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Objectives: We investigated a collection of strains belonging to the Acinetobacter

calcoaceticus-Acinetobacter baumannii (ACB) complex obtained from a veterinary clinic

with regard to their genetic relatedness, presence of antibiotic resistance genes and

antimicrobial susceptibility profiles.

Methods: Fifty-eight ACB-complex strains from animals treated at a veterinary clinic

between 2006 and 2017, and seven strains collected from the hospital environment

during 2012 were analyzed. Assignment to sequence types (ST) and international

complexes (IC) was done by multilocus sequence typing (MLST) according to

the Pasteur scheme. Genes encoding carbapenemases, aminoglycoside-modifying

enzymes, macrolide-, quinolone- and co-trimoxazole resistance genes, the ISAba1

element, virulence associated intI1 genes and plasmid associated toxin-antitoxin markers

were identified by microarray. Genes encoding blaOXA−51-like carbapenemases were

amplified by PCR and sequenced. Susceptibility profiles were determined by disc

diffusion or by broth microdilution.

Results: Among 50 A. baumannii isolates from animals, two predominant clones

were observed linked to CC1 (n = 27/54% of the isolates) and CC25 (n = 14/28%),

respectively. Strains of IC I harbored blaOXA−69, aac(3
′)-la, aadA1, sul1, intI1, and

splA/T genes. Isolates belonging to CC25 possessed blaOXA−64. Six (12%) isolates

belonging to CC2 and carrying blaOXA−66 were also noted. One isolate belonged to CC10

(blaOXA−68), one to CC149 (blaOXA−104), the remaining isolate was assigned to ST1220

and possessed blaOXA−116. Of six environmental A. baumannii, four (66.7%) belonged

to CC25 (blaOXA−64), one (16.7%) to CC2 (blaOXA−66) and one to CC3 (blaOXA−71).

Nine isolates (eight from animals and one environmental strain) were non-baumannii
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strains and did not harbor blaOXA−51-like genes. None of the isolates carried blaOXA−23,

blaOXA−48, or blaOXA−58, and none were resistant to carbapenems.

Conclusions: Clonal lineages of the veterinary A. baumannii isolates in our collection are

identical to those globally emerging in humans but do not harbor blaOXA−23. A. baumannii

CC25 may be specific for this particular veterinary clinic environment.

Keywords: Acinetobacter, blaOXA−51-like, genotypes, antimicrobial resistance, animals

INTRODUCTION

The genus Acinetobacter is ubiquitous in diverse environments
and as of today comprises 60 validly published species
names (www.szu.cz/anemec/Classification.pdf). A list of
Acinetobacter spp. also available at http://www.bacterio.net (1).
In clinical settings, the species belonging to the Acinetobacter
calcoaceticus- Acinetobacter baumannii (ACB) complex are of
greatest importance (2). The ACB complex currently comprises
Acinetobacter baumannii and its close relatives, A. calcoaceticus,
A. dijkshoorniae (3), A. lactucae (4), A. nosocomialis, A. pittii,
(5), and A. seifertii (6). Currently, A. dijkshoorniae and A.
lactucae are considered conspecific (7). Hence, there exist to date
six distinct ACB complex species with formal nomenclatural
recognition.

A. baumannii is the most frequent Acinetobacter species
isolated from patients in intensive care units (ICUs) and is the
causative agent of ventilator associated pneumonia, catheter-
related bloodstream infections, meningitis, and wound infection,
often causing clonal outbreaks involving critically ill patients
(8, 9). By constrast, A. calcoaceticus, although found sometimes
in clinical specimens, seems to be more environmental, has
unknown clinical significance and is usually well-susceptible to
antibiotics (10).

The diversity of strains in epidemiology studies of A.
baumannii is frequently investigated by multilocus sequence
typing (MLST) using either the Oxford or the Pasteur scheme (11,
12). The majority of outbreak strains reported globally belong to
IC I, IC II, and IC III, corresponding to clonal complexes (CC)1,
CC2, and CC3 of the Pasteur scheme (9, 12–14).

