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Cases where animals use controlled illumination to improve vision are rare
and thus far limited to chemiluminescence, which only functions in dark-
ness. This constraint was recently relaxed by studies on Tripterygion delaisi,
a small triplefin that redirects sunlight instead. By reflecting light sideways
with its iris, it has been suggested to induce and detect eyeshine in nearby
micro-prey. Here, we test whether ‘diurnal active photolocation’ also
improves T. delaisi’s ability to detect the cryptobenthic sit-and-wait predator
Scorpaena porcus, a scorpionfish with strong daytime retroreflective eyeshine.
Three independent experiments revealed that triplefins in which light redir-
ection was artificially suppressed approached scorpionfish significantly
closer than two control treatments before moving away to a safer distance.
Visual modelling confirmed that ocular light redirection by a triplefin is suf-
ficiently strong to generate a luminance increase in scorpionfish eyeshine
that can be perceived by the triplefin over 6–8 cm under average conditions.
These distances coincide well with the closest approaches observed. We con-
clude that light redirection by small, diurnal fish significantly contributes to
their ability to visually detect cryptic predators, strongly widening the con-
ditions under which active sensing with light is feasible. We discuss the
consequences for fish eye evolution.
1. Introduction
Vision represents one of the most extraordinary outcomes of natural selection
[1], as exemplified by studies across the animal kingdom that describe how
visual systems are adapted to a species’ ecology [2,3]. Given how diverse
such systems can be, it is surprising that adaptations to improve vision by
means of controlled illumination are rare [4]. A well-known exception are noc-
turnal flashlight fishes. They feature a subocular chemiluminescent light organ
just below the pupil [5] that facilitates schooling behaviour at night [6] and
glows sufficiently strong to illuminate and detect nearby prey [7]. By being
next to the visual axis, it is ideally positioned to induce and detect retroreflec-
tive eyeshine (cat’s eyes) in nearby organisms [8]. This follows from the fact that
retroreflective eyes return incoming light back to the source in a narrow beam,
regardless of the incoming angle [9,10]. This places them among the strongest
and most easily detected biological reflectors—provided the observer has a
source of light next to the pupil [11].

Recent findings in the triplefin Tripterygion delaisi suggest that diurnal fish
use an analogous principle by actively redirecting downwelling sunlight
using the lower iris, generating a so-called ocular spark (figure 1a; electronic
supplementary material, figure S4) [13]. Ocular sparks arise because the lens
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Figure 1. Experimental design to test for diurnal active photolocation in the bottom-dwelling triplefin Tripterygion delaisi. Three treatments were tested (a)
unhatted sham control, (b) clear-hatted control and (c) shading hat treatment. While (a) and (b) can re-direct light using a blue ocular spark (spot of focused
light on the lower iris), (c) cannot. (d ) The scorpionfish Scorpaena porcus shows daytime eyeshine [12]. (e,f ) Coaxial ‘illumination’ with a strip of white paper reveals
that the eyeshine has a strong retroreflective component (taken from https://doi.org/10.6084/m9.figshare.5902720.v1). (g,h) Triplets of one triplefin per hat treat-
ment were exposed to a shaded predator (as shown) or stone behind a windowpane. In the field, we tested two orientations (triplefins facing north or south, as
shown). The response variable was distance from the stimulus compartment. Drawings not to scale (see Material and methods). Pictures by M.S. and N.K.M. See
electronic supplementary material, figure S1 for additional pictures of triplefins and scorpionfish in the two field set-ups. (Online version in colour.)
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protrudes from the pupil, allowing some of the downwelling
light to pass through the lens without entering the eye, and
be focused in a bright spot on the iris below. As a result, sun-
light is reflected sideways, outside the approximately 97°
angular range of downwelling light dictated by Snell’s
window [14]. A recently published model confirmed that
ocular sparks allow T. delaisi to induce perceptible eyeshine
in micro-prey (gammarid shrimps) under biologically plaus-
ible scenarios [15]. We define this as ‘diurnal active
photolocation’, a process by which ocular radiance improves
visual detection of nearby cryptic organisms. This new form
of active sensing was originally proposed by Collin B. Jack
[11] and can be placed between ‘teleceptive active sensing’
(perception of the reflections of a self-produced signal) and
‘contact active sensing’ (touch perception) [4].

