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A B S T R A C T

Purpose: To use imaging data from stereotactic MR-guided online adaptive radiotherapy (SMART) of ultracentral 
lung tumors (ULT) for development of a safe non-adaptive approach towards stereotactic body radiotherapy 
(SBRT) of ULT.
Patients and Methods: Analysis is based on 19 patients with ULT who received SMART (10 × 5.0–5.5 Gy) on a 
0.35 T MR-Linac (MRIdian®) in the prospective MAGELLAN trial. 4D-planning CT data of six patients served to 
quantify proximal bronchial tree (PBT) breathing motion. Daily fraction MRIs are used to calculate interfrac
tional translations (mediolateral (ML), anterior-posterior (AP), superior-inferior (SI)) and their dosimetric con
sequences for the PBT. A planning risk volume (PRV) is calculated for an assumed non-adaptive SBRT in deep- 
inspiration breath hold (DIBH) with surface-guidance (AlignRT®). Finally, non-adaptive volumetric modulated 
arc (VMAT) SBRT is simulated with and without a PRV for N = 10 patients (10 × 5.5 Gy).
Results: The PBT shows relevant breathing motion, especially in superior-inferior direction (median ML: 2.5 mm, 
AP: 1.9 mm and SI: 9.2 mm). Furthermore, moderate interfractional translations are observed (mean absolute 
translation ML: 1.3 mm, AP: 1.3 mm, SI: 1.1 mm), with an estimated 2 mm PRV margin for interfractional 
changes alone. Simulated non-adaptive SBRT leads to PBT overdoses in 60 % of patients (median overdosed 
fractions VMAT: 2.5, predicted MR-linac plans 4). Both MR-guided online plan adaptation (SMART) and PRV- 
based non-adaptive VMAT prevent PBT overdoses, but SMART yields significantly higher planning target vol
ume (PTV) coverage (SMART: median 96 % [IQR 95–96], VMAT: median 89 % [IQR 77–94], p = 0.014).
Conclusions: Both intrafractional breathing motion and interfractional translations may impact doses to the PBT 
during SBRT of ULT. SMART protects the PBT from overdoses while maintaining high PTV coverage. Non- 
adaptive SBRT appears safe with advanced breathing motion management and PRV, but yields inferior PTV 
coverage.
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Introduction

Whether stereotactic body radiotherapy (SBRT) of ultracentral lung 
tumors (ULT) should or should not be performed remains controversial 
[1]. Early on, SBRT of lung tumors close to the proximal bronchial tree 
(PBT) has raised concerns about dangerous late toxicity [2–4]. However, 
a growing body of mainly retrospective literature reports conflicting 
clinical outcomes after SBRT of ULT [5,6]. Accordingly, the HILUS trial 
has demonstrated high rates of severe bronchial bleedings [7], whereas 
the SUNSET trial has reported few severe toxicity [8]. These heteroge
neous outcomes likely reflect differences in the definition of “ultra
central” location, SBRT delivery techniques, normal-tissue constraints 
and clinical risk factors such as bronchial tumor invasion [5,7,9,10]. 
ULT challenge us with a narrow therapeutic window that calls for 
modern motion management, reduction of treatment margins and 
perhaps a more homogeneous dose prescription [11].

Breathing motion is an essential challenge in pulmonary SBRT 
[12–14]. Additionally, image-guided radiotherapy (IGRT) techniques 
usually ensure the correct tumor position, but interfractional trans
lations of neighboring organs-at-risk (OAR) remain [15,16]. Stereotactic 
magnetic resonance (MR)-guided online adaptive radiotherapy 
(SMART) compensates these uncertainties in an innovative way because 
it 1) correctly positions the patient with superior soft tissue contrast at 
the mediastinum, 2) maintains high target coverage while protecting 
mediastinal OAR via online plan adaptation and 3) minimizes breathing 
motion through gated dose delivery [15–18]. SMART of ULT has 
demonstrated encouraging first clinical results [19,20], so that we have 
launched the prospective MAGELLAN trial [21]. However, MR-guided 
SBRT remains highly sophisticated and requires increased treatment 
times and labor expenditure [15,22]. Currently, MR-linacs are only 
available at specialized centers. Therefore, we use imaging data from the 
prospective MAGELLAN trial to quantify the breathing motion and 
interfractional translations of the PBT, and simulated their dosimetric 
consequences. Thus, we aim to establish a reasonable non-adaptive 
SBRT technique to safely treat ULT.

