

After theDLAwas established,weprospectively collectedUS images
of 1 to 3cm nodules with FNA cytologic results for an internal test
set. The US images were taken using a single system (iU22 system,
Philips, Seattle, WA) and reviewed by a single experienced
radiologist (SWP). The K-TRIADS was used to evaluate the
malignancy risk of each nodule stratified by its US patterns
composed of the integrated solidity, echogenicity, and suspicious US
features of each nodule.[18] The nodules were categorized as benign
(K-TIRADS2), lowsuspicion (K-TIRADS3), intermediate suspicion
(K-TIRADS 4), and high suspicion (K-TIRADS 5).
To solve the overfitting problem, we received US images of 1 to

3cm thyroid nodules from Kuma Hospital, Kobe, Japan, for use
as an external test set. Cytologic results were not revealed until
the results of the DLA were sent to Kuma Hospital. The US
sing pre-trained neural network.
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Table 1

Internal test set reviewed by radiologist.

K-TIRADS classification by radiologist (n) FNA cytologic diagnosis (n)

K-TIRADS 2, benign (1)
K-TIRADS 3, low suspicion (22)
K-TIRADS 4, intermediate suspicion (8)
K-TIRADS 5, high suspicion (3)

Benign (34)

K-TIRADS 5, high suspicion (21) Malignant (21)

FNA= fine needle aspiration, K-TIRADS= the Korean Thyroid Imaging Reporting and Data System.

Table 2

Diagnostic performance of deep learning algorithm in the internal
test set.

FNA benign (n) FNA malignant (n)

Benign by algorithm 21 1
Malignant by algorithm 13 20

FNA= fine needle aspiration.
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images were taken with a single system (TUS-A500, Toshiba
Medical System, Tokyo, Japan) and reviewed by a single
experienced clinician. The nodules were evaluated according to
Kuma US classification: the nodules were categorized as benign
(class 1–2.5), follicular neoplasm (class 3), and suspected of
thyroid carcinoma (class 3.5–5).[24]

To demonstrate the performance of the DLA by proportion of
malignancy, the images of the malignant nodules in the external
test set were randomly sampled to account for 10%, 20%, 30%,
and 40%using random sampling code (https://docs.scipy.org/doc/
numpy-1.13.0/reference/generated/numpy.random.randint.html).
3. Results

3.1. Internal test set

The internal test set comprised 55 US nodule images (34 FNA
benign, 21 FNA malignant) from SNU-SMG Boramae Medical
Center (Table 1). Of the 34 FNA benign nodules, 23 nodules were
benign or low suspicion (K-TIRADS 2 or 3) and 11 nodules were
intermediate suspicion (K-TIRADS 4 or 5). Three nodules were
high suspicion (K-TIRADS 5). All of the 21 FNA malignant
nodules were high suspicion (K-TIRADS 5).
Table 2 demonstrates the diagnostic performance of the DLA.

Of the 21 FNA malignant nodules, 20 were classified as
malignant by the algorithm (sensitivity, 95.2%). Of the 34
Figure 2. Image of the malignant nodule that was incorrectly classifie

3

FNA benign nodules, 21 were predicted as benign by the
algorithm (specificity, 61.8%). Of the 22 nodules that the
algorithm classified as benign, 21 were FNA benign (negative
predictive value [NPV], 95.5%). Of the 33 nodules algorithm
classified as malignant, 20 were FNA malignant (positive
predictive value, 60.6%). Figure 2 shows the image of the
FNA malignant nodule that was incorrectly classified as benign
by the DLA.

3.2. External test set

The external test set comprised 100 nodules images (50 FNA
benign, 50 FNAmalignant) fromKumaHospital (Table 3). All of
the FNA benign nodules were benign under Kuma US
classification. Of the FNA malignant nodules, 14 were follicular
neoplasm and 36 were suspected thyroid carcinoma under Kuma
US classification.
Table 4 demonstrates the diagnostic performance of the DLA.

