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ABSTRACT
Objective Early detection of a tumour remains 
an unmet medical need, and approaches with high 
sensitivity and specificity are urgently required. Mass 
cytometry time- of- flight (CyTOF) is a powerful technique 
to profile immune cells and could be applied to tumour 
detection. We attempted to establish diagnostic models 
for hepatocellular carcinoma (HCC) and pancreatic ductal 
adenocarcinoma (PDAC).
Design We performed CyTOF analysis for 2348 
participants from 15 centres, including 1131 participants 
with hepatic diseases, 584 participants with pancreatic 
diseases and 633 healthy volunteers. Diagnostic models 
were constructed through random forest algorithm and 
validated in subgroups.
Results We determined the disturbance of systemic 
immunity caused by HCC and PDAC, and calculated a 
peripheral blood immune score (PBIScore) based on 
the constructed model. The PBIScore exhibited good 
performance in detecting HCC and PDAC, with both 
sensitivity and specificity being around 80% in the 
validation cohorts. We further established an integrated 
PBIScore (iPBIScore) by combining PBIScore and alpha- 
fetoprotein or carbohydrate antigen 19- 9. The iPBIScore 
for HCC had an area under the curve (AUC) of 0.99, 0.97 
and 0.96 in training, internal validation and external 
validation cohorts, respectively. Similarly, the iPBIScore 
for PDAC showed an AUC of 0.99, 0.98 and 0.97 in 
the training, internal validation and external validation 
cohorts, respectively. In early- stage and tumour- 
marker- negative patients, our iPBIScore- based models 
also showed an AUC of 0.95–0.96 and 0.81–0.92, 
respectively.
Conclusion Our study proved that the alterations of 
peripheral immune cell subsets could assist tumour 
detection, and provide a ready- to- use detection model 
for HCC and PDAC.

INTRODUCTION
Malignant tumours, such as hepatocellular carci-
noma (HCC) and pancreatic ductal adenocarci-
noma (PDAC), are characterised by insidious onset, 

leading to a delay in diagnosis and treatment. 
Routine serological tests currently used in the clinic 
are limited by their low sensitivity or low speci-
ficity. For instance, alpha- fetoprotein (AFP) has a 
sensitivity of less than 50%, and acute liver disease 
and pregnancy are often accompanied by elevated 
AFP.1–3 Similarly, approximately 20% of patients 
with PDAC are negative for carcinoma antigen 19- 9 
(CA19- 9),4 while benign obstruction of the bile 
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CyTOF and random forest algorithm exhibited 
excellent performance in detecting patients 
with malignancies.
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duct and impaired renal function frequently cause an increased 
level of CA19- 9.5–7 Thus, novel tools for tumour screening and 
early- stage detection are urgently needed.

The emerging technique of liquid biopsy, which is mainly 
related to detection of circulating tumour DNA (ctDNA), cell- free 
RNAs (eg, messenger RNAs, microRNAs), circulating tumour 
cells (CTCs) and exosomes,8 attempts to replace traditional sero-
logical screening methods or tissue biopsy. In HCC, for example, 
a serum metabolic panel, 5- hydroxymethylcytosines and ctDNA, 
exhibited good performance in detection of HCC in patients, 
with an area under the curve (AUC) ranging from 0.8 to 0.9.9–11 
These strategies have demonstrated their strengths and potential 
in the field of tumour detection. However, there are currently 
no well- accepted liquid biopsy strategies for tumour detection.

Over the past decade, the development of immunotherapy has 
changed the decision- making of cancer treatment, with success 
in many types of cancer.12–14 The rapid development of immu-
notherapy has deepened our understanding of the relationship 
between cancer and the immune system. A recent study using 
mouse models discovered tumour- induced systemic dysfunction 
of the immune macroenvironment, which could be restored by 
tumour resection.15 In addition, individual immunity is coordi-
nated across tissues, and the local antitumour immune response 
depends on continuous communication with the peripheral 
blood.16 17 For example, a considerable proportion of regulatory 
T cells (Tregs) within tumours are derived from naturally occur-
ring thymic Tregs.18 The frequency and status of immune cells 
change dynamically during tumour progression.15 Moreover, the 
number of regulatory B cells increased in the peripheral blood of 
patients with gastric cancer and lung cancer, and the expression 
of the inhibitory receptor of natural killer (NK) cells increased 
in the peripheral blood of patients with breast cancer.19–21 
Increasing evidence supports the view that the occurrence and 
development of tumours are accompanied by systemic immune 
disturbance and alternations of peripheral immune cells.15 22–24 
Therefore, immune profiling of the circulation might help to 
detect tumours; however, no such successful attempt has been 
made to date.