Methods

Prospective patient data

Analysis was based on the first 19 patients with ULT who were 
included into the prospective MAGELLAN trial, which is currently 
ongoing at the University Hospitals in Heidelberg and Zurich [21]. 
Briefly, ultracentral location is defined as a planning target volume 
(PTV) overlap with the PBT or esophagus. The primary trial aim is to 
find the maximum tolerated dose of SMART to ULT. SBRT dose is 
escalated from 10 x 5.0 to maximum 10 x 6.5 Gy based on a time-to- 
event continuous reassessment method (TITE CRM). Patient character
istics are summarized in Table 1.

The trial is conducted according to the declaration of Helsinki and 
received IRB-approval.

Treatment planning and delivery

Our SMART approach has been described previously [15,21]. In 
short: patients are treated on an MRIdian® MR-linac (ViewRay) with 6 
MV step-and-shoot IMRT. Planning computer tomography (CT) and MRI 
are performed on the same day, and the CT is deformably registered to 
the MRI. The gross tumor volume (GTV) is expanded by 2 mm to obtain 
the clinical target volume (CTV) and by another 3 mm to obtain the PTV. 
Treatment planning objectives are as follows: 

• 95 % of the PTV is covered by the prescribed dose
• at most 2 % of the PTV exceed 125 % of the prescribed dose
• OAR constraints (Supplementary Table 1) are strictly prioritized over 

target coverage

During treatment, patients receive daily on-table MRI which is 
matched to the baseline MRI based on the GTV. Then, GTV and OAR are 
re-contoured inside the PTVexpand [23], and the plan is re-calculated 
(predicted) on the daily anatomy. If planning objectives are violated, 
the treating team creates an adapted plan. Finally, dose is delivered with 
cineMRI-based gating in repeated breath holds.

Analysis of intra- and interfractional changes

Imaging data was imported into RayStation® 11B (RaySearch, 
Stockholm, Sweden). In six patients, a 4D planning CT was available (8 
breathing phases). We contoured the GTV and PBT on each breathing 
phase to create an internal gross tumor volume (IGTV) and internal risk 
volume (IRV), respectively. As the PBT is large and only the small high 
dose volumes matter (i.e. doses to 0.1–1 cm3) [7,24], we focused on PBT 
branches with PTV overlap. Volumes of the IGTV, respective IPTV (total 
5 mm margin), IRV and their overlap region were calculated. Moreover, 
breathing motion amplitudes of the PBT center of mass were quantified 
in three spatial directions (superior-inferior (SI), medio-lateral (ML), 
anterior-posterior (AP)). In all 19 patients, PBT contours were reviewed 
on baseline and daily MRIs, focusing on the overlap of the PBT and the 
PTVexpand. Interfractional translations were quantified for the PBT cen
ter of mass in the three spatial directions (SI, ML, AP) together with their 
mean and standard deviations (std) for each patient. The std of these 
individual errors were regarded as the systematic error Σinterfractional and 
random error σinterfarctional.

Subsequently, we estimated planning risk volume (PRV) margins for 
the PBT in case of non-adaptive SBRT. To minimize breathing motion, 
we assumed SBRT in deep-inspiration-breath-hold (DIBH). At our 
department, SBRT in DIBH is performed via surface-guided radiotherapy 
(SGRT) with the AlignRT system® (Vision RT, London, United Kingdom) 
[25]. Therefore, we considered intrafractional errors of our SGRT system 
from the literature [26]: Σ 0.7 (AP), 1.5 (SI), 0.5 (ML) and σ 0.7 (AP), 0.9 
(SI), 0.8 (ML). The required PRV margin is calculated according to [27]: 

PRV(PBT) = 1.5*Σ+0.5*σ 

with 

Σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Σ2
interfractional + Σ2

intrafractional

√

Table 1 
Patient characteristics (N = 19). KPI: Karnofsky Performance Index. FEV 1 s: 
Forced Expiratory Volume in 1 s. NSCLC: non-small cell lung cancer. ULT: 
ultracentral lung tumor.