In this study, we test whether ocular sparks also improve
a triplefin’s ability to detect the black scorpionfish Scorpaena
porcus, a cryptic, sit-and-wait predator with large, retroreflec-
tive eyes [16–18]. Whereas retroreflective eyes are mainly
known as an adaptation to vision in dim light [19], daytime
eyeshine in cryptobenthic predatory fish improves their
camouflage by concealing their black pupils. This has already
been shown for S. porcus [12] (figure 1d–f ). We present data
from three experiments in which we manipulated ocular
spark production in triplefins by attaching opaque mini-
hats (figure 1c). We compared their response with two control
treatments (figure 1a,b) to a scorpionfish behind a window-
pane (figure 1g,h) or a stone as a control visual stimulus.
We predicted control-treated triplefins to keep a greater safe
distance from scorpionfish than shading-hatted triplefins.
To validate the empirical results, we subsequently
implemented visual models to assess if and from which dis-
tance a perceptible change in contrast in the pupil of a
scorpionfish can be induced by a triplefin when producing
an ocular spark under natural conditions.
2. Methods
(a) Model species and location
Triplefins (family Tripterygiidae) are small, cryptobenthic micro-
predators on marine hard substrates. With a standard length of
3–5 cm Tripterygion delaisi (electronic supplementary material,
figure S1) is one of the larger species. It occurs in the NE Atlantic
and Mediterranean between 3 and 50 m depth, with highest den-
sities in 5–15 m. Except for breeding males, it is highly cryptic.
Unlike other small benthic fish, triplefins do not have a place
to retreat to [20]. Instead, they forage for micro-prey using salta-
tory movement patterns [21] in which short hops are alternated
with prolonged periods of assessing the surroundings. They pos-
sess high-amplitude, independent eye movement, and high
contrast sensitivity and visual acuity for their size [22,23].

The scorpionfish Scorpaena porcus (family Scorpaenidae) is a
cryptobenthic sit-and-wait predator (12–20 cm) from coastal
marine hard substrates and seagrass in the NE Atlantic and Med-
iterranean Sea [24] (electronic supplementary material, figure S1).
It feeds on crustaceans and small benthic fish [25]. Scorpionfish
eyes possess a reflective stratum argenteum and a translucent reti-
nal pigment epithelium both of which contribute to daytime
eyeshine [12].

Fish and data were collected at STARESO (Station de
Recherches Sous Marines et Océanographiques, Calvi, France)
under the permit of the station. The hatting technique was
developed at the University of Tübingen, permit ZO1–16 Regier-
ungspräsidium Tübingen. We caught fish by hand-netting while
SCUBA diving and stored them in large tanks with running fresh
seawater. They were returned to the field afterwards.

(b) Blocking ocular sparks with mini-hats
We prevented ocular spark formation using mini shading hats
excised from a dark red polyester filter (transmission 1%, LEE
#787 ‘Marius Red’, LEE Filters). Clear filter hats (LEE #130,
‘Clear’) represented a control for the shading. No hat, but an
otherwise identical procedure served as control for the presence
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of a hat. Hats had a triangular base for attachment and two
raised, forward-projecting wings, assuring free eye movement
with an unobstructed forward view (greater than 45° from
horizontal; figure 1b,c). Hats varied in diameter (6–9 mm) to
match head size. Clear-hatted and unhatted triplefins regularly
generated ocular sparks (figure 1a,b).