Mass cytometry by time- of- flight (CyTOF) is a newly devel-
oped technology that can profile the composition and number of 
immune cells.25–27 To test the value of peripheral blood immune 
cells in tumour detection, we launched a large- volume, multi-
centre study and used CyTOF to obtain the comprehensive 
information of immune cell composition, phenotype and func-
tion in peripheral blood. The aim of this study was to establish 
diagnostic models for HCC and PDAC using CyTOF, and to try 
to understand the logic underlying the models for their better 
clinical application.

MATERIALS AND METHODS
Participant cohorts
This was a multicentre, prospective study that recruited a total 
of 2348 participants from 15 centres across China from October 
2019 to July 2022. The training cohort and internal validation 
cohort were from the leading centre (The First Affiliated Hospital, 
Zhejiang University School of Medicine). Using an age- stratified 
random sampling method, we selected 900 and 500 of them to 
construct the training cohort of hepatic group and pancreatic 
group, respectively. The remaining participants from the leading 
centre were used for internal validation. The external validation 
cohort included participants from the other 14 centres in four 
provinces (online supplemental table S1). For the internal and 
external validation cohorts, all participants’ information and 

diagnoses were blinded for the experimenters and analysers. 
Diagnoses of the included participants were confirmed using 
ultrasound, CT or MRI. In particular, HCC was determined 
by pathology or clinical diagnosis, and PDAC was determined 
by pathology according to clinical guidelines. The diagnosis of 
patients who received surgical resection was further confirmed 
by histopathology. Hepatic benign diseases included, but were 
not limited to, haemangiomas (164 cases), cysts (66 cases) and 
focal nodular hyperplasia (71 cases). Pancreatic benign diseases 
included, but were not limited to, neuroendocrine tumours (28 
cases), cystic neoplasms (120 cases), autoimmune pancreatitis 
(9 cases) and chronic pancreatitis (18 cases). Peripheral blood 
samples from the healthy volunteers were collected during 
routine physical examination. Their health statuses were deter-
mined by reviewing medical examination results and consulting 
medical history. The exclusion criteria were as follows: A history 
of cancer- related treatment; acute infections; blood transfusion 
within the past 6 months; use of drugs affecting the composition 
of peripheral blood, such as recombinant human erythropoietin 
and interleukins, within the past 2 weeks; recurrent tumours; 
decompensated dysfunction of organs; immune deficiency 
syndrome; haematological precancerous diseases; receiving 
immunosuppressive therapy; and confirmed coagulopathy.

Sample collection and processing
Peripheral blood sample (5 mL per person) of each participant 
was collected before any antitumour treatments. The collected 
samples were transported to the laboratory for processing within 
12 hours at room temperature or within 48 hours at about 4°C. 
All samples had not been cryopreserved and all analysis was 
performed on fresh samples of blood. Peripheral blood mononu-
clear cells (PBMCs) were isolated from the peripheral blood by 
density gradient centrifugation using Ficoll. The cell precipitates 
were resuspended in 5 mL of pre- cooled fluorescence activated 
cell sorting (FACS) buffer (1×phosphate buffered saline (PBS) 
supplemented with 0.5% bovine serum albumin), and then centri-
fuged at 400×g for 5 min at 4°C. The supernatant was discarded 
and the cell precipitates were resuspended in FACS buffer again. 
The number of cells was counted and the quality of samples for 
subsequent analysis should meet the following requirement: The 
number of cells should not be less than 3×106 and the viability 
rate should be higher than 85%.

CyTOF staining and data acquisition
The provider, clone number and mass tag of each antibody used 
in this study are showed in online supplemental table S2. Anti-
body labelling with mass tag was performed using the Maxpar 
antibody conjugation kit (Fluidigm). The concentration of mass- 
tagged antibody was assessed by NanoDrop. Antibody stabiliser 
buffer was used to adjust the concentration of labelled antibody 
to 200 mg/mL. Titration of conjugated antibodies should be 
performed to get optimal concentration for use. Obtained cells 
were washed with PBS, stained with 100 µL of 250 nM cisplatin 
(Fluidigm, South San Francisco, California, USA) for 5 min on 
ice to exclude dead cells and incubated in Fc receptor blocking 
solution before being stained with a surface antibodies cock-
tail for 30 min on ice. After washed with PBS, we use unique 
barcoding isotope combination to label individual cell samples 
for 30 min. Cells were washed twice with FACS buffer and fixed 
in 200 µL of intercalation solution (Maxpar Fix and Perm Buffer 
containing 250 nM 191/193Ir, Fluidigm) overnight. After fixa-
tion, the cells were washed with FACS buffer and then with Perm 
Buffer (eBioscience, San Diego, California, USA), and stained 
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with an intracellular antibodies cocktail for 30 min on ice. Cells 
were washed and resuspended in deionised water, added into 
20% EQ beads (Fluidigm) and applied to a mass cytometer 
(Helios, Fluidigm). The CyTOF experiments were performed 
by PLTTECH (Hangzhou, China). Before each batch of samples 
were loaded, the instrument adjusted the signal strength of each 
channel according to the same beads signal (140Ce,151Eu,153E
u,165Ho,175Lu). All samples were standardised to avoid batch 
effect before analysis.

