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Molecular bioelectricity: how endogenous 
voltage potentials control cell behavior and 
instruct pattern regulation in vivo
Michael Levin
Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, MA 02155-4243

ABSTRACT In addition to biochemical gradients and transcriptional networks, cell behavior 
is regulated by endogenous bioelectrical cues originating in the activity of ion channels and 
pumps, operating in a wide variety of cell types. Instructive signals mediated by changes in 
resting potential control proliferation, differentiation, cell shape, and apoptosis of stem, pro-
genitor, and somatic cells. Of importance, however, cells are regulated not only by their own 
Vmem but also by the Vmem of their neighbors, forming networks via electrical synapses known 
as gap junctions. Spatiotemporal changes in Vmem distribution among nonneural somatic tis-
sues regulate pattern formation and serve as signals that trigger limb regeneration, induce 
eye formation, set polarity of whole-body anatomical axes, and orchestrate craniofacial pat-
terning. New tools for tracking and functionally altering Vmem gradients in vivo have identi-
fied novel roles for bioelectrical signaling and revealed the molecular pathways by which 
Vmem changes are transduced into cascades of downstream gene expression. Because chan-
nels and gap junctions are gated posttranslationally, bioelectrical networks have their own 
characteristic dynamics that do not reduce to molecular profiling of channel expression 
(although they couple functionally to transcriptional networks). The recent data provide an 
exciting opportunity to crack the bioelectric code, and learn to program cellular activity at 
the level of organs, not only cell types. The understanding of how patterning information is 
encoded in bioelectrical networks, which may require concepts from computational neurosci-
ence, will have transformative implications for embryogenesis, regeneration, cancer, and 
synthetic bioengineering.

INTRODUCTION
Cell behavior is regulated by numerous distinct cues that impinge on 
them in vivo. Alongside chemical gradients (Huang et al., 2005; Geard 
and Willadsen, 2009; Niehrs, 2010; Ben-Zvi et al., 2011; Gershenson, 
2012) and physical forces (Beloussov and Grabovsky, 2006; Beloussov, 
2008; Nelson, 2009; von Dassow and Davidson, 2011; Davidson, 
2012), cell activity is orchestrated toward the creation and repair of 
high-order anatomical structures by a set of bioelectrical cues (Levin, 
2012a,b; Levin and Stevenson, 2012). Here bioelectricity refers to en-
dogenous electrical signaling via ion channels and pumps at the 
plasma membrane; specifically excluded due to length constraints is 
the rich literature on external electromagnetic fields (Funk et al., 2009; 
Cifra et al., 2011; Hronik-Tupaj and Kaplan, 2012), ultraweak photon 
emission (Farhadi et al., 2007; Fels, 2009; Sun et al., 2010; Beloussov, 
2011), and subcellular organelle potentials (Bustamante et al., 1995; 
Mazzanti et al., 2001; Yamashita, 2011).

The importance of bioelectricity for cells beyond excitable 
nerve and muscle was realized long ago, and solid functional data 
implicate steady ion currents in embryogenesis and wound healing 
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All these facts, sufficiently numerous, ... will open a very wide 
field of reflection, and of view, not only curious, but particu-
larly interesting to medicine. There will be a great deal to 
occupy the anatomist, the physiologist, and the practitioner. 

Allesandro Volta (1800), 
communicating to the Royal Society  

his invention of the electric battery
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electricity that regulates individual cell function and helps coordi-
nate the embryogenesis and regenerative repair of complex struc-
tures. This review focuses on the instructive cues mediated by 
spatio temporal patterns of voltage potentials across the mem-
branes (Vmem; Figure 1A) of nonneural cells and the roles these 
play in coordinating cell behavior during regeneration, develop-
ment, and cancer.

NEW CONTROL KNOBS: RESTING POTENTIAL 
DETERMINES SINGLE-CELL STATE
In general, terminally differentiated, quiescent cells tend to be 
strongly polarized (bearing a more-negative resting potential), 

(Burr and Northrop, 1935; Lund, 1947; Jaffe and Nuccitelli, 1977; 
Nuccitelli et al., 1986; Borgens et al., 1989; Hotary and Robinson, 
1992). By tracking developmental currents and applying physio-
logical-strength electric fields, it was shown that transepithelial 
electric fields regulate cell migration, orientation, and nerve growth 
(Jaffe and Poo, 1979; Patel and Poo, 1982; Borgens et al., 1987; 
McCaig et al., 2005; Nishiyama et al., 2008; Cao et al., 2011, 2013; 
Ozkucur et al., 2011; Pullar, 2011; Reid et al., 2011b; Vieira et al., 
2011; Pan and Borgens, 2012; Zhao et al., 2012; Yamashita, 2013). 
However, recent advances and development of molecular-level 
techniques (Adams, 2008; Adams and Levin, 2013; Levin, 2013; 
Tseng and Levin, 2013) have identified a new aspect of bio-