Median (Q1–Q3)

Age [yrs] 68.0 (61.0–76.0)
KPI [%] 90 (80–100)
FEV 1 s [%] 87.0 (69.0–97.5)
Maximum Tumor Diameter [cm] 2.4 (2.0–2.9)

​ N (%)
Sex ​

Female 8 (42 %)
Male 11 (58 %)

Treatment Indication ​
Early-stage NSCLC 3 (16 %)
Oligometastases 16 (84 %)

Tumor Entity ​
NSCLC 9 (47 %)
Sarcoma 3 (16 %)
Colorectal Carcinoma 2 (11 %)
Other 5 (26 %)

ULT type ​
Type A 10 (53 %)
Type B 9 (47 %)
Direct bronchial contact 15 (79 %)

Radiation Dose ​
10 × 5.0 Gy 9 (47 %)
10 × 5.5 Gy 10 (53 %)
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σ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

interfractional + σ2
intrafractional

√

Simulation of non-adaptive SBRT plans

For all patients who received SMART of 10 x 5.5 Gy (N = 10), we 
simulated a non-adaptive SBRT plan for our conventional linacs (6MV 
volumetric modulated arc therapy, VMAT) assuming DIBH as described 
elsewhere [25]. We generated one plan with a PRV and one plan without 
a PRV around the PBT for each patient. These baseline plans were 
calculated on the baseline MRI with deformably registered planning CT 
and then also re-calculated on the daily MRIs. We chose a 2 mm GTV- 
CTV margin and 5 mm CTV-PTV margin (in total 7 mm) according to 
our institutional standards. Since standards differ between institutions, 
we also used a 5 mm GTV-PTV margin to analyze how different margin 
strategies affect the PTV coverage and the extent of PBT overdoses in 
ULT. Moreover, we applied a 3 mm PRV margin around the PBT based 
on the results of our previous analysis. If a PRV was used, the PBT dose 
constraints were applied to this PRV. Other planning objectives 
remained unchanged.

Statistics

Intrafractional breathing motion and interfractional translations of 
the PBT as well as relevant dosimetric parameters of the different SBRT 
plans were described. The volumetric extent of PBT overdoses was 
compared between different SBRT plans by paired Wilcoxon signed rank 
tests. The significance level α = 0.05 was chosen. All analyses were 
performed in Python version 3.10.9.

Results

Breathing motion

We analyzed intrafractional PBT breathing motion based on 4D 
planning CT in six patients (Fig. 1). The median [IQR] breathing am
plitudes were 2.5 [1.9–3.7] mm ML, 1.9 [1.7–3.4] mm AP and 9.2 
[5.7–12.3] mm SI (Table 2). Accordingly, the IRV was two times larger 
than its PBT branch (median [IQR] PBT: 7.4 [3.5–8.7] cm3, IRV: 13.8 
[7.3–19.5] cm3). Similarly, the IGTV was two times larger than its GTV 
(GTV: 11.7 [7.8–22.7] cm3, IGTV: 21.6 [10.3–34.8] cm3), which led to a 
1.5-fold PTV increase (PTV: 31.9 [23.7–55.2] cm3, IPTV: 49.8 
[29.2–73.0] cm3). Consequently, the overlap between the PTV and the 
respective region-at-risk doubled (overlap PTV-PBT: 0.9 [0.6–1.2] cm3, 
IPTV-IRV: 2.2 [1.8–4.7] cm3).

Interfractional PBT translations and PRV margins

We analyzed interfractional PBT translations in all 19 patients. 
Interfactional PBT translations in the range of − 5 to + 5 mm were 
observed, but the mean absolute translation was only 1.3 mm ML, 1.3 
mm AP and 1.1 mm SI (Fig. 2). Further descriptive analyses did not 
demonstrate an association of interfractional translations with ULT 
localization, tumor diameter or pulmonary function (Supplementary 
Figs. 1–3). Based on interfractional translations alone, a PRV margin of 
2 mm would be required to avoid overdoses to the PBT in 90 % of non- 
adapted fractions [27] (Table 2). Further intrafractional uncertainties 
depend on the applied RT technique. We assumed non-adaptive SBRT in 
DIBH using SGRT with the AlignRT system® and derived the expected 
intrafractional translations from previous reports [25,26,28]. This 
resulted in a comprehensive PRV margin of 3 mm to account for intra- 
and interfractional translations.