CyTOF data analysis
Data for each sample were de- barcoded from the raw data using 
a doublet- filtering scheme with unique mass- tagged barcodes.28 
Each .fcs file generated from different batches were normalised 
using the bead normalisation method.29 We used the FlowJo soft-
ware (FlowJo, Ashland, Oregon, USA) to exclude to debris, dead 
cells and doublets from the manual gating data, leaving only live 
single immune cells. We applied the X- shift clustering algorithm 
to all cells to partition the cells into distinct phenotypes based 
on marker expression levels,30 and then annotated the cell type 
of each cluster according to its marker expression pattern on a 
heatmap of clusters and markers. The dimensionality reduction 
algorithm, t- distributed stochastic neighbour embedding, was 
used to visualise the high- dimensional data in two dimensions, 
to show the distribution of each cluster and marker expres-
sion and the difference among the groups or different sample 
types.31 Student’s t- test statistical analysis was performed on the 
frequency of annotated cell populations.

Model construction
The data set was divided into three parts: training set, internal 
validation set and external validation set. Marker negative 
proportion and subgroup proportion were used as model-
ling features. Due to the excessive number of features, there 
may be some collinearity and non- significant features, so it is 
necessary to conduct feature screening to screen out important 
and useful features. The training set and internal validation set 
were then used to select features. The models were constructed 
using a random forest algorithm. In brief, features were selected 
according to their highest score, and 300 samples were selected 
randomly from negative and positive samples, respectively, to 
establish a random forest model. A 10- fold cross- validation 
method was adopted to obtain the average importance of each 
feature. If this process was repeated 1000 times, each feature 
would have 1000 feature importance values. We counted the 
number of features whose importance was greater than 0.01 for 
each feature. If the number was greater than 400, the feature 
was selected. Subsequently, the selected features were used as 
required features for modelling. Based on the screened features, 
the random forest model was constructed again after stan-
dardised processing of the training set, and the 10- fold cross- 
validation method was adopted to make each sample participate 
in modelling and testing, so as to eliminate the influence of 
sample differences on the model and find the optimal hyperpa-
rameter of the model. Then, the generalisation abilities of the 
constructed models were evaluated in internal validation set and 
external validation set, to further prove the robustness of the 
models. The peripheral blood immune score (PBIScore) of each 
participant was obtained from the models. For instance, a new 
sample was put into the well- trained model, and the probability 
of this sample belonging to malignancy was judged by each deci-
sion tree in the random forest model. The average probability 
obtained by all decision trees was recorded as the PBIScore of 

this sample, ranging from 0 to 1. We discretised the data of AFP 
and CA19- 9. In the hepatic group, if the AFP level was higher 
than 20 ng/mL (the upper limit of normal level), the value was 
assigned to 0; otherwise, the value was assigned to 1. We set 
the normal upper limit of CA19- 9 at 37 U/mL and performed a 
similar assignment strategy. The discrete index was added to the 
corresponding model as a feature, and the random forest model 
was established again. Similarly, the score of the new sample 
was calculated as above method according to the new random 
forest model, which was denoted as integrated peripheral blood 
immune score (iPBIScore).

Statistical analysis
The data are presented as the mean±SD or SEM. Student’s 
t- test, the Wilcoxon rank- sum test, or the Z test were used for 
statistical analysis, as appropriate. Data analysis was performed 
using the SPSS software (V.24; IBM, Armonk, New York, USA). 
A p value<0.05 was considered statistically significant.

RESULTS
Baseline characteristics of cohorts
A total of 2348 participants were included in this study, including 
1131 patients with hepatic diseases, 584 patients with pancre-
atic diseases and 633 healthy volunteers as controls. The hepatic 
group was consisted of 790 patients with HCC and 341 patients 
with benign hepatic diseases. The pancreatic group included 
376 patients with PDAC and 208 patients with benign pancre-
atic diseases. Healthy controls were shared by both groups. The 
demographic and clinicopathological characteristics of all partic-
ipants are presented in online supplemental tables S3–S6.