FIGURE 1: Bioelectrical signaling at the cell and organism levels, At the level of single cells, bioelectrical signals are 
produced by ion channel proteins, transduced into second-messenger responses, and alter key aspects of cell behavior. 
(A) The voltage potential (Vmem) at the cell membrane is produced by the movement of ions through across a cell 
membrane. Ions move via many different ion channels and pumps, under the control of concentration and electric 
gradients. (B) Change of Vmem is transduced into cellular effector cascades by a range of mechanisms, including 
voltage-sensitive phosphatases, voltage-gated calcium channels, and voltage-sensitive transporters of signaling 
molecules such as serotonin and butyrate. (Diagram modified, with permission, from Figure 1B of Levin, 2007.) 
(C) Bioelectrical signals feed into epigenetic and transcriptional cascades and thus trigger changes in cell properties 
such as proliferation, differentiation, migration, shape change, and programmed cell death. (D) Voltage reporter dye 
reveals gradients of Vmem across the anterior-posterior axis of planarian flatworms. (Taken, with permission, from Figure 
2B of Beane et al., 2013.) (E) In amputated worms, a circuit composed of proton and potassium conductances sets the 
voltage states at each blastema, which in turn determines the anatomical identity of each end of a regenerating 
fragment. (Diagram taken, with permission, from Figure 7C of Beane et al., 2011.) (F) Manipulating this circuit in 
amputated planaria using pharmacological or genetic techniques that target ion flux allows the programming of stem 
cell–mediated morphogenesis to specific anatomical outcomes, such as the creation of two-head animals shown here.
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(Table 1), due to a number of mechanisms that functionally couple 
voltage potential changes to downstream cascades (Figure 1, B and 
C). These data derive from genetic experiments, as well as pharma-
cological screens designed to identify compounds that regulate 
stem cell differentiation or cancer progression (Alves et al., 2011; 
Sun et al., 2013). Differentiation and proliferation are controlled by 
changes in Vmem, as shown in human mesenchymal stem cells 
(Sundelacruz et al., 2008, 2013; You et al., 2012), cardiomyocytes 
(Lan et al., 2014), inhibitory postsynaptic currents (Jiang et al., 2009), 
vascular muscle (Jia et al., 2013), embryonic stem cells (Ng et al., 
2010; Du et al., 2013), myoblasts (in which hyperpolarization driven 
by the Kir2.1 channel plays a key role; Hinard et al., 2008; Li et al., 
2010), the specification of neurotransmitter types (Root et al., 2008), 
and the control of precursor differentiation (van Vliet et al., 2010; 
Yasuda and Adams, 2010; Lange et al., 2011; Liebau et al., 2011; 
Ring et al., 2012; Podda et al., 2013) in the developing nervous sys-
tem and heart. Given the known roles of Vmem in regulating normal 
migration, differentiation, and proliferation (Aprea and Calegari, 
2012; Ding et al., 2012; Inaba et al., 2012; Zhang et al., 2012; Cao 
et al., 2013; Yamashita, 2013), it is not surprising that control of ion 
flux (Park et al., 2008; House et al., 2010) and membrane voltage 
(Morokuma et al., 2008a; Blackiston et al., 2011; Chernet and Levin, 
2013a, 2013b; Yang and Brackenbury, 2013) are also increasingly 
implicated in the cell dysregulation of cancer (Table 2).

Bioelectric cues also provide spatially patterned signals to cells. 
The differential activation of voltage-responsive transduction mech-
anisms on opposite sides of a cell allows bioelectric signals to regu-
late cell polarity. This was long ago shown in the symmetry breaking 
and control of outgrowth point in the algae Fucus (Jaffe, 1966, 1968) 
and has been recently shown using high-resolution imaging and ge-
netic techniques in yeast (Minc and Chang, 2010) and pollen tubes 
(Certal et al., 2008; Michard et al., 2009). The cytoskeleton is one 
target of such signaling (Chifflet et al., 2003; Priel et al., 2006; Seku-
lic et al., 2011; Campetelli et al., 2012). Positional information can 
likewise be dictated by voltage properties of cells (Baglioni et al., 
2012) and their neighbors (Shi and Borgens, 1995). Studies of 
embryonic left–right patterning of the Xenopus embryo have re-
vealed how bioelectrical processes link individual cell dynamics to 
axial patterning of the entire body plan (Levin and Palmer, 2007; Aw 
and Levin, 2009): cytoskeletal chirality within the fertilized egg drives 

whereas embryonic, stem, and tumor cells tend to be depolarized 
(closer to zero; Binggeli and Weinstein, 1986). The picture is compli-
cated by two still poorly understood factors: the relationship of 
overall Vmem state to the cell cycle–dependent (sinusoidally varying) 
changes in voltage potential (Arcangeli et al., 1995; Higashimori 
and Sontheimer, 2007; Aprea and Calegari, 2012) and the fact that 
many cells in fact do not have a single Vmem but bear a set of distinct 
voltage domains over their surface (O’Connell and Tamkun, 2005; 
O’Connell et al., 2006; Levin, 2012a).

Crucially, Vmem is not simply a readout but is also a functional 
determinant of cell behavior, such as proliferative state and plasticity 

Physical 
mechanism References

Proliferation 
and cell cycle 
progression

Cone (1970, 1971, 1974), Cone and Tongier 
(1971, 1973), Cone and Cone (1976), Stillwell 
et al. (1973), Binggeli and Weinstein (1986), 
Arcangeli et al. (1993), Rouzaire-Dubois 
et al. (1993), Wonderlin and Strobl (1996), 
MacFarlane and Sontheimer (2000), Liebau 
et al. (2006), Morokuma et al. (2008a)

Apoptosis Wang et al. (1999), Miki et al. (2001), 
Lauritzen et al. (2003), Lang et al. (2005), 
Shen et al. (2013)

Migration and 
orientation

Hyman and Bellamy (1922), Anderson (1951), 
Stump and Robinson (1983), Schwab et al. 
(1995), Schwab (2001), Zhao et al. (1997), 
Fraser et al. (2005), McCaig et al. (2005), 
Pullar and Isseroff (2005), Yan et al. (2009)

Differentiation Barth and Barth (1974a,b), Konig et al. 
(2006), Hinard et al. (2008), Sundelacruz et al. 
(2008), Lange et al. (2011)

Dedifferentiation Cone and Tongier (1971), Harrington and 
Becker (1973), Stillwell et al. (1973), Cone 
and Cone (1976), Sundelacruz et al. (2013)

TABLE 1: Cell-level properties/behaviors controlled by bioelectric 
events.

Ion translocator protein Species References Function

NaV1.5 sodium channel Human Onkal and Djamgoz (2009), House et al. 
(2010)

Oncogene

KCNK9 potassium channel Mouse Pei et al. (2003) Oncogene

Ductin (proton V-ATPase component) Mouse Saito et al. (1998) Oncogene

SLC5A8 sodium/butyrate transporter Human Gupta et al. (2006) Oncogene

KCNE2 potassium channel Mouse Roepke et al. (2010) Oncogene

KCNQ1 potassium channel Human, mouse Lee et al. (1997), Weksberg et al. (2001), 
Than et al. (2013)

Oncogene

SCN5A voltage-gated sodium channel Human House et al. (2010) Oncogene

Metabotropic glutamate receptor Mouse, human Song et al. (2012), Speyer et al. (2012), 
Martino et al. (2013)

Oncogene

CFTR chloride channel Human Xie et al. (2013), Zhang et al. (2013) Tumor suppressor

Connexin43 Human Sirnes et al. (2012) Tumor suppressor

Acetylcholine receptor Mouse Felder et al. (1993) Tumor suppressor

TABLE 2: Ion translocators implicated in cancer.
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subunit protein. Marker analysis was used to show why tails failed to 
regenerate in V-ATPase–inhibited tails (loss of regeneration-specific 
gene up-regulation, lack of the obligate increase of mitosis near the 
wound, and abrogation of innervation into the regenerate). Fluores-
cent dye imaging provided physiomic profiling of the changes of 
Vmem during the stages of regeneration and confirmed that the 
unique voltage changes characteristic of the regenerating state 
were blocked by V-ATPase inhibition and were absent during stages 
at which tadpoles normally are not competent to regenerate their 
tails. On the basis of these findings, to develop a gain-of-function 
application, a yeast P-type proton pump was misexpressed in re-
generation-incompetent animals, leading to restoration of mitosis, 
gene expression (MSX-1, Notch), innervation, and morphological 
regeneration of a complete tail. Additional rescue experiments us-
ing net-electroneutral proton exchangers allowed the independent 
testing of pH versus voltage signaling.