Of the 50 FNA malignant nodules, 47 were classified as
malignant by the algorithm (sensitivity, 94.0%). Of the 50
FNA benign nodules, 28 were predicted as benign by the
algorithm (specificity, 56.0%). Of the 31 nodules that the
algorithm classified as benign, 28 were FNA benign (NPV,
90.3%). Of the 69 nodules algorithm classified as malignant, 47
were FNA malignant (positive predictive value, 68.1%). The
images of the 3 FNA malignant nodules that were incorrectly
classified as benign by the DLA are shown in Figure 3.
d as benign by the deep learning algorithm in the internal test set.
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Figure 3. Images of the malignant nodules that were incorrectly classified as benign by the deep learning algorithm in the external test set.

Table 3

External test set reviewed by radiologist.

Kuma classification (n) FNA cytologic diagnosis (n)

Benign (50) Benign (50)
Follicular neoplasm (14) Malignant (50)
Suspected of thyroid carcinoma (36)

FNA= fine needle aspiration.

Table 4

Diagnostic performance of deep learning algorithm in the external
test set.

FNA benign (n) FNA malignant (n)

Benign by algorithm 28 3
Malignant by algorithm 22 47

FNA= fine needle aspiration.

Song et al. Medicine (2019) 98:15 Medicine
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Table 5

Diagnostic performance of deep learning algorithm in the external
test set according to the proportion of malignancy.

Proportion of malignant
nodules

Sensitivity
(%)

Negative
predictive value (%)

50% (50 benign, 50 malignant) 94.0 90.3
40% (50 benign, 34 malignant) 91.2 90.3
30% (50 benign, 22 malignant) 90.9 93.3
20% (50 benign, 13 malignant) 92.3 96.6
10% (50 benign, 6 malignant) 100.0 100.0

Song et al. Medicine (2019) 98:15 www.md-journal.com
Table 5 shows the diagnostic performance of the DLA in the
external test set by proportion of malignancy. The sensitivity
ranged from 94.0% to 100%, and NPV from 90.3% to 100%.
4. Discussion

In this study, the thyroid nodules classified as benign by the DLA
were highly likely to be FNA benign. FNA is the most reliable and
cost-effective diagnostic test for thyroid nodules. However,
complications that can accompany FNA cannot be ignored.
Common complications include pain (88%–92% of
patients)[25,26] and blood extravasation (1.9%–6.4% of
patients).[27] Rare, but more serious complications include
recurrent laryngeal nerve palsy,[28] vasovagal reaction,[29] and
potentially life-threatening airway obstruction.[27] Therefore, the
ability to screen nodules that may not require FNA carries
significant clinical implications.
Misdiagnosis of true malignancy as benign (false-negative)

may cause delay in surgical intervention.[30] Misdiagnosis of true
benign as malignant (false-positive) would merely lead to FNA,
which is already indicated in cases in this study. Thus, sensitivity
and NPV are the 2 most meaningful parameters to evaluate the
diagnostic performance of the DLA. Image quality can be affected
by race, underlying thyroiditis, or equipment. The sensitivity and
NPV of a DLA can decrease if the quality of the images differs
from that of the training set. Moreover, the sensitivity and NPV
can decrease with increasing disease prevalence.[31] To evaluate
the influence of the 2 possible variables (image quality and
increasing prevalence), we assessed the performance of the
algorithm at various proportions of malignancy and used an
external validation test set from an institute in a different country.
For the external test set, the sensitivity of the algorithm ranged

from 91.2% to 100%, and NPV ranged from 90.3% to 100%,
according to the proportion of malignancy. In the present study,
the sensitivity and NPV of the DLA were 100%, based on the
assumption that the prevalence of malignancy (Bethesda
Category V/VI) in the external test set was similar to the 9.3%
reported in literature.[3]

The diagnostic accuracy was comparable between image
analysis technology and radiologists in a previous study.[11] The
study trained a program using radiologists’ diagnoses, and can
only predict US category, not cytologic or histologic results. The
clinical significance of such models may be considered limited
because FNA of the nodules would still be necessary if indicated.
In contrast, we developed a DLA that provides clinical
significance in terms of FNA decision-making because it was
trained on cytologic or histologic test results. The highNPV of the
DLA in the present study suggests that this technology may
facilitate clinical decisions and avoid unnecessary FNA. The
clinical significance of the DLA of this study is higher when we
5