Tumours are associated with altered peripheral immune cell 
subsets
The phenomenon of increased proliferation of immature neutro-
phils and monocytes in tumour- bearing models has been widely 
reviewed in previous studies,32 33 which indicated that changes 
of peripheral immune cells may reflect the existence of insid-
ious tumours. Therefore, we speculated that similar disturbances 
of systemic immunity existed in patients with HCC or PDAC, 
which could serve as novel tumour screening markers. To reveal 
the profiles of peripheral immunity, we performed the CyTOF 
analysis to all collected PBMC samples. All CyTOF data were 
pre- processed and living single immune cells (CD45+) were 
retained after gating for further analysis. To exhibit the expres-
sion of different markers in various immune cells, but limited 
to the excessively large number of cells, we randomly selected 
cases from each group including 81 cases of HCC, 50 cases of 
benign hepatic diseases, 50 cases of PDAC, 50 cases of benign 
pancreatic diseases and 50 healthy volunteers. We then drew 
heatmap based on their CyTOF analysis results. Based on the 
canonical cell surface markers, we defined 32 major cell clusters, 
including 9 clusters of CD4+ T cells (CD3+CD4+), 8 clusters of 
CD8+ T cells (CD3+CD8+), 3 clusters of B cells (CD3−CD19+), 
2 clusters of monocytes (CD3−CD19−CD14+) and 10 clusters 
of other subsets, such as dendritic cells (DCs, CD3−CD19−C-
D14−CD20−HLA- DR+), and NK cells (CD3−CD19−CD14−C-
D20−CD56+) (figure 1A,B).

We then analysed the differences in participants with or 
without malignant tumours in the hepatic group and pancre-
atic group, respectively, and found significant differences for 
some cell subsets in both scenarios (figure 1C). Compared with 
the participants without malignancies (named ‘non- HCC’, 
including healthy volunteers and cohort with hepatic benign 
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diseases), participants with HCC presented with decreased 
levels of naïve CD4+ T cells (C02, CD4+CCR7+CD45RA+), 
naïve CD8+ T cells (C04, CD8+CCR7+CD45RA+), effector 
CD8+ T cells (C16, CD8+CCR7–CD45RA+) and memory B 
cells (C25, CD19+CD27+), while the levels of CD39+ naïve 
CD4+ T cells (C06, CD4+CCR7+CD45RA+CD39+), central 
memory CD4+ T cells (C09, CD4+CCR7+CD45RA–), double 
positive T cells (C15, CD4+CD8+), plasma cells (C23, CD19+C-
D27+CD20–CD38+) and monocytes (C27 and C28, CD3–

CD19–CD14+) were increased (online supplemental figure S1). 
Intriguingly, some subsets showed an aggravation- related change 
from early- stage to late- stage tumours (online supplemental 
figure S2). For instance, the increasement of NK cells (C17) was 
more significant in HCC from stage 0 to stage C, while a subset 
of CCR4+CD20– B cells (C23) gradually reduced as the Barce-
lona Clinic Liver Cancer stage advanced.

A similar phenomenon was observed in the pancreatic group. 
Compared with participants without PDAC (include healthy 
volunteers and cohort with pancreatic benign diseases), lower 
levels of naïve CD4+ T cells (C02, CD4+CCR7+CD45RA+), naïve 
CD8+ T cells (C04, CD8+CCR7+CD45RA+), naïve B cells (C24, 
CD19+CD27−) and memory B cells (C25, CD19+CD20+CD27+) 
were observed in patients with PDACs, while the levels of central 
memory CD4+ T cells (C03, CD4+CCR7−CD45RA+), plasmacy-
toid DCs (C32, CD3−CD19−CD14−CD20−HLA- DR+CD123+) 
and monocytes (C27 and C28, CD3−CD19−CD14+) were 
higher (online supplemental figure S3). Analysis of cell subsets 

between different stages of PDAC was also performed (online 
supplemental figure S4). The frequency of C03 subset increased 
as the stage of PDAC advanced, and that of C12 and C13 subsets 
gradually decreased with the stage of PDAC advanced. These 
results indicated that tumour- bearing hosts did have altered 
immune cell subsets in the periphery, which might be used to 
screen for malignancies.

Potential markers and immune cell subsets for model 
construction
For the HCC diagnostic model, the training cohort contained 
450 participants with HCC, 150 participants with benign 
hepatic diseases and 300 healthy controls. The remaining 199 
patients with HCC and 71 participants with hepatic diseases 
as well as 302 healthy controls from the leading centre were 
defined as the internal validation cohort to verify the efficacy 
of the model. Another 141 patients with HCC, 120 participants 
with benign hepatic diseases and 31 healthy volunteers from 
the 14 cooperating centres comprised the external validation 
cohort, which was used to confirm the generalisation ability of 
the models (figure 2). Participants in the pancreatic group were 
similarly grouped to construct and validate the diagnostic model 
for PDAC.