One key result was that the anatomical outcome (regeneration 
rescue) can be induced by a completely heterologous hyperpolar-
izing pump, which has no sequence or structural homology to the 
native Xenopus protein endogenously driving regeneration. This 
demonstrated that the necessary and sufficient trigger for regenera-
tion is not a specific gene product (V-ATPase), but a bioelectrical 
state, which can be implemented using a variety of different re-
agents. This finding facilitated development of a purely pharmaco-
logical method of modulating ion flows in the wound to induce tail 
(Tseng et al., 2010) and leg (Tseng and Levin, 2013) regeneration 
without the need for gene therapy.

The available tools enable a multistep strategy that combines 
pharmacological screening, physiological imaging, and molecular-
genetic tools to generate loss- and gain-of-function data showing 
how a bioelectric pathway normally works and how it can be 
exploited to trigger pattern formation. A similar approach was taken 
with an initial gain-of-function screen, misexpressing ion channels in 
frog embryogenesis. One of the outcomes was the finding that a 
specific Vmem range was necessary and sufficient to trigger ectopic 
eye development (Pai et al., 2012). Dye imaging data showed that 
the location of the endogenous eyes is demarcated by a prepattern 
of Vmem states in the anterior neurectoderm and that experimental 
alteration of this prepattern results in abnormal craniofacial gene 
expression and eye and facial malformations (Vandenberg, 2011; 
Pai et al., 2012). To complement the data showing that bioelectric 
states are an endogenous component of eye development, it was 
then shown that driving eye-specific Vmem states in other body re-
gions (by misexpression of ion channels) was sufficient to induce 
anatomically complete (well-formed) ectopic eyes (Figure 2A). 
Marker analysis revealed that this occurs via establishment of a posi-
tive feedback loop between hyperpolarization and Rx1/Pax6 ex-
pression, whereas a suppression screen of transduction mechanisms 
implicated voltage-gated calcium signaling as the transduction 
mechanism. However, note that, by themselves, “master” eye genes 
such as Pax6 do not produce eyes outside the head in vertebrates 
(Chow et al., 1999). Moreover, as with the tail, individual cell types 
appropriate to the eye did not have to be specified. Together these 
data revealed the unique properties of bioelectric triggers to repro-
gram body regions at the level of organ identity and overcome lin-
eage specification limits observed with biochemical inducers.

Of interest, many forward genetic approaches have identified 
ion channel genes responsible for patterning phenotypes, as have 
unbiased transcriptional network analyses in development (Langlois 
and Martyniuk, 2013) and cancer (House et al., 2010). These include 
patterning of the face, limb, brain, and viscera in a range of model 
systems and a number of channelopathies that form an important 

asymmetric distribution of ion transporter proteins in the early blas-
tomeres, and the resulting gradient drives unidirectional (preneural) 
serotonin flow through cell fields, eventually triggering differential 
gene expression on the left versus right sides of the body (Levin, 
2006; Levin et al., 2006; Aw et al., 2008; Lobikin et al., 2012b; 
Vandenberg et al., 2012, 2013). The dissection and synthesis of such 
systems at the genetic and physiological levels is beginning to re-
veal the properties of biophysical pathways by which individual cell 
polarity is integrated into large-scale patterning outcomes (Marshall, 
2011).

MEASURING VMEM IN VIVO
The first step in analyzing a bioelectric signal is the characterization 
of the spatiotemporal distributions of ionic parameters and a deter-
mination of how they correlate with patterning events. Vmem in cells 
can be quantified using several approaches; unlike mRNA and pro-
tein levels revealed by sequencing or immunohistochemistry, 
bioelectric properties are only ascertainable in vivo and cannot be 
analyzed in fixed tissue. Voltage gradients can now be visualized 
continuously in situ using fluorescent reporters of transmembrane 
potential (Adams and Levin, 2012a,b; Figure 1D) and more exotic 
nanoscale materials (Tyner et al., 2007) suitable for use in any opti-
cally accessible tissue (Steinberg et al., 2007; Yun et al., 2007). These 
are a significant improvement on physiological impalement of single 
cells: far less invasive, and able to report multiple Vmem values across 
tissues and even within cell membrane subdomains (Lechleiter et al., 
1991; Adams and Levin, 2013). Reagents include cell-permeant 
dyes such as CC2-DMPE and DiSBAC2(3) (Adams et al., 2006; 
Adams and Levin, 2012b; Oviedo et al., 2008; Ozkucur et al., 2010) 
and genetically encoded protein reporters (Tsutsui et al., 2008; 
Mutoh et al., 2011; Shen et al., 2011; Akemann et al., 2012).

Additional tools for the characterization of bioelectrical events 
include highly sensitive ion-selective extracellular electrode probes 
(Reid et al., 2007; Smith et al., 2007) that reveal ion flux, microelec-
trode arrays (Aryasomayajula et al., 2010; Schonecker et al., 2014), 
and reporters of individual ion species such as protons (Tantama 
et al., 2011) and sodium (Tseng et al., 2010; Dubach et al., 2011a,b). 
Significant opportunities exist for the development of specific, 
bright, ratiometric dyes that localize exclusively to the desired sub-
cellular locale (e.g., plasma membrane or nucleus). Especially excit-
ing will be the use of multiple physiological dyes in fluorescence-
activated cell sorting experiments to identify subpopulations of 
“pure” stem and other cell types that differ in key bioelectric prop-
erties (Mello de Queiroz et al., 2008), as has been observed for hu-
man endothelial cells (Yu et al., 2002). Of importance, such experi-
ments on dissociated cells will clearly highlight properties that are 
cell autonomous versus those physiological conditions that can only 
be maintained within a group context.