Dosimetry of non-adaptive MR-guided SBRT

We chose all patients who received 10 x 5.5 Gy (N = 10) and 
compared the daily re-calculated baseline (predicted) plans with the 
adapted plans. We observed frequent violations of PBT dose constraints 
in the predicted plans (N = 29 / 100, 29 %). Ten out of 29 violations (35 
%) were so enormous that the high dose region became more than three 
times larger than the volume of the dose constraint (0.33 cm3) (Fig. 3). 
Violations occured in six (60 %) patients, with a median of four over
dosed fractions per patient (range 1–10). Conversely, none of the 
adapted plans overdosed the PBT. Consequently, the predicted, non- 
adaptive, plans presented a statistically significantly higher PBT vol
ume that receives ≥ 105 % of the prescribed dose (predicted: median 
0.11 cm3 [IQR 0.02–0.44 cm3], adapted: 0.08 cm3 [0.03–0.16 cm3], p <
0.0001) and a statistically significantly higher PBT Dmax (predicted: 
59.7 Gy [57.9–62.0 Gy], adapted: median 58.7 Gy [58.1–59.7 Gy], p <
0.0001).

Dosimetry comparison of SMART and non-adaptive SBRT

For the same ten patients who received 10 x 5.5 Gy SMART, we 
calculated 6 MV VMAT plans with and without a PRV around the PBT to 
simulate non-adaptive SBRT in DIBH. According to our institutional 
standards, we applied a total 7 mm GTV-PTV margin. In two cases (20 
%), the plan without PRV already complied with the dose constraints for 
the PRV and was used for both scenarios. Baseline MR-linac plans 
demonstrated a trend towards better PTV coverage with the prescribed 
dose when compared to VMAT plans without PRV (MR-linac: median 96 
% [IQR 95–96], VMAT without PRV: 95 % [90–96], p = 0.13), and a 
significantly better PTV coverage when compared to VMAT plans with 
PRV (VMAT with PRV: 89 % [77–94], p = 0.014). Both VMAT plans 

Fig. 1. Breathing motion of the proximal bronchial tree (PBT) for each patient 
(N = 6). ML: medio-lateral, AP: anterior-posterior, SI: superior-inferior.

Table 2 
Analysis of proximal bronchial tree breathing motion and interfractional 
translations. The planning risk volume (PRV) is calculated according to the 
formula: PRV = 1.5* Σ + 0.5 * σ, where Σ denotes the systematic error and σ the 
random error [27]. Intrafraction errors are derived from [26]. ML: medio- 
lateral, AP: anterior-posterior, SI: superior-inferior, IQR: interquartile range.

ML AP SI

Breathing Motion [mm] ​ ​ ​
Median amplitude [IQR] 2.5 

[1.9–3.7]
1.9 
[1.7–3.4]

9.2 
[5.7–12.3]

Interfractional Motion [mm] ​ ​ ​
Mean absolute translation 1.3 1.3 1.1
Systematic error Σ 1.4 1.4 0.8
Random error σ 0.9 1.0 1.1
PRV (interfraction errors only) 2.3 2.3 1.6
PRV (inter- and intrafraction 
errors)

2.6 2.7 2.9
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yielded significantly lower mean lung doses, and VMAT plans with PRV 
also yielded significantly lower spinal cord maximum doses than base
line MR-linac plans. Otherwise, OAR doses were comparable 
(Supplementary Table 2).

VMAT plans without PRV demonstrated frequent daily violations of 
the PBT dose constraint (N = 28 / 100, 28 %). 15 out of 28 violations 
(54 %) were so enormous that the high dose region became more than 
three times larger than the initial volume of the dose constraint (0.33 
cm3) (Fig. 4). Violations occured in six (60 %) patients, with a median of 
2.5 overdosed fractions per patient (range 1–10). Conversely, applica
tion of the PRV margin prevented PBT overdoses in all but one single 
fraction, where a mild overdose occurred. Accordingly, the VMAT plans 
without PRV presented a significantly higher PBT volume that receives 
≥ 105 % of the prescribed dose (No PRV: median 0.17 cm3 [IQR 
0.05–0.46 cm3], PRV: 0 cm3 [0–0.02 cm3], p < 0.0001) and a signifi
cantly higher PBT Dmax (No PRV: 61.9 Gy [60.5–63.3 Gy], PRV: median 