Provided that participants with malignancies had distinct 
immune profiles in their circulation, we first tried to identify 
potential parameters (eg, markers or immune cell subsets) for 

Figure 1 Profile of peripheral immune status. The CyTOF data from randomly selected cases that are representative of each cohort (including 81 
HCC, 50 liver benign diseases, 50 pancreatic cancer, 50 pancreatic benign diseases and 50 healthy people) are shown. (A) Heatmap of normalised 
expression for markers expressed in peripheral immune cells. Types and proportions of various immune cells are presented in left and right of 
heatmap, respectively. (B) Visualised t- SNE map of definition of peripheral immune cells from CyTOF data of 281 selected cases and part selected 
classical cell surface markers used for annotation of various immune cells. (C) Frequency diagram of immune cell subsets in the different groups. 
Benign- liver, hepatic benign diseases; Benign- pancreas, pancreatic benign diseases; CyTOF, cytometry time- of- flight; DNT, double negative T cells; 
DPT, double positive T cells; double positive T cells; HD, healthy donor; HCC, hepatocellular carcinoma; mDC, myeloid dendritic cells; NK, natural killer; 
PDAC, pancreatic ductal adenocarcinoma; gdTCR: γδ T cells; pDC, plasmacytoid dendritic cells; t- SNE, t- distributed stochastic neighbour embedding.
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tumour detection. We employed the well- established random 
forest algorithm to discover consequential features from the 
training groups of HCC and PDAC, respectively. In the hepatic 
group, we determined 7 markers and 16 cell subsets with the 
potential to discriminate HCC from non- HCC participants 
(online supplemental table S7). In the pancreatic group, we 
obtained 8 markers and 11 cell subsets for PDAC screening 
(online supplemental table S8). These cell subsets contained 
monocytes, B cells and T cells. These markers and cell subsets 
were then applied to construct diagnostic models.

Diagnostic and differentially diagnostic efficacies of the 
models based on PBIScore
In the training cohort of the hepatic group, the PBIScore of the 
participants with HCC was significantly higher than that of the 
non- HCC subjects (0.753 vs 0.247; figure 3A). Similar results 
were observed in the internal validation and external validation 
cohorts. This diagnostic model based on the PBIScore alone 
achieved a sensitivity of 90.2% and a specificity of 92.0%, with 
an area under the receiver- operating characteristic curve of 0.98 

(figure 3B). In the internal validation cohort, the sensitivity was 
80.9% and the specificity was 86.9% (AUC=0.91), and in the 
external validation cohort, the sensitivity and specificity reached 
83.0% and 78.2%, respectively. We then combined the AFP level 
and PBIScore together (named as iPBIScore) to generate a new 
model, which had a higher sensitivity of 93.1% and specificity of 
98.7% in the same training cohort, with an AUC of 0.99. Simi-
larly, the sensitivity and specificity in the two validation cohorts 
were further improved compared with the PBIScore alone. The 
AUC values of the iPBIScore in the internal validation cohort 
and external validation cohort were 0.97 and 0.96, respectively, 
which were superior to that of AFP alone (AUC, 0.84–0.83).

To test our strategy in pancreatic cancer, we performed a 
similar study. The PBIScore was significantly higher in partic-
ipants with PDAC than in non- PDAC participants for all 
cohorts tested (figure 4A). The model using the PBIScore alone 
for PDAC screening achieved a sensitivity of 92.4% and spec-
ificity of 91.2%, with an AUC of 0.98 in the training cohort 
(figure 4B). Our model also showed a good discrimination 
ability in both the internal validation cohort (AUC=0.89) and 

Figure 2 Workflow chart. A total of 2348 peripheral blood samples were collected prospectively from 15 centres. Healthy controls and patients with 
benign diseases were assigned as the non- malignant group. Marker selection was performed based on the differences between participants with or 
without malignancies. Healthy controls were shared with the hepatic and pancreatic groups. Random forest analysis was used to generate detection 
models for HCC and PDAC, respectively. The models were validated using internal and external validation cohorts. HCC, hepatocellular carcinoma; 
PDAC, pancreatic ductal adenocarcinoma.
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the external validation cohort (AUC=0.89). While CA19- 9, the 
most frequently used tumour marker in clinical practice, showed 
an AUC of 0.92−0.86, the combined model of PBIScore and 

CA19- 9 had AUC values of 0.99, 0.98 and 0.97 in the training 
cohort, internal validation cohort and external validation cohort, 
respectively.

Figure 3 Development and validation of the HCC detection models. (A) The PBIScore and iPBIScore of participants with or without HCC in the 
training cohort, internal validation cohort and external validation cohort. (B) The ROC curves of AFP, PBIScore and iPBIScore for HCC detection in 
the training cohort, internal validation cohort and external validation cohort. Table showing the sensitivity, specificity and AUC value of the three 
strategies for HCC in different cohorts. ***, p< 0.001. AFP, alpha- fetoprotein; AUC, area under the curve; HCC, hepatocellular carcinoma; iPBIScore, 
integrated peripheral blood immune score; PBIScore, peripheral blood immune score; ROC, receiver operating characteristic.