BIOELECTRIC SIGNALS INTERFACE WITH MOLECULAR 
GENETICS
The mechanistic investigation of bioelectric cues and their interac-
tions with canonical biochemical pathways has been enriched by 
several new functional techniques (Adams and Levin, 2006b, 2013; 
Reid et al., 2007; Song et al., 2007). The comprehensive workflow 
for probing developmental bioelectricity can be illustrated by two 
examples. In the first, a tiered pharmacological screen (Adams and 
Levin, 2006a) implicated a proton pump and two channels as spe-
cifically required for tail regeneration but not for wound healing or 
development of the primary tail (Adams et al., 2007). These loss-of-
function data were confirmed using reagents with molecular speci-
ficity by misexpression of a dominant-negative form of a V-ATPase 
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FIGURE 2: Bioelectric properties specify instructive, non–cell-autonomous patterning cues. 
(A) Targeted Vmem change, via misexpression of ion channels in the frog embryo, induces the 
formation of ectopic structures such as complete eyes, even in regions normally not competent 
to form eyes (such as on the gut). (Used, with permission, from Figure 3G of Pai et al., 2012.) 
(B) Tracking the ion channel expression using a lineage marker reveals that the effect is not 
cell-autonomous: in a lens created in the tail of a tadpole by ion channel expression, only about 
half of the ectopic cells express the heterologous ion channel (revealed by blue lacZ staining); 
the other half of the induced structure consists of host cells recruited to participate in making 
the appropriate shape but not themselves targeted by the Vmem-altering reagent. 
(C) Melanocytes seen in a cross section of a Xenopus tadpole are normally few in number, round, 
and confined to their normal locations. (D) Depolarization induced by ion channel modulation 
induces these cells to overproliferate, acquire an elongated shape, and invade many organs (red 
arrow). Of importance, this effect is also not cell autonomous, as seen in the melanocyte 
phenotype, which results when cells (marked by ion channel expression construct lineage label 
in blue) are depolarized at a considerable distance from the melanocytes. (Taken, with 
permission, from Figure 6A of Chernet and Levin, 2013b.) (E) A normal planarian has a head and 
tail and regenerates each at the appropriate end of an amputated fragment. When it is cut into 
thirds and the middle fragment is briefly exposed to octanol, which temporarily blocks long-
range bioelectrical signaling between the wound and mature tissues, a two-headed worm 
results (F). Remarkably, upon further rounds of cutting in plain water (long after the octanol has 
left the tissues, as confirmed by HPLC), the two-headed form results (H, I; images of two-
headed worms provided by Fallon Durant, Tufts University, Medford, MA). This change in the 
animal’s target morphology (the shape to which it regenerates upon damage) appears to be 
permanent and persists across the animal’s normal reproductive mode (fissioning), despite the 
fact that the genomic sequence has not been altered. Chromatin modifications alone do not 
explain this, because the posterior wound cells, which could have been epigenetically 

reprogrammed to a head fate, are discarded 
at each cut: the information encoding a 
bipolar two-head animal is present even in 
the normal gut fragment—it is distributed 
throughout the body. We propose that this 
information is a kind of memory, encoded in 
electrical networks of somatic cells coupled 
by gap junctions, and is stored at the level of 
bioelectrical dynamics. (E–I taken, with 
permission, from Figure 2 of Levin, 2014; 
photographs of planaria taken by Taisaku 
Nogi, Children’s Health Research Institute, 
Canada, and Fallon Durant.)

class of human birth defects (Table 3). Thus 
upstream of endogenous bioelectrical sig-
naling lie a set of ion channel and pump 
proteins that establish resting potential and 
alter it in response to physiological, tran-
scriptional, and mechanical signals. Such 
data often come from studies that, unlike 
the previously discussed two examples, did 
not set out to investigate bioelectricity, and 
the overall structure of developmental bio-
electric signaling is starting to emerge from 
the synthesis of bioelectric projects investi-
gating molecular mechanisms and mole-
cular biology efforts that implicate ion chan-
nel activity in instructive roles.

Downstream of voltage change lie two 
types of endpoints—at the mRNA and chro-
matin modification levels. Transcriptional 
responses to depolarization include genes 
such as Notch, BMP, Sox10, Nurr1, Slug, 
Fos, Jun, NPY, and Wnt (Bartel et al., 1989; 
Higuchi et al., 1990; Raya et al., 2004; Moro-
kuma et al., 2008a; He et al., 2011; Lange 
et al., 2011; Tseng et al., 2011; Dahal et al., 
2012; Swapna and Borodinsky, 2012; Ad-
ams et al., 2013). Epigenetic responses are 
triggered by movement of butyrate through 
an ion-dependent transporter, SLC5A8; bu-
tyrate is an HDAC1 inhibitor, and this allows 
voltage change to regulate chromatin acety-
lation (Davie, 2003; Tong et al., 2004; Gupta 
et al., 2006). This is believed to mediate 
control of tumorigenesis by depolarization 
and is also implicated in bioelectrical signal-
ing during tail regeneration in Xenopus 
(Tseng et al., 2011; Chernet and Levin, 
2013a, 2014).

A set of transduction mechanisms has 
been identified by which changes of rest-
ing potential affect events at the nucleus 
(Figure 1, B and C, and Table 4). One in-
volves voltage-gated calcium channels, 
which convert voltage change into signal-
ing via this versatile second-messenger 
molecule (Nilius et al., 1993; Dolmetsch 
et al., 1998; Nakanishi and Okazawa, 2006; 
Greer and Greenberg, 2008). This mode 
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Protein
Morphogenetic role or loss-of-

function phenotype Species References

TMEM16A chloride channel Tracheal morphogenesis Mouse Rock et al. (2008)

Kir7.1 potassium channel Melanosome development Zebrafish Iwashita et al. (2006)

Cx41.8 gap junction Pigmentation pattern Zebrafish Watanabe et al. (2006)

Cx45 gap junction Cardiac defects (cushion pattern-
ing)

Mouse Kumai et al. (2000), Nishii et al. 
(2001)

Cx43 gap junction Oculodentodigital dysplasia, 
heart defects (outflow tract and 
conotruncal), left–right asymmetry 
defects, eye defect, osteoblast 
differentiation in bone patterning, 
syndactyly, microphthalmia

Human, mouse Britz-Cunningham et al. (1995), 
Reaume et al. (1995), Ewart et al. 
(1997), Pizzuti et al. (2004), Debeer 
et al. (2005), Civitelli (2008), Zoidl 
and Dermietzel (2010), Gabriel et al. 
(2011)

Kir2.1 potassium channel Wing patterning Drosophila Dahal et al. (2012)

Cx43 gap junction Fin size and pattern regulation; 
craniofrontonasal syndrome

Zebrafish, mouse Iovine et al. (2005), Davy et al. 
(2006), Hoptak-Solga et al. (2008), 
Sims et al. (2009)