58.7 Gy [57.3–59.9 Gy], p < 0.0001) over all treatment fractions.
Finally, we repeated the analyses for VMAT plans with a 5 mm GTV- 

PTV margin, which increased PTV coverages and decreased OAR doses 
in general (Supplementary Table 3). MR-linac plans still showed better 
PTV coverage than VMAT plans with PRV, but a statistical significance 
was not reached (MR-linac: 96 % [95–96], VMAT with PRV: 93 % 
[87–97], p = 0.13). Similar to the scenario with larger PTV margins, 
violations of the PBT dose constraint occurred more frequently and to a 
greater extent in VMAT plans without PRV versus with PRV (without 
PRV: N = 28 / 100, 28 %; with PRV: N = 5 / 100, 5 %) (Supplementary 
Fig. 4). Hence, the VMAT plans without PRV presented a significantly 
higher PBT volume that receives ≥ 105 % of the prescribed dose (No 
PRV: 0.13 cm3 [0.02–0.37 cm3], PRV: 0 cm3 [0–0.03 cm3], p < 0.0001) 
and a significantly higher PBT Dmax (No PRV: 61.5 Gy [60.3–63.5 Gy], 
PRV: median 58.2 Gy [57.1–60.4 Gy], p < 0.0001) over all treatment 
fractions.

Fig. 2. Interfractional translations of the proximal bronchial tree (PBT) for each patient (N = 19). ML: medio-lateral, AP: anterior-posterior, SI: superior-inferior.

Fig. 3. High dose volume of the proximal bronchial tree (PBT) during MR- 
guided treatment. The PBT volume ≥ 105 % of the prescribed dose (= 57.75 
Gy) is shown. Grey line: Dose constraint of 0.33 cm3. Red line: 1 cm3, three 
times the dose constraint. Black dots represent violations of the dose constraint. 
Left: Baseline plans, middle: predicted plans (baseline plan re-calculated on 
daily anatomy), right: adapted plans. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.)

Fig. 4. High dose volume of the proximal bronchial tree (PBT) for VMAT plans 
with and without a planning risk volume (PRV). The PBT volume ≥ 105 % of 
the prescribed dose (= 57.75 Gy) is shown. Grey line: Dose constraint of 0.33 
cm3. Red line: 1 cm3, three times the dose constraint. Black dots represent vi
olations of the dose constraint. Left: Baseline plans, middle: predicted plans 
(baseline plan re-calculated on daily anatomy), right: adapted plans. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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Discussion

SBRT of ULT poses a clinical challenge, which might be addressed by 
SMART [15,16,29]. However, maintenance of an MR-linac is expensive, 
and many institutions do not have the opportunity to offer MR-guided 
treatment. Hence, our aim was to develop a safe non-adaptive 
approach to ultracentral SBRT.

First, we quantified the breathing motion of the PBT. As expected, 
the largest amplitude was observed in SI direction. Our findings align 
with Habermann et al. [13]. Furthermore, we observed the IRV to be 
twice as large as the original PBT branch. Habermann et al. [13] and 
Nardone et al. [14] found the IRV to be approximately 40–50 % larger 
than the whole PBT. Our focus on the PBT branch next to the PTV may 
explain the observed discrepancies and highlights the particular signif
icance of PBT motion in ultracentral SBRT. Estimating the dosimetric 
impact of gross breathing motions is challenging because a 4D CT yields 
a short and artificial snapshot of the patient’s breathing pattern [30]. 
Moreover, times spent in each reconstructed breathing phase varies. 
When calculating doses inside the IRV instead of the PBT contour on 
average CT, Nardone et al. found dose constraint violations in 42 % of 
centrally located lung tumors [14], while Habermann et al. estimated an 
NTCP increase of 3–23 % [13]. All in all, breathing motion should be 
minimized, and we suggest SBRT in DIBH as an alternative to MR-guided 
treatment.