Figure 4 Development and validation of PDAC detection models. (A) The PBIScores and iPBIScore of participants with or without PDAC in the 
training cohort, internal validation cohort and external validation cohort. (B) The ROC curves of CA19- 9, PBIScore and iPBIScore for PDAC detection 
in the training cohort, internal validation cohort and external validation cohort. Table showing the sensitivity, specificity and AUC value of the three 
strategies for PDAC in different cohorts. ***, P< 0.0001. AUC, area under the curve; CA19- 9, carcinoma antigen 19- 9; iPBIScore, integrated peripheral 
blood immune score; PBIScore, peripheral blood immune score; PDAC, pancreatic ductal adenocarcinoma; ROC, receiver operating characteristic.
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Although the original aim of our study is to develop a tool for 
tumour diagnosis, we wondered the efficacy of our PBIScore- 
based models in differential diagnosis. We combined the internal 
and external validation cohorts together and excluded healthy 
volunteers from them to create a differential diagnosis cohort 
for HCC and PDAC, respectively. The iPBIScore- based model 
showed an AUC value of 0.97 for HCC differentiation from 
other hepatic benign diseases, and an AUC value of 0.92 for 
PDAC differentiation from other pancreatic benign diseases 
(online supplemental figure S5). Thus, our strategy also had 
satisfying performance in scenario of differential diagnosis of 
hepatic and pancreatic lesions.

The performance of PBIScore-based models in early-stage 
and tumour-marker-negative tumours
Detection of early- stage tumours and those that are negative for 
tumour markers is more challenging in clinical practice. To test 
the role of our model in these scenarios, we first analysed the 
performance of models in different stages of HCC and PDAC. 
In general, the variations between cancers and non- cancers were 

more significant than the difference between stages for both 
HCC and PDAC, although in some cohorts, advanced tumours 
demonstrated a more obvious feature than early- stage tumours 
(online supplemental figure S6).

We then tested the PBIScore- based models in participants 
with HCC at stage 0 or A. Compared with an AUC of 0.81 for 
AFP, the PBIScore model and iPBIScore model demonstrated 
AUC values of 0.90 and 0.96, respectively (figure 5A). In partic-
ipants with resectable PDAC, CA19- 9 showed an AUC of 0.88; 
however, the PBIScore model and iPBIScore model achieved 
AUC values of 0.89 and 0.95, respectively (figure 5B). These 
results verified the good performance of the models to detect 
early- stage tumours.

AFP and CA19- 9 are the most frequently used tumour markers 
for HCC and PDAC, respectively; therefore, patients who are 
negative for these tumour markers are easily overlooked. We 
collected all AFP- negative HCC and CA19- 9- negative PDAC in 
the validation cohorts, and used them to test the performance of 
the PBIScore model. Our model showed an AUC of 0.91 in HCC 
and 0.86 in PDAC, respectively (figure 5C,D). Therefore, the 

Figure 5 Performance of the tumour detection models in patients with early- stage disease or those with a normal level of tumour markers. (A) 
The ROC curves of AFP, PBIScore and iPBIScore for tumour detection in patients with HCC stage 0–A stage, showing an AUC of 0.81, 0.90 and 0.96, 
respectively. (B) The ROC curves of CA19- 9, PBIScore and iPBIScore for tumour detection in patients with resectable pancreatic cancer, showing an 
AUC of 0.88, 0.89 and 0.95, respectively. (C) The ROC curves of PBIScore and iPBIScore for tumour detection in AFP- negative HCC, showing an AUC 
of 0.91 and 0.92, respectively. (D) The ROC curves of PBIScore and iPBIScore for tumour detection in CA19- 9- negative PDAC, showing an AUC of 0.86 
and 0.81, respectively. AFP, alpha- fetoprotein; AUC, area under the curve; CA19- 9, carcinoma antigen 19- 9; HCC, hepatocellular carcinoma iPBIScore, 
integrated peripheral blood immune score; PBIScore, peripheral blood immune score; PDAC, pancreatic ductal adenocarcinoma; ROC, receiver 
operating characteristic.
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PBIScore could be a good complement for traditional tumour 
markers.

Relationship between clinicopathological features and 
peripheral immune status
Given the satisfactory performance of the PBIScore- based 
models, we investigated the potential subtypes among the patients 
with tumours. Important clinicopathological parameters, such 
as tumour markers, tumour differentiation degree and disease 
stages were analysed. We re- clustered the cell subsets included 
in the PBIScore- based models, and compared their propor-
tions across these clinicopathological parameters (figure 6). 
Among the 790 participants with HCC, the proportion of 
peripheral non- classical monocyte (CD14+CD16+) and central 
memory CD8+ T cell (CCR7+CD45RA–) was significantly less 
in AFP- positive participants than in AFP- negative participants 
(online supplemental table S9). Notably, CD3–CD19–CD14+ 
monocytes and HLA- DR+CD38+CD8+ T cells were enriched 
whereas CD33–CD14– lymphocytes decreased in patients with 
Hepatitis B Virus (HBV) infection. The proportion of central 
memory CD8+ T cell was higher in patients with moderate 
or well- differentiated HCC than that in patients with poorly- 
differentiated HCC. Intriguingly, advanced HCC was associated 
with markedly higher proportions of seven cell subsets, including 
monocytes, HLA- DR+CD38+CD8+ T cells, CD85j–CD8+ T 
cells, CXCR5+CD8+ T cells, central memory CD8+ T cells, 
myeloid- derived suppressor cells (MDSCs, CD33+CD3–CD19–

HLA- DR–CD11b+) and CD33–CD14– lymphocytes. No featured 
cell subsets were identified in patients with HCC with different 
microvascular invasion status.