Kir2.1 potassium channel Andersen–Tawil syndrome, cranio-
facial and limb defects

Mouse, human Bendahhou et al. (2003), Dahal et al. 
(2012)

CFTR chloride channel Bilateral absence of vas deferens Human Uzun et al. (2005), Wilschanski et al. 
(2006)

KCNK9, TASK3 potassium 
channels

Birk–Barel dysmorphism syndrome, 
craniofacial defects

Human Barel et al. (2008), Veale et al. (2014)

Girk2 potassium channel Cerebellar development, retina 
patterning

Mouse Rakic and Sidman (1973a,b), Hatten 
et al. (1986), Patil et al. (1995), Tong 
et al. (1996), Savy et al. (1999), Liesi 
et al. (2000)

GABA-A receptor (chloride 
channel)

Angelman syndrome, craniofacial 
patterning (e.g., cleft palate) and 
hand defects

Mouse, human Wee and Zimmerman (1985), Culiat 
et al. (1995), Homanics et al. (1997)

KCNH2 K+ channel Cardiac patterning Mouse Teng et al. (2008)

NHE2 Na+/H+ exchanger Epithelial patterning Drosophila Simons et al. (2009)

V-ATPase proton pump Wing-hair patterning, pigmen-
tation and brain patterning, 
left–right asymmetry, eye develop-
ment, tail regeneration, craniofa-
cial patterning

Drosophila, medaka, 
human, chick, Xenopus, 
zebrafish

Hermle et al. (2010), Muller et al. 
(2013), Borthwick et al. (2003), 
Adams et al. (2006), Nuckels et al. 
(2009), Vandenberg et al. (2011), 
Monteiro et al. (2014)

Kv channel Fin-size regulation Zebrafish Perathoner et al. (2014)

KCNQ1 potassium channel Abnormalities of rectum, pancreas, 
and stomach, left–right patterning, 
Jervell and Lange-Nielsen syn-
drome, inner ear and limb defects

Mouse, Xenopus Chouabe et al. (1997), Casimiro et al. 
(2004), Rivas and Francis (2005), 
Morokuma et al. (2008b), Than et al. 
(2013)

Kir6.2 potassium channel Craniofacial defects, left–right 
patterning

Human, Xenopus Gloyn et al. (2004), Aw et al. (2010)

NaV 1.5, Na+/K+-ATPase Cardiac morphogenesis Zebrafish Shu et al. (2003), Chopra et al. (2010)

H+,K+-ATPase Left–right patterning, polarity dur-
ing regeneration

Xenopus, chick, sea ur-
chin, zebrafish, planaria

Levin et al. (2002), Kawakami et al. 
(2005), Aw et al. (2008), Beane et al. 
(2011)

Innexin gap junctions Foregut, cuticle (epithelial) pat-
terning defects

Drosophila Bauer et al. (2002), Bauer et al. 
(2004)

TRH1 K+ transporter Root-hair patterning Arabidopsis Rigas et al. (2001)

TABLE 3: Ion translocators implicated in patterning by genetic approaches.
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Bukauskas, 2009; Pereda et al., 2013). The importance of GJ-
mediated cues for cellular decision making has been shown, for 
example, in the development of the neocortex (Sutor and Hagerty, 
2005) and more broadly in setting up the patterns of chemical syn-
apses (Anava et al., 2013). Cells can also read the bioelectrical 
state of distant regions via the chemical molecules redistributed 
(and transported or diffused) across long distances by bioelectric 
state change. This was long ago suggested by Burr, who used volt-
age readings at remote locations of the body to detect trans-
planted or induced tumors (Burr et al., 1940; Burr, 1941). Recent 
data in the frog model implicate long-range signaling via bioelec-
trical control of butyrate (Chernet and Levin, 2014) and serotonin 
(Blackiston et al., 2011; Lobikin et al., 2012a) in tumorigenesis and 
metastatic induction. Additional modes for nonlocal bioelectrical 
signaling include tunneling nanotubes (Chinnery et al., 2008; Wit-
tig et al., 2012) and exosomes, which contain numerous ion chan-
nels (Lotvall and Valadi, 2007; Valadi et al., 2007; Wahlgren et al., 
2012) and could regulate bioelectric states of cells that incorpo-
rate them. Because bioelectrical gradients mediate signaling be-
yond the single-cell level, they form a versatile medium for carry-
ing information.

BIOELECTRIC STATES CAN ACT AS NECESSARY, 
SUFFICIENT, AND INSTRUCTIVE PATTERNING SIGNALS
Spatiotemporal gradients of Vmem among cells in vivo are now 
known to regulate organ identity, positional information, size con-
trol, and polarity of anatomical axes. One mode of Vmem signaling 
is as a prepattern. Much like Hox genes, whose combinatorial pat-
terns of gene expression encode specific body regions during de-
velopment, it has recently been shown that bioelectric prepatterns 
in the developing face of the frog and planarian models regulate 
the gene expression, size, and shape of craniofacial components 
(Vandenberg et al., 2011; Beane et al., 2013). In the frog, for 
example, patterns of hyperpolarization in the nascent face reveal 
the prospective locations of the eyes and other structures; experi-
mental perturbation of these distributions alters the boundaries of 
expression of face patterning genes such as Frizzled, with the 
expected effects on craniofacial anatomy. Bioelectric gradients 
also specify orientation of the left–right axis in frog and chick em-
bryos (Levin et al., 2002; Adams et al., 2006) and set the size of 
regenerating structures in segmented worms and regenerating 

has been implicated in control of growth-cone turning (Nishiyama 
et al., 2008), eye patterning (Pai et al., 2012), and flatworm regen-
eration (Nogi et al., 2009; Beane et al., 2011; Zhang et al., 2011). 
Another uses the voltage gradients among cells to move small 
signaling molecules such as serotonin through gap junction–cou-
pled cell fields, as occurs in left–right patterning (Fukumoto et al., 
2005b; Adams et al., 2006) and control of neuronal pathfinding 
(Blackiston et al., 2015). Finally, voltage-sensitive phosphatases 
couple Vmem change to the plethora of events regulated by PTEN 
phosphatases (Murata et al., 2005; Okamura and Dixon, 2011).