Treatment of infections is frequently compromised due to
the fact that ACB complex strains possess multiple intrinsic
and acquired mechanisms that may result in antimicrobial
resistance (10, 15). Overexpression of intrinsic ß-lactamases and
of multidrug resistance efflux pumps, loss of outer membrane
proteins and mutations in the quinolone resistance-determining
regions (QRDRs) of the gyrA and parC are commonly detected
in ACB isolates (10). Hence, following CLSI guidelines, ACB
isolates are considered intrinsically resistant to antibiotics
such as aminopenicillins, aztreonam, ertapenem, trimethoprim,
chloramphenicol, macrolides, and fosfomycin (16).

Importantly, in addition to the presence of chromosomally
located blaOXA−51-like genes encoding for naturally occurring
carbapenemases, plasmid mediated carbapenem resistance genes
including blaOXA−23, blaOXA−48, and blaOXA−58 have emerged
globally in A. baumannii further restricting therapeutic options
for treating infections in humans, with blaOXA−23 harboring A.

baumannii representing one of the most problematic hospital-
acquired human pathogens (17).

Data onmolecular characteristics and antimicrobial resistance
mechanisms of Acinetobacter of veterinary origin are still scarce
compared to those of isolates from humans. However, it has
been shown that A. baumannii isolated from animals may share
clonal lineages and possess identical transmissible antibiotic
resistance genes to those from humans, suggesting common
pathways and/or sources of infection (15, 18). Furthermore,
reports on the emergence of infections due to carbapenem
resistant A. baumannii in hospitalized companion animals are of
concern and emphasize the need for epidemiological studies and
surveillance in order to maintain veterinary and public health
(19–22).

The present study was designed to characterize clinical isolates
belonging to the ACB complex originating from companion
animals and horses hospitalized during 2006–2017 at a university
veterinary clinic in Switzerland by (i) determining the genetic
relatedness using multilocus sequence typing, (ii) performing
genetic profiling using a microarray-based assay, and (iii)
assessing their antimicrobial susceptibility profiles.

MATERIALS AND METHODS

Bacterial Isolates
Between 2006 and 2017, a total of 93 non-duplicate Acinetobacter
spp. isolated from hospitalized animals (one strain per
animal) were obtained. Only isolates with clinical significance
were collected. In addition, strains taken from the hospital
environment during 2012 (n = 7) were included in the study.
Strains were identified to the level of the genus Acinetobacter
using the VITEK R© 2 Compact system (Biomérieux, Nürtingen,
Germany).

Species identification was performed by matrix-assisted
laser desorption/ionization time-of- flight mass spectrometry
(MALDI-TOF–MS, Bruker Daltronics, Bremen, Germany) and
by amplification and sequencing of the 350 bp highly variable
zone 1 of the rpoB gene (23, 24). Custom sequencing was done
by Microsynth, Balgach, Switzerland.

In total, 65 ACB complex strains were identified, including 56
A. baumannii (50 isolates from animals, and six environmental
strains), seven A. pittii (six animal, and one environmental
isolate), and two animal A. calcoaceticus isolates.

The 58 animal strains originated from horses (n = 35), cats
(n = 7), dogs (n = 6), chicken (n = 3), rabbits (n = 2), Andean
bear (n = 1), cattle (n = 1), donkey (n = 1) reptile (n = 1),
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and rodent (n = 1) admitted to the veterinary clinic of the
University of Zürich, Switzerland. The isolates were cultured
fromwounds (n= 20), abscesses (n= 19), urine (n= 4), synovial
fluid aspirations (n = 2), tracheobronchial secretions (n = 2),
abdominal aspiration (n = 1), alveolus (n = 1), bladder wall
(n = 1), eye swab (n = 1), implant (n = 1), pus (n = 1), surgical
sites (3), and other sites (n= 2).

In addition, strains collected from the hospital environment
during 2012 (n= 7) were included in the study.

Non-ACB-complex strains (n = 35) comprising 21 A.
lwoffii/‘A. pseudolwoffii’ (25), three A. guillouiae, three A.
radioresistens, two A. beijerinckii, two A. towneri, one A.
gandensis, one A. junii, one A. parvus, and one A. ursingii were
not included in this study.

In accordance with local legislation, ethics approval was not
required and no animal experiments were carried out for this
study.