Among the 376 participants with PDAC, we noticed that 
tumour location and disease stage was significantly associated 
with many key cell subsets included in our models (online 
supplemental table S10). Patients with PDAC located in the body 
or tail of the pancreas showed more HLA- DR+CD38+CD8+ 
T cells and HLA- DR+CD38+CD4+ T cells in their peripheral 
blood. In contrast to HCC, the differentiation degree of PDAC 
did not influence these immune subsets in circulation; however, 
advanced PDAC demonstrated a higher level of lymphocytes, 
HLA- DR+CD38+CD4+ T cells, MDSCs and CD3–CD19–CD14+ 
monocytes compared with those in early- stage PDAC. Our 
results determined the relevance of immune cell subsets between 
the primary tumour and peripheral immune status, and defined 
some cell subsets that might have important influence in periph-
eral immune imbalance.

DISCUSSION
The development, progression and metastasis of a tumour are all 
closely related to antitumour immunity.34 While much is known 
about the local immunity of the tumour microenvironment,35 
there has been little exploration of the relationship between the 
tumour and systemic immunity. Theoretically, the battle between 
the tumour and body immunity is supposed to be reflected in 
the peripheral blood, which constantly communicates with the 
tumour. For example, when the haematopoietical function of 
the tumour- bearing host was damaged extensively, the immature 
neutrophils and monocytes in the peripheral blood expanded 
abnormally, with some of them being metastasised to the tumour 
microenvironment, leading to local immunosuppression.32 33

Figure 6 The relationship between the cell subsets used for model construction and the tumour features. (A) Heatmap depicting the relationship 
between the abundance of characteristic subgroups used to construct models and the various clinicopathological features of HCC. (B) Heatmap 
depicting the relationship between the abundance of characteristic subgroups used to construct the models and the various clinicopathological 
features of PDAC. AFP, alpha- fetoprotein; BCLC, Barcelona Clinic Liver Cancer; CA19- 9, carcinoma antigen 19-9; HBV, Hepatitis B Virus; HCC, 
hepatocellular carcinoma; MVI, microvascular invasion; PDAC, pancreatic ductal adenocarcinoma.
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To the best of our knowledge, this is the largest study using 
CyTOF analysis on human peripheral blood to date and is 
the first multicentre report using CyTOF as a tool for tumour 
diagnosis. In the current study, we took advantage of the high- 
dimensional profiling ability of CyTOF to discover the differ-
ences in immune cells populations of peripheral blood and 
subsequently used selected parameters in this process to generate 
tumour detection models with relatively high sensitivity and 
specificity. The success of our strategy in early- stage HCC and 
PDAC suggested that hints of tumours in peripheral blood might 
exist soon after tumour initiation, which supports the concept 
of analysing systemic immunity for early tumour detection. In 
addition, we used the same panel and strategy for two types of 
tumour, and obtained relatively similar results, not only for the 
performance of detection models, but also in the cell subsets 
identified for model construction and for their underlying 
clinical relevance. Therefore, these findings implied that our 
PBIScore- based strategy is probably applicable to other tumours. 
Nevertheless, compared with other liquid biopsy strategies, 
like ctDNA and CTC, our approach has a low requirement for 
sample collection, with only a 5 mL sample and no need to isolate 
rare cells or enrich low- abundance nucleotides. Therefore, it is 
more customer- friendly and easier to generalise. However, some 
important issues need to be overcome before CyTOF technique 
can be translated to clinic. For instance, although CyTOF is 
highly sensitive, the possibility of contamination especially by 
heavy metals is high.36 Although CyTOF was validated to be well 
equivalent to flow cytometry that has been clinically used, an 
optimal panel of CyTOF is critical.37 The metals for antibody 
labelling should be carefully chosen according to the expression 
intensity of biomarkers to avoid signal ‘spillover’.37 The data 
analysis of CyTOF is challenging and are currently different in 
many groups. We have designed an automatic gating algorithm 
for our study. A uniform process including both sample and data 
managements is needed for clinical criteria. Moreover, the acqui-
sition time is relatively long for CyTOF, limiting the number of 
samples that can be detected every day.