Of interest, when they conflict, bioelectrical cues tend to trump 
chemical signals. One example is the guidance of cell motility: if a 
chemical gradient and an electric field are set up in opposite direc-
tions, the bioelectric vector trumps the chemical cue in directing 
cell movement (Zhao, 2009; Cao et al., 2011). Another example is 
the differentiation of human mesenchymal stem cells (hMSCs), 
which normally hyperpolarize as they differentiate; despite the 
presence of potent chemical inducers, hMSCs will not differentiate 
if kept artificially depolarized (Sundelacruz et al., 2008). Indeed, 
the voltage state can even partially reverse the differentiation 
state, inducing plasticity in differentiated hMSCs (Sundelacruz 
et al., 2013).

By identifying the specific ion channel genes that set Vmem states, 
the transduction mechanisms that sense Vmem change, and the 
downstream transcriptional or epigenetic targets (which include ion 
channels themselves), recent work has established the causal chain 
integrating bioelectrical cues with chemical pathways (Table 5). 
Neither signaling mode is entirely “upstream” of the other—cellular 
processes are regulated by the continuous cyclical interplay be-
tween transcriptional control of ion channel profiles within cells and 
the regulation of transcription by voltage dynamics. Future work will 
identify new ion channel genes important for specific functions, 
additional transduction mechanisms by which cells sense their 
depolarization and hyperpolarization, and genome-wide (next-gen-
eration sequencing [NGS] or microarray) profiles of transcriptional 
programs triggered by specific Vmem change.

Of importance, however, Vmem regulation extends beyond the 
state of single cells. Cells can sense the voltage states of their 
neighbors through gap junctions (GJs)—versatile (and themselves 
voltage-sensitive) channels allowing the direct sharing of current 
and other small molecules between cells (Palacios-Prado and 

Developmental role Key biophysical event Transduction mechanism References

Tail regeneration in Xenopus: 
first step

Voltage change (repolariza-
tion)

Guidance of neural growth Adams et al. (2007)

Tail regeneration in Xenopus: 
second step

Intracellular sodium content SIK2 (salt-inducible kinase) Tseng et al. (2010)

Neoplastic conversion of mel-
anocytes in Xenopus tadpoles

Voltage change (depolar-
ization)

Serotonin movement Morokuma et al. (2008a), Blackiston 
et al. (2011)

Polarity determination in 
planarian regeneration, length 
control of zebrafish fin

Voltage change Ca2+ flux through voltage-
gated calcium channel

Beane et al. (2011), Zhang et al. 
(2011), Chan et al. (2014), Kujawski 
et al. (2014)

Left–right patterning in Xe-
nopus embryos, melanocyte 
transformation toward meta-
static behavior

Voltage change Serotonin movement Levin et al. (2002), Fukumoto et al. 
(2005a,b), Adams et al. (2006), 
Blackiston et al. (2011), Lobikin et al. 
(2012a)

Trachea size control in 
Drosophila

Ion-independent function Planar polarity, septate junc-
tion structure

Paul et al. (2007)

TABLE 4: Known transduction mechanisms by which ion flows affects cell behavior.
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the voltage is what matters for the outcome, not which ion or chan-
nel was used to set it.

In addition to specifying directly the pattern of subsequent anat-
omy, some bioelectric signals seem to trigger whole developmental 
modules. In the case of tail regeneration in Xenopus, genetic, opto-
genetic, and pharmacological experiments have been used to reca-
pitulate a regeneration-specific bioelectric state in nonregenerative 
animals and induce complete regrowth of this complex neuromus-
cular appendage (Adams et al., 2007; Tseng et al., 2010). Not only 
could appropriate Vmem state overcome physiological, chemical, 
and age-dependent blockade of regenerative capacity, but it was 
seen that a very simple (low information content) stimulus, such as 
“pump protons,” could be sufficient to trigger a complete and self-
limiting cascade of events that rebuilt the appendage (Tseng and 
Levin, 2013), in essence providing a “build whatever normally goes 
here” signal. These examples reveal that bioelectric state can func-
tion as a sufficient signal or master regulator; this bodes well for the 
use of this approach in regenerative medicine, as we may not need 
to micromanage the morphogenesis of complex structures but in-
stead rely on patterning subroutines already present in the host.

Bioelectric signals can also set the identity of whole embryonic 
regions to different organs. The morphogenesis of new regenera-
tion blastemas in planaria (Figure 1, D–F) can be directed to make 
heads or tails by appropriate modulation of resting potential (Beane 
et al., 2011, 2013). In vertebrates, whole-eye formation can be in-
duced ectopically, far outside the head, even in mesoderm or endo-
derm (Figure 2A) by misexpression of specific ion channels in vivo 
(Pai et al., 2012); this process is mediated by a feedback loop 
between hyperpolarization and expression of eye-specific genes 
such as Rx1 and Pax6, which in its absence cannot initiate eye for-
mation outside of the head. It is also interesting that this signaling is 
not cell autonomous: cells with unique voltage characteristics serve 
as organizers, recruiting wild-type host tissues to participate in the 
ectopic morphogenesis (Figure 2B).

These examples illustrate the fact that bioelectric state provides 
instructive information to patterning processes and reveal that cell 
groups can be programmed at the level of complex organs, not only 
at the level of specifying individual cell types. Understanding in de-
tail the mapping between bioelectric states and the anatomical 
outcomes—quantitatively cracking the bioelectric code—is a major 
open direction in this field. Possibilities for the parameters that func-
tionally determine distinct organ types include spatial distribution of 
absolute Vmem values within a cell group, relative differences in 
Vmem across cell borders, and/or time-dependent changes of Vmem 
within cells. One technology that is likely to be instrumental in test-
ing hypotheses about the bioelectric code is optogenetics (Knopfel 
et al., 2010; Liu and Tonegawa, 2010), which will facilitate the read-
ing and writing of bioelectric patterning information in vivo. The first 
steps have been taken, showing regulation of stem cells via optoge-
netic signaling (Stroh et al., 2010; Wang et al., 2014), and a recent 
report showed the induction of tail regeneration by optical modula-
tion of bioelectric state after amputation (Adams et al., 2013).