Multilocus Sequence Typing
Multilocus sequence typing was performed according to the
scheme developed by the Pasteur Institute (12). This scheme
involves PCR amplification and sequencing of internal fragments
of seven housekeeping genes (fusA, gltA, pyrG, recA, cpn60,
rpoB, and rplB). Primers and PCR conditions are listed at
the A. baumannii MLST database website http://pubmlst.org/
abaumannii/. Sequencing of the amplification products was
performed by Microsynth (Balgach, Switzerland). Sequences
were uploaded to http://pubmlst.org/abaumannii/ to identify
alleles and sequence types. The population structure of
STs of the A. baumannii isolates was evaluated using the
goeBURST software (http://www.phyloviz.net/goeburst/). CCs
were defined as single-locus (SLVs) and double-locus variants
(DLVs).

Identification of Antimicrobial Resistance
Genotypes
DNA was purified using the DNeasy Blood & Tissue Kit (Qiagen,
Hilden, Germany), according to manufacturer’s protocol.

Isolates were genotyped using the oligonucleotide based
microarray CarbDetect AS-2 Kit (Alere Technologies GmbH,
Jena, Germany) to detect all currently known relevant
carbapenemase genes, extended-spectrum ß-lactamase
(ESBL) genes, aminoglycoside, macrolide, quinolone and
co-trimoxazole resistance genes found in Enterobacteriaceae
and Pseudomonadales (26). Additional markers included the
ISAba1 element, integrase and transposase genes, and plasmid
associated toxin-antitoxin (T/A) markers. An overview of the
target genes and multiplex labeling, hybridization and data
analysis has been described by Braun et al. (26). In brief, DNA
was labeled internally with biotin-11-dUTP using a linear
amplification protocol to generate single stranded (ss) DNA.
Biotin labeled ssDNA was transferred and hybridized with
DNA probes in oligonucleotide microarray strips. Hybridization
was detected using streptavidin-horseradish peroxidase and
a dye precipitation. The signals were detected using the
platform ArrayMate Reader provided by Alere Technologies
GmbH.

PCR and DNA sequencing analyses of blaOXA−51-like genes in
A. baumannii isolates was carried out using custom synthesized
primers (Microsynth, Balgach, Switzerland) and conditions
published previously (27). Nucleotide sequences were analyzed
with the CLC Main Workbench 8.0.1 and the BLASTN program
of NCBI (http://www.ncbi.nlm.nih.gov/blast/).

Screening for the plasmid-mediated colistin resistance genes
mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5 was performed by
PCR using custom synthesized primers (Microsynth, Balgach,
Switzerland) and conditions described previously (28).

The mcr-1 harboring strain OW3E1 (29) and plasmid
“Plasmid-MCR2-Positivkontrolle” (P. Keller, personal
communication) were used as positive controls.

Phenotypical Characterization of Antibiotic
Susceptibility
Antimicrobial susceptibility testing was carried out according to
Clinical and Laboratory Standards Institute (CLSI) performance
standards (16), using the disk-diffusion method and the
antibiotics cefotaxime (CTX), cefepime (FEP), ciprofloxacin
(CIP), sulfamethoxazole/trimethoprim (SXT), gentamicin (GM),
and tetracycline (TE). Minimal inhibitory concentrations (MIC)
of imipenem were determined using the E-Test R© (bioMérieux,
Marcy L’Etoile, France) according to manufacturer’s protocol.
Determination of the MIC of colistin was performed by
broth microdilution according to the European Committee on
Antimicrobial Susceptibility Testing EUCAST (eucast.org).

The degrees of antimicrobial resistance among the ACB
complex isolates was defined in accordance to Falagas and
Karageorgopoulos (30).

Multidrug resistance (MDR) was thereby defined as resistance
to three or more classes of antimicrobial agents including
β-lactams, fluoroquinolones, sulfonamides, aminoglycosides,
tetracyclines, and polymyxins, and excluding those which cannot
be regarded as potentially effective, i.e., to which ACB complex
strains are intrinsically resistant: aminopenicillins, aztreonam,
ertapenem, trimethoprim, chloramphenicol, macrolides and
fosfomycin (16).

RESULTS

An overview of the isolates, their origins, molecular and
phenotypic characteristics is shown in Figure 1.