For hatting, we anaesthetized fish (100 mg l−1 MS-222 in sea-
water, pH = 8.2) until all movements ceased except for breathing
(3–4.5 min). The dorsal head surface was dried with paper tissue.
Hats were glued to the dorso-posterior head area using surgical
glue (Surgibond, Sutures Limited, UK or Vetbond Tissue
Adhesive, 3 M). After polymerization for 45 s, fish were moved
to recovery containers with aerated seawater and regained con-
sciousness within 5–10 min. Survival rate was 97.4%. Most hats
detached spontaneously within 0–4 days. All fish were used
only once. Pilot experiments confirmed that typical behaviours
such as fin-flicks, bobbing, overall movement, and head and
eye movements did not differ between treatments [26].
c.B
287:20192292
(c) Laboratory experiment
We used four aquaria (L ×W×D: 130 × 50 × 50 cm3) with a
white, barren bottom (avoided by triplefins) and added a
10 cm wide strip of gravel along the long side as a preferred sub-
strate. At one end, we placed two perforated containers with a
glass front (L ×W×H: 24 × 14 × 16 cm3) one with a stone, one
with a scorpionfish. Only one of the two was visible to the triple-
fins on a given day. Each aquarium was illuminated with a
150 W cold white LED floodlight (TIROLED Hallenleuchte,
150 W, 16 000 Lumen) shielded with a LEE Filters #172 Lagoon
Blue filter. The containers with the stimuli were shaded. On
day 1, triplefins were hatted or sham-treated and placed in the
aquarium in the late afternoon. Data collection started the next
day, approximately 14 h later to allow hatted fish to recover
and explore the new environment. Observations took place on
days 2 and 3. Two aquaria started with a scorpionfish as the vis-
ible stimulus, the others with a stone. Stimuli were swapped after
day 2. We assessed the distance of each triplefin to the stimulus
at 08.00, 11.00, 13.00, 15.00 and 18.00. Twenty triplets of size-
matched T. delaisi were tested (n = 60). Owing to premature hat
loss in five of these, 15 triplets were used for the analysis.
(d) Replicate experiment in the field
We replicated the laboratory experiment using 10 tanks of Evo-
tron Plexiglas (L ×W×D: 150 × 25 × 50 cm3) placed at 15 m
depth on a sandy patch (figure 1g,h; electronic supplementary
material, figure S1). To control for the position of the sun, five
tanks faced north, five south. We used local bright sand mixed
with gravel as substrate for the triplefin compartment (125 ×
25 cm2). This was separated by transparent Plexiglass from the
shaded stimulus display compartment (15 × 25 cm2). An
additional, similar-sized area behind the latter was used to
hide the alternative stimulus. All compartments had many slits
and holes for water exchange to assure that the scorpionfish
could be smelled and heard [27], even when only the stone
was visible. Visual contact between fish and the outside was
excluded by a 10 cm white side cover along the bottom edge. Dis-
tance markers at 1, 5 and 10 cm were present along both long
sides of the enclosures. As the main response variable, we
noted the distance of each individual from the stimulus by align-
ing the head of the triplefins with that of the distance markers on
both sides while hovering 50 cm above the enclosure. This is
possible because triplefins freeze rather than flee when large
fish (or divers) pass. Distance data were collected at three times
(09.00, 12.00 and 15.00) on 2 days following deployment in the
afternoon of the day before. More time points were not possible
because of SCUBA diving restrictions. Stimuli were swapped
at the end of the first observation day. Fifty triplets (n = 150
triplefins) were tested, 25 per orientation.

(e) Immediate response to a scorpionfish in the field
In the preceding experiments, we concluded that recovery from
anaesthesia is completed within 2–3 h, and that shorter tanks
(50 cm) are sufficient to reveal a response. Further pilot trials
showed that individuals are more likely to move when placed
on dark sand, leading to a faster response. Based on these modi-
fications, a new paradigm was implemented in the second field
experiment (field 10 m, electronic supplementary material,
figure S1). It allowed us to carry out a complete run in a single
day, also reducing the problem of data loss due to premature
hat loss. Here, we exposed single, shaded and clear-hatted triple-
fins to a shaded scorpionfish to test their immediate response in
90–100 min following release in the tank. As before, we used 10
Plexiglass tanks, five with triplefins facing north, another five
facing south. Tank layout was identical (figure 1), but smaller,
with 50 × 25 cm2 for the triplefins and 12 × 25 cm2 for the scor-
pionfish (electronic supplementary material, figure S1). To
improve diving safety and standardize field conditions, tanks
were mounted on stable floats 1.5 m above the seagrass at 10 m
depth. The triplefins now moved on dark sand and we used
black side covers to block their view to the outside, creating a
slightly darker, more natural environment than the bright con-
ditions of the previous field experiment. Triplefins were added
at the 25 cm mark and its first position was determined approxi-
mately 1 min after release. Once a triplefin had been released in
each tank, all tanks were visited another three times. After an
approximately 30 min surface interval, the divers went back to
collect another three data points before collecting all fish. This
resulted in distance estimates for seven time points up to
100 min after initial release. Eight cohorts of 10 triplefins were
observed, 38 shaded and 42 clear-hatted. Using controlled ran-
domization, treatments were equally distributed across cohort,
tank ID and orientation.