Our detection models have a high value of AUC, which 
suggested a good performance. Trade- off between the sensi-
tivity and specificity is dependent on different clinical scenarios. 
Although the sensitivity was relatively low at a specificity of 99% 
as most diagnostic tools were, as a liquid biopsy method focusing 
on tumour screening, we believe both sensitivity and specificity 
of around 90% is acceptable. Even though the PBIScore itself is 
superior to AFP or CA19- 9, their combination further improved 
the AUC value. Notably, the PBIScore and these traditional 
tumour markers are mutually complementary with each other, 
which led to the outstanding performance of the iPBIScore detec-
tion model. Tumour markers like AFP and CA19- 9 are directly 
derived from tumour cells. However, the PBIScore reflects the 
interaction between the human body and the tumour, which 
provides another angle for tumour tracing. Concern about the 
value of such an interaction was raised, because it can be affected 
by many physiological and pathophysiological factors, such as 
circadian rhythm, and thus is unstable. Strikingly, our results 
demonstrated that this concern might be misplaced. At least the 
alteration of some key cell markers or subsets is stable enough 
to detect the tumour. Further in- depth researches are needed to 
understand why patients with negative tumour markers have 
more significant changes in their peripheral immune cells.

The present study also identified several key cell subsets that 
may be responsible for the efficacy of the models. Numbers 
of naïve CD4+ T cells and naïve CD8+ T cells decreased in 
the peripheral blood of tumour- bearing participants, which 

limited the source of antitumour T cells in the tumour micro-
environment. The frequency of CD39+ monocytes significantly 
increased in participants with HCC or PDAC (C27 and C28 in 
online supplemental figures S1 and S3). CD39, believed to be 
a metabolic checkpoint, is a rate- limiting enzyme involved in 
adenosine production, which plays an important immunosup-
pressive role in the tumour microenvironment.38 Intriguingly, 
the frequency of HLA- DR+CD38+CD8+ T cells significantly 
increased in participants with advanced HCC (online supple-
mental table S9), suggesting that this cell subset was a biomarker 
of tumour progression in the circulation. In fact, the expression 
of both HLA- DR and CD38 on CD8+ T cells in peripheral blood 
was reported to be correlated with advanced tumours.39 HLA- 
DR+CD38+CD8+ T cells are activated phenotype and may play 
key roles in antitumour immunity in both tumour microenviron-
ment and peripheral blood.40 41 Besides, in patients with HCC 
and those with PDAC, the proportion of monocytes increased 
gradually as the disease stage advanced, which was in line with 
previous studies showing that a high level of peripheral mono-
cytes was found in such patients and was associated with their 
poor prognosis.42–44 Overall, these findings broadened our 
understanding of the underlying reasons that peripheral blood 
could reflect tumour existence. However, the associations 
between model- related key cell subsets and clinicopathological 
parameters of patients were only statistical based and far away 
from scientific causality.

There are some limitations to our research. First, all partic-
ipants came from China and were not internationally repre-
sentative; however, we believe that the current method can be 
implemented in different ethnic groups and regions worldwide, 
given the nature of our strategy, though the parameters of the 
models will be modified to some extent. Second, people with 
haematological system diseases and those with recent bleeding 
or blood transfusion were excluded from the study, which limits 
the targeted population of our model. Third, we only developed 
tumour- type- specific models for HCC and PDAC, and whether 
the strategy can be used for pan- cancer screening is unknown. 
Fourth, our validation cohorts contained a high proportion of 
participants with malignant diseases, which was not the case 
for tumour detection in the real world. A natural population- 
based or high- risk population- based cohort study is needed for 
further evaluation of our models in clinical practice. The defi-
ciency of patients with hepatitis or cirrhosis in our non- HCC 
cohort did not allow us to verify the efficacy of our models in 
these populations, which was another drawback, as more atten-
tion would have paid in the high- risk group. Additionally, our 
analyses of AFP and CA19- 9 were based on a discrete way rather 
than using continuous variables due to unavailability of accu-
rate values within the normal range in some healthy participants. 
Using them as continuous variables is likely to identify the best 
threshold to maximise sensitivity and specificity of the models. 
However, dealing with them as discrete variables also have 
advantages, for example, it will not change the current clinical 
practice too much and will be easier to be accepted by physicians. 
Last but not least, the age and gender were not always balanced 
in different groups, which could introduce biases and affect the 
performance of our model in certain cohorts. However, malig-
nant tumours and benign diseases naturally have distinct age and 
gender tendencies. Age- related or gender- related alterations of 
immune cells are also features of tumour, no matter they are 
caused by the tumour or just companied with it. The purpose 
of our study was to develop an efficient tool to diagnose cancer, 
and our multicentre external validation confirmed the perfor-
mance of our models.
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In conclusion, we verified the differences in systemic immunity 
in patients with solid tumours, and used large- volume, multi-
centre cohorts to demonstrate that PBIScore- based models show 
high performance for tumour detection. Therefore, we provide a 
ready- to- use tool for HCC and PDAC screening as an expansion 
of liquid biopsy. Our strategy also lays the foundation for future 
systemic immunity- based detection methods for pan- cancers.
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