Overall, 58 clinical isolates belonging to the ACB complex
were collected from animals admitted to the veterinary hospital
of Zürich, Switzerland between 2006 and 2017. The majority
thereof (50/86.2%) were A. baumannii isolates collected from
horses (n = 34), dogs (n = 6), cats (n = 5), rabbits (n = 2), and
from one chicken, one donkey and one reptile, respectively. Six
(10.3%) of the clinical isolates were A. pittii collected from cats
(n = 2), chicken (n = 2), and from one Andean bear and one
rodent, respectively. Two isolates (3.4%) were A. calcoaceticus
from a cow and from a horse, respectively.

Environmental isolates collected from the premises of the
veterinary hospital during 2012 included six A. baumannii and
one A. pittii (Figure 1).
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FIGURE 1 | Molecular and phenotypic characterization of strains belonging to the Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) complex isolated from

animals and the environment at a veterinary hospital in Switzerland, 2006–2017. AA, abdominal aspiration; ABS, abscess; ALV, alveolus; AZM, azithromycin; BW,

bladder wall; CC, clonal complex; CIP, ciprofloxacin; COL, colistin; CTX, cefotaxime; DO, door; ES, eye swab; ENV, environment; FEP, cefepime; FL, floor; GM,

gentamicin; IM, implant; IP, imipenem; MIC, minimal inhibitory concentration; MDR, multidrug resistant; SS, surgical site; SFA, synovial fluid aspiration; ST, sequence

type; SXT, sulfamethoxazole/trimethoprim; TBS, tracheobronchial secretion; TE, tetracycline; UR, urine; WA, water; WP, water pipe; WO, wound. * In isolate MAC-52,

the ISAba1 element was not associated with blaOXA−66. Blue squares, positive result; red squares, resistant to a specific antimicrobial; gray squares, intermediately

resistant to a specific antimicrobial; light gray squares, negative result or susceptible to a specific antimicrobial; purple squares, multidrug resistant.
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Multilocus sequence typing revealed that the majority
(27/48.2%) of the 56 A. baumannii isolates belonged to ST20 and
its SLVs ST1, ST1217, and ST1219, as well as its DLV ST1214.
eBurst analysis assigned these sequence types to clonal complex
CC1 (Figure 2). Fourteen (25%) of the A. baumannii strains
belonged to ST25 and its SLV ST1218 and were assigned to CC25.
Of the remaining isolates, six (10.7%) belonged to ST2 (CC2), and
one (1.8%) to ST23 (CC10) and one to ST46 (CC149). One isolate
typed and ST1220 and was not assigned to any CC (Figure 2).

Microarray based genotyping revealed the presence of
blaOXA−51-like genes in all A. baumannii isolates. None of the A.
pittii orA. calcoaceticus isolates tested positive for blaOXA−51-like
genes (Figure 1).

Sequencing analysis of the blaOXA−51-like genes revealed
the presence of blaOXA−69 in all 27 A. baumannii belonging
to CC1 (Figures 1, 2). The blaOXA−64 gene was detected
in the 18 A. baumannii isolates belonging to CC25, and
blaOXA−66 was identified in the seven strains belonging to CC2.
Other alleles included blaOXA−71, blaOXA−104, and blaOXA−116

(Figures 1, 2).
The ß-lactamase genes blaTEM and blaACT were found in 44

and 2 of the isolates, respectively (Figure 1).
Other bla genes encoding for carbapenemases (e.g., OXA-23,

OXA-48, OXA-58, KPC, or NDM), or for acquired ESBLs (e.g.,
PER, VEB, or CTX-M types) were not detected.

The ISAba1 element which accounts for enhanced expression
of blaOXA−51-like genes was detected adjacent to blaOXA−66

in two of the isolates (MAC5 and MAC22, Figure 1). In one
isolate (MAC-52) the element was not associated with blaOXA−66

(Figure 1).
Genes associated with resistance to aminoglycosides,

macrolides, sulphonamides and trimethoprim were detected as
shown in Figure 1. The aac(3′)-Ia, aadA1, aphA, and sul1 genes
occurred predominantly in association with the presence of the
class 1 integrase gene intI1 in A. baumannii belonging to CC1
and CC2, whereas the majority of strains that lacked the intI1
gene harbored strA and/or strB and sul2 (Figure 1).