( f ) Statistical analysis
(i) Repeatability analysis
In all experiments, distance measurements were not blind for hat
treatment. However, room for error was limited as we did not
interpret a behaviour, but noted the position of the head of a
fish relative to a ruler placed alongside the tank. In the laboratory,
observer, fish and ruler were close to each other and easy to align
for virtually error-free measurements at the ±1 cm scale. In the
field, a SCUBA diver was hovering above the tank and used
rulers on both long sides for head alignment to determine fish
position. To test repeatability in the field, both divers who col-
lected the data (MS, UKH) determined 116 distances of triplefins
in the first field experiment. Using the R package rptR [28], data-
type Gaussian and 1000 permutations, the repeatability estimate
was R = 0.995 (likelihood ratio test: p < 0.0001).

(ii) Statistical model choice and pooling of controls
Distance from the display compartment was the response vari-
able in two linear and one generalized linear mixed models
(GLMMs) generated with the lme4 package [29] and glmmTMB
package [30] for R v. 3.4.3. [31]. For the first two experiments, we
first compared the two control treatments (sham and clear hat) to
verify that carrying a hat did not affect behaviour, and to confirm
their ability to distinguish a cryptic predator from a stone (see
Results and electronic supplementary material, tables S1–S2).
In the first field experiment, hat loss resulted in a considerable
drop in sample size: only 22 out of the 50 triplets tested remained
intact. To recover some of the lost data points, we used the simi-
larity between clear-hatted and sham controls to average their
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responses. This ‘control average’ was then used for the compari-
son with the shaded treatment in the final models. This allowed
us to include triplets in which only the clear-hatted fish had lost
its hat and had become visually indistinguishable from the hat-
less sham treatment. This procedure did not affect the direction
of the results (see also electronic supplementary material,
figure S2), yet increased sample sizes from 13 to 24 triplets in
the north-facing field group, and from nine to 19 in the south-
facing group. This includes triplets that were complete during
the first observation day, but were excluded for the second day
because the shaded individual had lost its hat after the first
day. All this explains the variation in triplet numbers seen in
the analyses.
(iii) Predictors and transformations
For the laboratory experiment (figure 2a; electronic supplemen-
tary material, table S1), the initial fixed model component
included the main predictors stimulus (stone versus scorpion-
fish), hat treatment (no hat versus clear hat, or averaged controls
versus shaded) and their interaction. We further included the
fixed covariates time of day for each observation, stimulus order,
cohort and tank ID.

The models for the field replicate (figure 2b,c; electronic sup-
plementary material, table S2) also included the fixed factor
orientation (north or south), and its interactions with the main
predictors. Both models were implemented using a normal dis-
tribution. However, we square-root-transformed the response
variable distance to improve residual homogeneity in the analysis
of the first field experiment. The transformation of the response
variable did not cause any change in the effects of the inter-
actions between covariates. Models to compare the response of
controls versus shaded fish were calculated separately for north
versus south orientations because fish responded differently to
the scorpionfish depending on the random predictor orientation
(electronic supplementary material, table S2a).

For the third experiment (figure 3; electronic supplementary
material, table S3), the initial fixed model component included
the main predictors hat treatment (clear hat or shaded), time,
orientation, and their three-way interaction. We also included
time as a quadratic component to explain the nonlinear patterns
of the data, assessed using the gam function of the mgvc R pack-
age [32], and the covariate day, as data were collected on three
subsequent days. In this experiment, enclosures were shorter
(50 cm) and distance data, therefore, more bounded and less
normal. The response variable was transformed as proportion
(0 < x < 1) of distance obtained by dividing all distances by the
maximum length of the tank plus one (51 cm). The transformation
of the response variable did not affect the interactions between
covariates, yet allowed us to use a beta-binomial distribution,
thus improving residual homogeneity. We finally included a
first-order autoregressive (AR1) variance structure to correct for
temporal dependency in the observations of the same individuals.
See electronic supplementary material, Methods S1 for further
details on random factors and model selection.