BIOELECTRICITY DOES NOT REDUCE TO MOLECULAR 
GENETICS
The information-bearing signal (the necessary and sufficient trigger) 
for events such as eye induction, head determination, and tail regen-
eration via Vmem change is a physiological state, not a gene product 
(Levin, 2013; Tseng and Levin, 2013). Studies reveal that the exact 
identity of the channel or pump used to trigger such morphological 
changes is often irrelevant—many sodium, potassium, chloride, 
or proton conductances can be used, as long as the appropriate 

zebrafish tails (Kurtz and Schrank, 1955; Beane et al., 2013; 
Perathoner et al., 2014). Ion transporters, such as the V-ATPase, 
are required for normal left–right patterning in several vertebrate 
models (Adams et al., 2006), zebrafish fin regeneration (Monteiro 
et al., 2014), and zebrafish eye development (Nuckels et al., 2009). 
These examples illustrate that bioelectric patterns can be neces-
sary aspects of development because, when they are specifically 
disrupted, predictable and coherent changes in morphogenesis 
occur. Of importance, many of these data sets used distinct ion 
species (potassium, sodium, chloride, or protons) to show that the 
necessary parameter is indeed the voltage potential, not any one 
channel gene (which could have had scaffold or binding roles) or 
even any one ion type (which could have had chemical, not electri-
cal, roles). As with the gain-of-function examples discussed later, 

Role
Species/ 
system References

Cellular polarization 
(anatomical asymme-
try of cell or epithe-
lium)

Alga Fucus, 
yeast

Jaffe (1982), Minc 
and Chang (2010)

Migration of neurons 
and positional infor-
mation

Chick,  
amphibia

Shi and Borgens 
(1995), Pan and 
Borgens (2010)

Patterning in gastrula-
tion, neurulation, and 
organogenesis

Chick, axolotl, 
frog

Stern (1982), Hotary 
and Robinson 
(1992), Borgens 
and Shi (1995), Shi 
and Borgens (1995), 
Levin et al. (2002), 
Adams et al. (2006)

Directional transport 
of maternal compo-
nents into the oocyte

Moth, 
Drosophila

Woodruff (2005)

Growth control and 
size determination

Segmented 
worms

Kurtz and Schrank 
(1955)

Neural differentiation Xenopus em-
bryo

Uzman et al. (1998), 
Lange et al. (2011)

Polarity during regen-
eration

Planaria, plants, 
and annelids

Marsh and Beams 
(1947, 1949, 1950, 
1952), Marsh and 
Beams (1957), Ben-
trup et al. (1967), 
Novák and Bentrup 
(1972), Novak and 
Sirnoval (1975), 
Beane et al. (2011)

Induction of limb and 
spinal cord regenera-
tion

Amphibia Borgens (1986), 
Borgens et al. (1986, 
1990)

Control of gene ex-
pression and anatomy 
in craniofacial pat-
terning

Xenopus 
embryo

Vandenberg et al. 
(2011)

Induction of eye de-
velopment

Xenopus 
embryo

Pai et al. (2012)

TABLE 5: Data on endogenous bioelectric signal roles in 
morphogenesis.
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ences in ion channel transcription, but that is not the only way (Justet 
et al., 2013). Such regionalized patterns of Vmem can also form de 
novo in transcriptionally and proteomically identical cells because 
cells coupled by gap junctions (electrical synapses) form a (slow) 
electrically excitable medium; this is a particularly interesting aspect 
because such media are known to have powerful computational ca-
pabilities (Fenton et al., 1999; Gorgcki and Gorgcka, 2007; 
Adamatzky et al., 2011). Positive feedback loops implemented by 
elements such as voltage-gated ion channels, which both set and 
respond to Vmem changes, can drive spontaneous symmetry break-
ing and amplification of physiological noise. Considerable self-orga-
nization dynamics can take place without a need for preexisting 
chemical prepattern (Toko et al., 1987; Schiffmann, 1991, 1997; 
Palacios-Prado and Bukauskas, 2009) or transcriptional activity; for 
example, human red blood cells have a physiological, not genetic, 
circadian clock rhythm driven by a slow ionic oscillation (Chakravarty 
and Rizvi, 2011; O’Neill and Reddy, 2011). Such dynamics has been 
studied in nerve and muscle (Zykov, 1990; Chen et al., 1997; 
Boettiger et al., 2009; Boettiger and Oster, 2009), and Turing-type 
self-organization has long been appreciated in chemical signaling 
(Takagi and Kaneko, 2005; Muller et al., 2012; Sheth et al., 2012). 
However, capabilities and properties of self-organization of voltage 
patterns in groups of nonneural cells remain to be formally ana-
lyzed. Quantitative analysis of in silico models of bioelectric dynam-
ics will need to be integrated with deep new data sets from appro-
priate physiomic technologies to fully understand and control 
developmental patterning in vivo.

One unexpected recent finding illustrates the storage of pattern-
ing information in physiological networks and has significant impli-
cations for evolution. Planarian flatworms have the remarkable abil-
ity to regenerate completely from partial body fragments (Reddien 
and Sanchez Alvarado, 2004; Salo et al., 2009; Lobo et al., 2012). 
After a surgical bisection, the cells at one edge make a tail, whereas 
those at the other edge make a head, revealing that the adult stem 
cells that implement regeneration are not locally controlled (since 
the cells were direct neighbors until the scalpel separated them) but 
must communicate with the remaining tissue to decide what ana-
tomical structures must be formed. It was shown that this long-range 
communication occurs via gap junction–mediated electrical syn-
apses (Scemes et al., 2007; Marder, 2009; Pereda et al., 2013), and 
works together with a bioelectric circuit that determines head versus 
tail identity in each end’s blastema (Beane et al., 2011, 2013). Brief 
inhibition of this gap junction–mediated communication results in 
worms developing heads at both ends (Nogi and Levin, 2005; 
Oviedo et al., 2010).

What is remarkable (Figure 2, E–I) is that weeks later, when these 
two-headed animals have their heads and tails amputated again (in 
just water, with no further perturbation), the same two-headed phe-
notype results, and this is repeated upon subsequent amputations. 
Thus a transient perturbation of physiological cell:cell communica-
tion stably changes the pattern to which the animal regenerates 
upon damage, despite normal genomic sequence. This again illus-
trates the potential divergence of genetic versus physiological infor-
mation, especially since the phenotype is stable across fission (this 
animal’s most frequent reproductive mode), and thus could have 
significant implications for evolution. Although epigenetic processes 
may be involved, chromatin modification mechanisms alone are not 
a sufficient explanation, since the ectopic heads (tissue that might 
be suggested to have been epigenetically reprogrammed into 
a head state from its original tail identity) are thrown away at 
each generation of cutting. What remains is a gut fragment, which 
somehow knows that it is to form two heads, not one, upon further 

Vmem state is reached. This means that the actual cause of the given 
morphological change can be a bioelectrical property not necessar-
ily in 1:1 correspondence with any genetic locus.