The type II T/A genes splA and splT were identified in all A.
baumannii belonging to CC1.

In one strain (MAC-32), the toxin-antitoxin system was
incomplete (Figure 1).

None of the isolates tested positive formcr genes.
The antimicrobial susceptibility profiles of the isolates are

summarized in Figure 1. The majority (52/92.9%) of the 56
A. baumannii strains was resistant to three or more classes
of antimicrobials and were MDR according to Falagas and
Karageorgopoulos (30). By contrast, among the A. calcoaceticus
and A. pittii strains, one isolate (MAC-70) was resistant
to gentamicin, the rest remained susceptible to all tested
antimicrobials, and none were MDR.

Overall, 51 (91%) of the A. baumannii isolates were resistant
to ciprofloxacin and to tetracycline, respectively, 47 (83.9%)
were resistant to gentamicin, 43 (76.8%) were resistant to
sulfamethoxazole-trimethoprim, and 10 (17.9%) were resistant
to cefotaxime. Two (3.6%) isolates were resistant to colistin.
All were susceptible to cefepime and imipenem, with MIC of
imipenem ranging from 0.125 to 1.5µg/ml (Figure 1).

DISCUSSION

There is growing concern that multidrug resistant, blaOXA−23

harboring A. baumannii in hospitalized companion animals and
horses may be emerging as a threat to veterinary and public
health (15). However, information on A. baumannii in veterinary
medicine is still limited and there is a lack of comparable data to
strains isolated from humans (15, 31). In this study, we provide
a molecular and phenotypic analysis of strains belonging to
the ACB complex isolated from diseased animals admitted to
the veterinary hospital of the university of Zürich, Switzerland
during 2006–2017. The main limitations of this study include its
retrospective design and its restriction to a single center.

The two predominant lineages of A. baumannii comprised
CC1, which is a globally distributed clade (9), and CC25, a lineage
that has been responsible for epidemics in different European
countries (32).

There are few reports on A. baumannii isolated from pets
in Switzerland and overall, these isolates belonged primarily to
CC1and CC2 (33, 34). Likewise, Ewers et al. (19) observed a
prevalence of 26% of CC2 among A. baumannii recovered from
animals hospitalized in various veterinary clinics in Germany,
which is remarkably higher than the prevalence of 12% observed
in this study. By contrast, A. baumannii ST25 (CC25) was
not described in either of these studies. Its abundance in
the collection of ACB isolates from the veterinary hospital of
Zürich suggests that this clinical setting may be likely support
the spread of this particular clonal lineage. Moreover, of the
six environmental A. baumannii recovered during 2012, four
(66.7%) belonged to ST25 (CC25), suggesting the existence of an
environmental reservoir of this ST in or outside of the hospital
setting. Its prevalence in the hospital environment may also be
due to the elevated resistance to desiccation and high biofilm-
forming capacity on abiotic surfaces, as demonstrated for this
particular sequence type (35).

Notably, A. baumannii ST25 has recently been isolated
from pets in France (20, 21). In both studies, the isolates
possessed blaOXA−23 and were resistant to carbapenems, whereas
the isolates analyzed in the current report possessed intrinsic
blaOXA−51 –like carbapenemases only. Interestingly, the isolates
from France were detected in companion animals in the
community. Compared to clinical settings, little is known about
Acinetobacter carriage in animals beyond these settings, but
several studies during the last decade have detected A. baumannii
in dogs in the community (21, 36), domestic birds (37), livestock
(38) and other farmed animals such as mink (39). These reports
indicate that community-acquired A. baumannii infections
among animals may be increasing and that animals outside
clinical settings may represent a reservoir for A. baumannii,
including carbapenem resistant strains (15).

Overall, the blaOXA−51 alleles identified in the A. baumannii
isolates correlated with their respective CCs, in accordance with
previous observations for human isolates (27, 40).