(g) Visual modelling
To validate the results, we computed the contrast change in the
pupil of a scorpionfish as perceived by an untreated triplefin
when producing an ocular spark. We informed the model
using previously published parameters [12,13,15,22,23] sup-
plemented by additional measurements under the conditions of
the last field experiment, including the baseline radiance of scor-
pionfish pupils [12]. We limited ourselves to modelling the effect
of blue ocular sparks, which is the stronger of the two types
known from T. delaisi [13]. See electronic supplementary
material, table S4 for symbol definitions and electronic sup-
plementary material, figures S3 and S4 for a visualization
of the formulae used. Note that we express reflectance as a
proportion (not %) to facilitate calculations.

(i) Estimating scorpionfish pupil radiance with and without
ocular spark

We assumed both triplefins and scorpionfish were looking
orthogonally at one another to calculate the photon flux of the
scorpionfish pupil reaching the triplefin pupil. Using retinal
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quantum catch estimates, we calculated the chromatic contrast
[33] between the scorpionfish pupil with and without the contri-
bution of the blue ocular sparks. The achromatic contrast
between the same two conditions was estimated by calculating
the Michelson contrast using the sum of the quantum catches
of the two MWS/LWS double cone photoreceptors of T. delaisi.
For comparison, we performed the same calculations using
photon flux from the scorpionfish iris with and without the con-
tribution of an ocular spark. We parameterized the equations
using measurements of: (1) ambient light in the tanks at 10 m
depth, (2) ocular spark radiance under downwelling light con-
ditions, (3) baseline scorpionfish pupil radiance in the
experimental tanks, (4) sizes of triplefin pupil, ocular spark
and scorpionfish pupil and (5) scorpionfish iris and pupil reflec-
tance. The latter was measured in a dark room using an
ophthalmoscopic set-up [12]. In the same paper, retroreflective
eyeshine is termed ‘SAR narrow-sense eyeshine’, the retroreflec-
tive component of the stratum argenteum-reflected eyeshine. A
detailed description of how spectrometric measurements were
taken and solid angles were estimated can be found in electronic
supplementary material, methods S2.
(ii) Visual models and maximum detection distance
The receptor-noise limited model for calculation of chromatic
contrast was informed using triplefin ocular media transmission
values, photoreceptor sensitivity curves [34,35], and the relative
photoreceptor density of single to double cones of 1 : 4 : 4 as
found in the triplefin fovea [22]. We treated double cones as
two independent cones [36]. We used a Weber fraction (ω)
value of 0.05 as in previous studies [37,38]. Chromatic contrasts
are measured as just-noticeable differences (JNDs), where
values greater than 1 are considered to be larger than the mini-
mum discernible difference between two objects. We calculated
the Michelson achromatic contrast as

C ¼ (Q1 �Q2)
(Q1 þQ2)
where Q1 and Q2 are the sum of the quantum catches of the two
members of the double cones which are associatedwith the achro-
matic channel, under photon flux1 and photon flux2. Flux1 is the
sum of the photon flux into a triplefin’s eye caused by the baseline
radiance of a scorpionfish pupil and the photon flux caused by the
retroreflection of an ocular spark in the scorpionfish pupil (sum of
the equations explained in electronic supplementary material,
figures S3 and S4). Flux2 is calculated from the baseline radiance
of a scorpionfish pupil only (no ocular spark reflection, electronic
supplementary material, figure S3). Both fluxes were calculated
for each nanometre before calculating per-cone quantum catches
over a 400–700 nm range. We determined the maximum discern-
ible distance of the ocular spark radiance reflected through a
scorpionfish pupil by calculating the chromatic and achromatic
contrast at each millimetre, between 1 and 15 cm, and extracting
the first value at which the contrast was equal to or exceeded
the threshold of 1.0 JND for chromatic contrasts and 0.008 for
achromatic Michelson contrasts as measured in T. delaisi [23]
and other fish species [39]. All visual models were performed
using the R package pavo [40].
3. Results
(a) Long-term response of triplets (laboratory and first