consider that the nodules in the test sets had all undergone FNA.
Although the DLA would not replace the clinician, it could
certainly serve as a clinical decision support tool, especially if an
experienced clinician was unavailable.
Image databases have been established to support the growing

need for big data. Specific groups of images, such as thyroid US,
are being accumulated for general use.[32] In addition, online deep
learning sources for developing DLAs are now publicly available.
Such deep learning libraries and image databases enable
researchers to develop DLAs for image analysis, provided that
they have sufficient number of images to train their algorithm and
are able to perform hyperparameter optimization experiments.
Assuming that each of the US images is prepared (downloaded in
the appropriate format and cropped to size), training a new DLN
using this method takes around 30hours. Generally, to find the
most appropriate DLN model, the parameters are tested and
adjusted repeatedly according to the researcher’s needs. In the
present study, we repeated DLN training 3 times, which took 10
days in total. Once the DLA was established, the benignity or
malignancy of a given nodule was able to be predicted in almost
real time (0.07seconds).
The DLA developed in this study was pretrained with the

ImageNet database, and retrained with 1138 US images from the
researchers’ institute. The ImageNet database contains over 1.2
million images of things commonly seen in daily life (not medical
or US images). The images are labeled using 1000 semantic
classes. Models can be trained using huge quantities of image
data and that knowledge can be transferred to the medical image
domain.We found it more effective to pretrain our DLA using the
massive ImageNet database than to use a limited number of
medical images.[33] Clearly, future DLAsmay be better developed
using a large database of US images for training.
For image preparation, we simply cropped the nodule part of

the images into a square. This process did not require any
specialized skills such as segmentation or demarcation. Data
augmentation is a technique used to increase the number of
training data artificially by changing the ratio of width to height,
changing colors, or using horizontal flip. It is reported to be an
essential technique required by DLAs to achieve good perfor-
mance.[34] However, we did not apply data augmentation
because it has a high potential to distort shape, margin,
echogenicity, and calcification, which are essential for differenti-
ating benignity and malignancy.
Despite a small training set and the simplicity of image

preparation, the DLA in this study displayed excellent perfor-
mance in selecting benign nodules. In general, the performance or
accuracy of a DLA increases logarithmically based on the
quantity of data used for training,[35] and thus the number of
training images is more important than their quality.[36] In this
sense, the DLA for the thyroid US diagnosis is expandable
because the algorithm can be easily shared, and it will become
more accurate as it is trained further with more images.
Moreover, the sensitivity and NPV of the external test set were
comparable to those of the internal test set, despite the fact that
the study population, image quality, and the equipment used
were different between institutes. This may be because thyroid
nodules show relatively consistent and typical characteristics in
shape, margin, echogenicity, and calcification. This suggests that
further advancements in the accuracy of the DLA are possible by
expanding the US image dataset for training.
This study has limitations. First, we considered Bethesda

Category V and VI to be malignant. However, in some cases,
category V and even category VI may be “true benign” based on

http://www.md-journal.com


[7] Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al.

Song et al. Medicine (2019) 98:15 Medicine
surgical histology. Although none of the category V or VI nodules
in this study were shown to be benign on surgery (data not
shown), it should be taken into account that the malignancy
proportion of Bethesda category V and VI varies between
institutes. Second, some FNA benign nodules were classified by
the DLA as malignant (low specificity). Lower specificity in image
analysis by DLA is often observed.[37] Inferred from the results,
the DLA in this study detected malignant features of nodules
sensitively and classified them as malignant if any of those
features were suspicious. Considering that the role of DLA still
has limited application in assisting clinicians to select benign
nodules without overlooking malignant nodules, high sensitivity
and NPV are more important than specificity. Better DLAs are
continuously being developed because DLA technology is rapidly
evolving. In the near future, DLAs are poised to become more
accurate and more helpful for clinicians as a larger volume of
images is accumulated.
5. Conclusions

We developed a DLA for the analysis of thyroid US images.
Although highly experienced clinicians outperform DLA, the
sensitivity and NPV of the DLA in this study are promising.
Applying artificial intelligence for the evaluation of thyroid
nodules may help clinicians to reduce the number of unnecessary
FNAs, in the near future. Such image analysis models are likely to
be broadly adopted after their applicability has been demon-
strated in larger series.
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