Because channels and pumps can open and close posttransla-
tionally, two cells expressing precisely the same mRNA and protein 
can be in very different bioelectrical states. Thus rich patterns of 
bioelectrical gradients can exist in a transcriptionally homogeneous 
tissue and be completely invisible to protein and mRNA profiling 
until they trigger distinct downstream transcriptional targets. 
Conversely, cells with very different channel and pump comple-
ments may have the same Vmem, since resting potential is an 
ensemble state that is a function of many different ion flows. The 
implication is that mRNA and protein profiling approaches are insuf-
ficient to detect and characterize important biophysical determi-
nants of morphogenesis, and knockout screens may completely 
miss bioelectric pathways, since knockouts of single ion channels 
will be subject to compensation and redundancy by other channels 
contributing to Vmem.

One context in which bioelectric and genetic state information 
can diverge is cancer (Yang and Brackenbury, 2013; Chernet and 
Levin, 2013b). A metastatic phenotype (overproliferation, matrix 
metalloprotease–dependent invasion of body tissues, and drastic 
arborization) can be induced in genetically normal melanocytes by 
depolarization of somatic cells (Blackiston et al., 2011; Lobikin et al., 
2012a). This effect is not cell autonomous (Figure 2, C and D), show-
ing that the bioelectric state of cells at considerable distance can 
trigger metastatic behavior. Conversely, the formation of tumors by 
human oncogenes such as p53 and KRAS mutations can be sup-
pressed, despite the strong presence of oncogene protein within 
the cells, by artificially preventing the depolarization that occurs dur-
ing oncogenic transformation (Chernet and Levin, 2013a). These 
examples reveal the potential dissociation between genetic state 
and disease outcome; an implication of these data is that the neo-
plastic state cannot always be predicted from examination of the 
genome, transcriptomes, or proteome, although in some cases, ion 
channel expression is altered (Onkal and Djamgoz, 2009; Becchetti, 
2011; Lang and Stournaras, 2014). On the other hand, the function-
ally determinative voltage states cannot be seen in fixed tissue, 
stressing the importance of gathering real-time in vivo bioelectric 
information over and above analysis of mutations, mRNA profiles, 
and protein levels. Another implication for cancer biology is that 
although expression of some ion channel might be a useful marker 
(Wang, 2004; Fraser et al., 2005; Stuhmer et al., 2006), there will 
also be many cases in which the transcriptional profile reveals noth-
ing (because of signaling via posttranslational gating of channel 
state), and drugs targeting one specific channel type (Arcangeli 
et al., 2009, 2012) may have no effect (due to compensation and 
redundancy of channel types). If indeed cancer is augmented or 
induced by a depolarized bioelectric state (Binggeli and Weinstein, 
1986; Olivotto et al., 1996; Yang and Brackenbury, 2013), we will 
have to think less about individual ion channels as oncogenes 
(Pillozzi et al., 2002; Bennett et al., 2004; Lallet-Daher et al., 2013; 
Than et al., 2013) and focus instead on the way in which many chan-
nels contribute to a bioelectrical oncostate, to develop strategies 
for dominating the resting potential irrespective of native channel 
identity (Sharmeen et al., 2010; Chernet and Levin, 2013a).

BIOELECTRIC GRADIENTS HAVE DISTINCT, 
AUTONOMOUS DYNAMICS
Bioelectric patterns are clearly important drivers of cell behavior and 
pattern formation, but how do these patterns originate? Diverse 
resting potentials across a tissue can arise from preexisting differ-
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cutting; the information about basic anatomical polarity and body 
organization must be stored in a distributed form throughout the 
animal. Quantitative, field-like models of this circuit remain to be 
developed to understand precisely how information guiding spe-
cific shape outcomes is encoded in (represented by) bioelectric 
states among cells.

CONCLUSION: NEXT STEPS AND BEYOND
Major open questions for future progress include the mechanisms 
by which cells compare bioelectric state across distances, additional 
molecular details of the interactions of bioelectrical signals with 
chemical gradients and physical forces, and the development of 
quantitative models of bioelectric circuits that store stable pattern-
ing information during morphogenesis. Expansions of the toolkit of 
synthetic biology will soon allow the rational top-down program-
ming of bioelectric circuits, which will have important implications 
for regenerative medicine, cancer biology, and bioengineering (Reid 
et al., 2011a; Levin, 2013). Optogenetics, once expanded to facili-
tate the control of stable Vmem in large, nonexcitable cell groups, 
will play a large part, and there is significant room for advances in 
better voltage reporters and techniques for in vivo modulation of 
bioelectric state. One hypothesis for the development of deep, 
quantitative theory in this field is that pattering information may be 
stored within nonneural bioelectric cell networks using the same 
molecular mechanisms and information-processing algorithms that 
underlie behavioral memory in the nervous system. This is being 
tested in our lab. It is thus possible that the techniques such as those 
now used to extract mental imagery from electrical measurements 
of living human brains (Nishimoto et al., 2011) may shed crucial light 
on the encoding of anatomical pattern in the electrical circuits of 
somatic cells; conversely, the cracking of the bioelectric code in de-
velopment and regeneration may have important benefits for the 
understanding of the semantics of electric states in the brain.

In practical terms, the molecular biologist needs to consider not 
only transcriptional and protein profiles when working to understand 
regulation of single-cell behavior and pattern formation. Significant 
instructive information is generated at the level of bioelectricity; ion 
channels and gap junctions are the molecular elements of such cir-
cuits, but bioelectrical signaling has its own unique dynamics that will 
become increasingly tractable with development of new technology 
specifically targeting stable Vmem states. The existence of bioelectric 
signaling among most cell types, not only neurons, suggests that the 
field of applicability of electroceuticals (Famm et al., 2013; Sinha, 
2013; Birmingham et al., 2014) is much wider than anticipated by 
current plans to target neural function. More broadly, to the extent 
that the data of developmental bioelectricity are erasing artificial dis-
tinctions between neural and nonneural cell types, the insights of 
computational neuroscience and cognitive science will become rel-
evant to cell and developmental biology. It is possible that the most 
effective ways to understand high-order (anatomical-level) outcomes 
will involve not only bottom-up models of molecular pathways but 
also top-down models in which information and control theory con-
cepts play central roles. In this way, molecular bioelectricity may be 
revealing a mechanistic path toward understanding the intelligence 
exhibited by cell behavior and harnessing it toward transformative 
advances in biomedicine and the information sciences (Albrecht-
Buehler, 1985; Rubenstein et al., 2009; Marshall, 2011; Aur, 2012).
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