field experiment)
After overnight acclimatization, we observed triplefins at
longer distances from the predator than from the stone, irre-
spective of hat treatment (all LMMs: stimulus p < 0.0001)
(figure 2; electronic supplementary material, figure S1 and
tables S1–S2). This effect was strongest in triplefins from the
south-facing field tanks. All this indicates that triplefins can
visually distinguish a stone from a scorpionfish independent
of light redirection. Since the response of the two control
treatments was indistinguishable (LMM: hat treatment plab =
0.373, pfield = 0.844, electronic supplementary material,
tables S1a–S2a), we averaged the distances of the controls
per triplet and observation for subsequent analyses (reason-
ing explained in Methods). Comparing the controls with
the shaded triplefins showed that the stimulus effect
depended on the hat treatment in the lab and in the north-
facing field tanks, but not in the south-facing field tanks
(LMM: hat treatment×stimulus plab = 0.017, pfield-north = 0.038,
pfield-south = 0.248, electronic supplementary material, tables
S1b–S2b-c). The significant interaction terms resulted from
shaded individuals staying significantly closer to the scor-
pionfish than the controls (LMM scorpionfish: hat treatment
plab < 0.0001, pfield-north = 0.011, electronic supplementary
material, tables S1c-S2b), while this was not the case for the
stone (LMM stone: hat treatment plab = 0.21, pfield-north = 0.097,
details not shown).

(b) Immediate response of hatted individuals to a
scorpionfish (second field experiment)

Following release in the tank, many triplefins started hopping
towards the scorpionfish, presumably attracted by the shaded
display compartment. The first distance measurement, taken
approximately 1 min after release (figure 3), showed that
clear-hatted individuals were more hesitant to come close
than shaded triplefins. Only nine (21%) clear-hatted versus
eighteen (47%) shaded individuals had come closer than
approximately 7 cm (Fisher’s exact test: odds ratio = 0.31,
95% CI = 0.10–0.88, p = 0.019). This is the distance at which
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active photolocation with unobstructed ocular sparks is pre-
dicted to function under average conditions (next section).
Following the initial approach, individuals gradually retreated
to the opposite half of the tank, but clear-hatted individuals
did so approximately 20 min earlier than shading-hatted fish
(GLMM: hat treatment p = 0.034, time p < 0.0001, hat treatment×
time p = 0.036) (electronic supplementary material, table S3).
Both treatments reached a similar distance after approximately
50 min. In contrast to the first field experiment, the random
predictor orientation had no effect, perhaps a consequence of
the lack of a long acclimation time, the shorter distance avail-
able to move away (50 cm versus 125 cm earlier), and the
shorter observation time window.

(c) Visual modelling
While ocular sparks did not generate chromatic contrast
above the discriminability threshold at any distance between
the triplefin and the scorpionfish, achromatic Michelson con-
trasts exceeded the detection thresholds across a broad range
of conditions (figure 4). For comparison, identical calcu-
lations for spark-generated contrast changes in a
scorpionfish’s iris rather than its pupil showed no perceptible
effect under any of the tested conditions (not shown). This
confirms that subocular light emission is subtle and can
only generate detectable contrasts in strong reflectors, e.g. ret-
roreflective eyes. For north-facing triplefins, the reflections
induced by an ocular spark in a scorpionfish’s pupil would
be detectable up to 6 cm under average conditions, and up
to 10 cm for higher values of ocular spark radiance and scor-
pionfish pupil retroreflectance. These distances increased by
2–3 cm for south-facing triplefins. The average detection
range of 6–8 cm coincides well with the initial approach dis-
tances in the third experiment (figure 3). Note that these are
distances to the eye of a scorpionfish. A triplefin that
approaches a scorpionfish from the side or back can be
only a few centimetres from the predator’s eye and still be
outside the striking distance of its mouth.
4. Discussion
Our results provide a first proof of concept for diurnal active
photolocation of a cryptobenthic predator. The suppression
of ocular sparks significantly reduced the distance triplefins
kept from a well-camouflaged scorpionfish in three exper-
iments. The effect was strongest in the laboratory
experiment, where the behaviour was assessed after 14 h
acclimatisation. A replicate experiment under realistic con-
ditions in the field showed more variation due to
confounding factors, but the same effect was still present in
one orientation (north), but was not in the other orientation
(south), where all treatments responded strongly to the scor-
pionfish. This suggests that predator visual detection was
easy under these conditions, and independent of the hatting
treatment. A second field experiment, where fish were given
no acclimation time, assessed the exploratory response of
individual fish to a scorpionfish immediately after they
were released into the tank, again revealing a significant
difference in the predicted direction. These experiments,
however, did not specifically test whether the scorpionfish’s
pupil was the target of detection. We, therefore, used visual
modelling and showed that an ocular spark is strong
enough to increase the achromatic contrast in a scorpionfish’s
pupil above a triplefins’s perception threshold over distances
that coincide well with the nearest approaches seen in the
third field experiment.