Two isolates possessed the ISAba1 element upstream of
blaOXA−66. As reported earlier, ISAba1 mediates overexpression
of blaOXA−51-like enzymes, resulting in resistance to
carbapenems (41, 42). However, there was no difference in
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FIGURE 2 | Genetic relatedness of Acinetobacter baumannii isolated from animals and the environment at a veterinary hospital in Switzerland during 2006–2017

using multilocus sequence typing (MLST) and goeBurst (Phylowiz). The sizes of the squares reflect the number of strains belonging to a particular sequence type (ST).

Blue links show single locus variants (SLVs). Founder STs are highlighted in yellow. Green circles indicate isolates grouped into a clonal complex (CC) harboring a

particular blaOXA−51-like allele.

the MICs of imipenem for these two isolates compared to those
lacking the ISAba1 insertion, confirming recent observations
that resistance to carbapenems is not guaranteed only by the
presence of ISAba1, but depends on its orientation upstream of
the bla gene (43, 44).

Aminoglycoside resistance genes were distributed unevenly
among the A. baumannii isolates. The occurrence of aadA1 and
aphA in association with intI1 among CC1, CC2, and CC3 is
supportive of previous observations (45). By contrast, these genes
were not prevalent among the CC25 isolates, among which strA
and strB genes predominated. This may indicate that interclonal
horizontal gene transfer plays a minor role in the dissemination
of aminoglycoside resistance in the isolates analyzed in this study.

Of the two colistin resistant isolates, one belonged to CC25,
which also occurs in humans. Colistin resistance in human
Acinetobacter isolates is a source of great concern, although to
date, there have been no reports of mcr positive Acinetobacter
spp. (46).

In general, there was a good correlation between the
presence of resistance genes detected by microarray and the
phenotype of the isolates. There was however, a discrepancy
between results of genotypic and phenotypic testing for three
of isolates containing sulfonamide resistance genes and 4
isolates harboring aminoglycoside resistance genes, where the
presence of resistance genes did not correspond with phenotypic
resistance. Conversely, there was a lack of blaESBL genes such
as blaGES, blaPER, or blaVEB that would explain the phenotypic
resistance to cefotaxime observed in 10 isolates (10). On the other
hand, ISAba1 and ISAba125 governed hyperexpression of the
chromosomal blaADC cephalosporinase also leads to resistance
to 3rd generation cephalosporins in A. baumannii (10, 47).
Thus, further investigations targeting the genetic environment
of blaADC in the cefotaxime resistant isolates are warranted to
explain their phenotype.

In this study, we observed the presence of type II T/A
genes splA and splT in A. baumannii CC1. Type II T/A
systems are usually plasmid encoded and mediate plasmid
maintenance through the post-segregational killing of plasmid-
free daughter cells (48). The splA and splT genes are so far
unique to A. baumannii and are encoded on small, ca. ∼10 kb
plasmids of the Rep-3 superfamily (49, 50). There is a lack
of knowledge regarding these plasmids, however, some harbor
blaOXA−24/blaOXA−40 or blaOXA−72 and are prevalent among
carbapenem-resistant human clinical IC II isolates in Eastern
Europe (49). The significance of the splA/T carrying plasmids
identified among the CC1 isolates in this study remains to be
investigated.

Finally, non-baumannii ACB complex species accounted for
13.8% of the animal, and 14.3% of the environmental isolates.
These isolates were distinguished from A. baumannii strains
by the lack of blaOXA−51-like genes, the low prevalence of
acquired antibiotic resistance genes and high rate of susceptibility
to antimicrobial agents, in agreement with observations from
human isolates (8, 51).

In conclusion, this study provides a molecular and phenotypic
analysis of ACB complex isolates obtained from animals admitted
to a veterinary hospital in Switzerland during 2006–2017. Using
established methods applied to isolates of human origin enabled
the identification of clonal lineages and resistance determinants
that occur globally among human isolates, including CC1
and CC25 A. baumannii. As opposed to A. baumannii CC1,
CC25 isolates have infrequently been described in companion
animals, but were prevalent among the isolates in this study.
Contrasting to frequently occurring human clinical isolates
worldwide, the veterinary ACB complex isolates in this
study did not possess any known acquired carbapenemase
genes. However, since A. baumannii, including CC25 isolates
are emerging as blaOXA−23 carrying veterinary isolates in
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other countries, increased surveillance and targeted measures
to prevent the dissemination of ACB complex strains are
warranted.
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