Data from MR-guided treatment allows accurate quantification of 
interfractional changes. Even though interfactional PBT translations are 
moderate, they lead to frequent and sometimes extensive PBT overdoses. 
Both frequency and extent of overdoses was higher than we expected 
[15], which is likely due to our focus on ULT. Daily plan adaptation 
avoided all PBT overdoses, which underlines the utility of SMART for 
ULT. Additionally, our data supports the hypothesis that very inhomo
geneous dose prescription, e.g. in the HILUS trial, carries a risk for se
vere overdoses [11] and should be avoided in ULT [5]. Previous reports 
corroborate our results. Henke et al. performed online plan adaptation in 
28 % of fractions during ultracentral SBRT due to OAR constraint vio
lations [29], while Finazzi et al. reported that they reduced OAR 
constraint violations by 20 % with SMART [16].

Without online-adaptive treatment techniques, PRVs might offer an 
alternative to protect OAR [27,31]. We estimated a 3 mm-PRV margin 
for the PBT to compensate for both inter- and intrafractional errors 
during SBRT in DIBH. Intrafractional errors of SGRT-based DIBH were 
derived from the literature [26] in agreement with our own experiences 
[25]. The accuracy of SGRT-based breath hold has been demonstrated 
elsewhere [28]. To validate our PRV concept, we simulated non- 
adaptive SBRT VMAT plans with and without a PRV. Moreover, we 
compared two different PTV margin strategies. At baseline, the VMAT 
plans reached significantly lower mean lung doses due to their higher 
conformality compared to step-and-shoot IMRT at the MR-linac. But 
daily re-calculations of the VMAT plans without PRV demonstrated 
frequent PBT overdoses, while VMAT plans with PRV prevented PBT 
overdoses. PBT overdoses occurred to a similar extent when comparing 
different PTV margin strategies. This dosimetric finding corroborates the 
theoretical estimations of the PRV margins. However, employment of a 
PRV margin came at the cost of reduced PTV coverage, which might in 
turn decrease local tumor control. PTV coverage was improved with 
smaller PTV margins in the VMAT plans, as would be expected. In this 
context, even further reductions of PTV margins may be possible for MR- 
guided SBRT because it detects the tumor motion via gating on cineMRI, 
whereas SGRT uses the thoracic wall as a surrogate. All in all, SMART 
offers a higher precision compared to non-adaptive SBRT techniques 
and/or SGRT approaches and combines superior target volume coverage 
with effective protection of OAR. Consequently, our first clinical expe
rience with SMART of ULT has shown excellent local tumor control rates 
[32] in accordance with other reports [20].

We will increase the SBRT dose to ULT up to 10 x 6.5 Gy inside the 
MAGELLAN trial, so that the risk for PBT overdoses will likely increase. 

This is especially true for non-adaptive SBRT, which will likely show a 
more compromised PTV coverage, too. Hence, PRV margins and motion 
management increase the safety of non-adaptive SBRT, but MR-guided 
approaches and dose prescriptions may not be transferred uncritically 
to a non-adaptive approach.

Recently, the American Radium Society (ARS) has published guide
lines for the treatment of medically inoperable stage I NSCLC in central 
or ultracentral locations. Among the recommendations are (1) con
touring critical OARs on 4D-CT to consider breathing motion and (2) 
applying 3 mm PRV margins around critical OAR [33]. However, the 
experts disagreed on whether these two recommendations should be 
implemented based on low levels of evidence. Our data shed light on the 
benefits and limitations of motion management and PRVs when treating 
ULT with SBRT. Notably, our findings agree with the clinical suggestion 
of a 3 mm PRV margin around the PBT.

Limitations of our analyses include the small subset of patients with 
available 4D-CT. More sophisticated 4D − MRI techniques would be 
desirable. Furthermore, usage of PRV “margin recipes” has been criti
cized as overtly simple by Stroom et al. [31], although the authors 
concluded dependencies similar to McKenzie et al. [27] whose formula 
we used here. Recent advances in robust optimization might outperform 
margin formulas in the future [34]. Lastly, uncertainties in image 
registration and dose calculation using deformed CT images should be 
acknowledged as potential confounders.

Conclusion

Both intrafractional breathing motion and interfractional trans
lations impact doses to the PBT during ultracentral SBRT. MR-guided 
online adaptive SBRT protects the PBT from overdoses while main
taining superior PTV coverage. Alternatively, techniques to minimize 
breathing motion, e.g. surface-guided SBRT in DIBH, together with PRV 
margins around the PBT can protect the PBT at the cost of decreased PTV 
coverage.
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