As has been made clear before [15], this study once more
indicates that diurnal active photolocation is not fail-proof, as
shown by the predictions from the visual modelling and by
the fact that even clear-hatted triplefins approached scorpion-
fish within ranges that may fall within the striking range of a
scorpionfish [41–43]. Diurnal active photolocation is also not
strictly required for detecting a scorpionfish, as shown by the
response of shaded triplefins to scorpionfish relative to
stones. Since communication between individuals was poss-
ible in the first two experiments, shaded fish may have
been influenced by the behaviour of their control-treated
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conspecifics. Yet, the third experiment that tested only single
individuals showed the same effects. We conclude that diur-
nal active photolocation is a mechanism that supplements a
triplefin’s ability to detect scorpionfish.

The chromatophore patch on the lower iris of the triplefin
T. delaisi on which the ocular spark is focused behaves like a
diffuse, Lambertian reflector in the equatorial plane of vision
[15]. This produces a light field that covers most of the hemi-
spherical zone over a short distance, as seen by a single eye.
In lantern and flashlight fish, subocular light organs are
also considered diffuse sources [8,44]. However, many other
fish possess silvery irides with near-specular properties.
Such reflectors are more directional, presumably allowing
specific illumination of objects over greater distances. Yet,
this property also may attract the attention of visual preda-
tors. Trade-offs like these may explain variation seen
among fish in types of ocular light redirection [13,45]. As
for the to-be-detected target, highly reflective structures
such as retroreflective eyes in predatory fish [12,18] or reflec-
tive eyecups or ommatidia in crustacean prey [13,15] are also
common and diverse. Since none of these have been studied
in this context, it is too early to speculate which combination
of observer/target reflectors and ambient conditions is likely
to function. Yet, it is clear that the building blocks required
for diurnal active photolocation are widespread. Many
species may be using it to detect their predators.

Most marine cryptobenthic predators show eye adap-
tations that modify the visual appearance of their pupils.
Stonefish (Synanceia) and frogfish (Antennarius) have small
pupils for their body size [46]. Other species have skin flaps
that cover the pupil as in shovel-nosed rays (Aptchotrema
rostrate) [1], flatheads (Platycephalidae) and stargazers (Ura-
noscopidae) or possess slit-like pupils as in some flatheads
(Thysanophrys, Platycephalidae), flounders (Bothus) and sand-
perches (Parapercis) [46]. In lionfishes (Pterois, Scorpaenidae)
the eyes are embedded in a black vertical band [46]. Other
scorpionfish (Scorpaenidae) and devil stingers (Inimicus,
Synanceidae) conceal their black pupils by a combination of
different types of eyeshine [18]. All of these traits reduce
pupil size, distort its shape, or mask its presence. Since eyes
are commonly used for face detection [47–50], modifications
like these are likely to hamper pupil detection [51]. At least
in species featuring diurnal retroreflective eyeshine (e.g.
Scorpaenidae), the above-mentioned eye adaptations of cryp-
tobenthic predators may also represent counteradaptations to
observers that use diurnal active photolocation.

Our work illustrates that the visual interactions between
cryptobenthic predators and their prey remain poorly under-
stood, presumably because direct interactions are rarely
observed in the field and take place at small spatial scales
unfamiliar and counterintuitive to humans [52,53].
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