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Abstract

The complex processes of spermatogenesis are regulated by various factors. The aim of the current
study is to determine the effect of epidermal growth factor (EGF) on spermatogonial proliferation
and clarify the mechanism causing the proliferation in newt testis. In the organ culture, EGF
stimulated spermatogonial proliferation, but not their differentiation into spermatocytes. cDNA
cloning identified 3 members of the EGF receptors, ErbBl, ErbB2, and ErbB4, in the testis. RT-PCR
showed that all the receptors cloned were expressed in both Sertoli and germ cells at the
spermatogonial stage. In the organ cultures with inhibitors for the EGF receptors, mitogen-
activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K), the EGF-induced
spermatogonial proliferation was suppressed. Furthermore, when the organ culture was exposed
to EGF, the expressions of stem cell factor (SCF), immunoglobulin-like domain containing
neuregulinl (Ig-NRGI), and ErbB4 mRNA were increased. These results suggested that, since the
spermatogonia are sequestered within cysts by the blood-testis barrier consisted of Sertoli cells,
EGF possibly mediates spermatogonial proliferation in an endocrine manner through the receptors
including ErbBI, ErbB2, and ErbB4 expressed on Sertoli cells via activation of MAPK cascade or/
and PI3K cascade by elevating the expressions of SCF, Ig-NRG|1, and ErbB4.

Background

Spermatogenesis is a complex process consisting of
sequential and highly organized steps of germ cell prolif-
eration and differentiation, resulting in the generation of
functional spermatozoa, in the testis [1]. A wide range of
hormones and growth factors regulate these processes in
an endocrine manner mainly through Sertoli cells, a kind
of somatic cells interacting directly with germ cells in the
testis, eventually [2]. Sertoli cells have essential roles in
the spermatogenic function of the testis: they produce and
secrete local factors to germ cells, and represent the only
cellular component of the blood-testis barrier [3]. In newt

testis, the germ cells are in close contact with Sertoli cells
in a cyst, the smallest unit of the testis, and the testis con-
sists of lobules in successive zones arranged along a
cephalo-caudal axis, in which spermatogenesis proceeds
synchronously [4,5]. Primary spermatogonia proliferate
through 7 mitotic divisions (the spermatogenic stage
mentioned here is largely classified into early spermatogo-
nial stages (1st — 4th generation) and late spermatogonial
stages (5 — 7th generation)), and then in the 8th genera-
tion differentiate into primary spermatocytes and initiate
meijosis. Recently, we have demonstrated with the organ
culture that the functional blood-testis barrier with size
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selectivity, allowing small molecules (~500 Da) to get into
cysts, but not larger ones (> 1.9 kDa), consists of Sertoli
cells in the testis [6].

Of all the hormones involved in spermatogenesis, follicle-
stimulating hormone (FSH) plays a determinant role in
stimulating spermatogonial proliferation and differentia-
tion in addition to increasing the survival of germ cells
[7]. The FSH effects on germ cells are mediated through
the specific receptor expressed restrictedly in Sertoli cells
[8], by which paracrine factors are necessary to be pro-
duced and secreted locally to act directly on germ cells
within the testis. In mammalian testis, it has been first
found that the receptor tyrosine kinase c-kit and its ligand
stem cell factor (SCF) are expressed in germ cells and in
Sertoli cells, respectively [9,10], and that SCF is upregu-
lated upon FSH stimulation [11]. The interaction of c-kit
and SCF is important for the maintenance and/or mitosis
of differentiating type A spermatogonia [12], defining SCF
as a paracrine factor in the regulation of spermatogenesis.

In newt testis, we have shown so far that (1) FSH stimu-
lates spermatogonial proliferation and their differentia-
tion into primary spermatocytes in the organ culture
[13,14] and in the reaggregated culture of spermatogonia
and Sertoli cells in a synthetic medium but not in culture
of spermatogonia alone [15], (2) FSH receptor is
expressed in Sertoli cells [16], and (3) the intracellular
level of cyclic AMP, a probable second messenger in FSH
signaling, is elevated in cultured Sertoli cells [17]. These
findings strengthen the idea that FSH activates Sertoli cells
that consequently produce some paracrine factors neces-
sary for triggering spermatogonial proliferation and differ-
entiation. In fact, we have identified some paracrine
factors including SCF [18], insulin-like growth factor-1
[19], and neuregulinl (Oral et al., submitted) that are
upregulated by FSH and implicated in the regulation of
spermatogonial proliferation during newt spermatogene-
sis.

Epidermal growth factor (EGF), a polypeptide comprising
53 amino acid residues, was originally isolated and puri-
fied from the submandibular glands of adult male mice
[20]. High levels of EGF are detected in the circulation
[21]. Mouse EGF is exclusively produced in and secreted
from the submandibular gland. However, it was reported
to be produced in many other tissues including testis,
where immunoreactivity for the mature type of EGF is
detected in Sertoli cells, pachytene spermatocytes, and
round spermatids, while that for the precursor type of EGF
was limited to pachytene spermatocytes and round sper-
matids [22]. In porcine testis, it is produced in Leydig cells
[23] and plays an important role in their physiology and
pathophysiology [24]. In other mammalian species, EGF
was localized in both germ cells and somatic cells stage-
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dependently [25,26]. After initiation of stage synchrony of
spermatogenesis, increased concentrations of EGF were
observed in rat testis between stages IX-II that correlated
well with mitotic division of type A spermatogonia [27].
The EGF levels in the testis were shown to correlate with
testicular mass, number of spermatozoa, and production
of haploid cells [28]. Therefore, it seems that proper EGF
expression is necessary for the completion of sperma-
togenesis [29].

EGF is well known to stimulate cell proliferation and dif-
ferentiation in a variety of tissues. In adult male mice, sub-
mandibular gland ablation caused a marked decrease in
circulating EGF levels and male fertility, without dimin-
ishing testosterone and FSH, and correlated with over a
50% decrease of epididymal spermatozoa, which was
reversed by daily administration of EGF [30]. Similar
results were also reported in rat [31]. In addition, the aver-
age concentration of EGF in blood plasma is significantly
lower in infertile males [32]. In mammalian testes, EGF
also promotes spermatogonial proliferation and modu-
lates steroidogenesis, spermiogenesis, proliferation of
Leydig cells, Sertoli cell activity in an autocrine and a para-
crine manner [23,33]. In the organ culture of cryptorchid
testis from adult mice, EGF induces differentiation of type
A spermatogonia to type B spermatogonia and primary
spermatocytes, but inhibits the mitotic and differentiating
activity stimulated by FSH [34]. EGF stimulates DNA syn-
thesis of spermatogonia in the culture of microdissected
stage I segments of rat testis seminiferous tubules [35].
Thus, EGF is probably implicated in the regulation of
mammalian spermatogenesis. However, little is known
about the mechanism of action of EGF on newt testis, that
is, whether its effects are caused by direct action on sper-
matogonia or by indirect action via somatic cells, and its
functions in newt spermatogenesis, that is, whether it can
stimulate spermatogonial proliferation and differentia-
tion.

EGF and other EGF-like peptide family members act
through the EGF receptors, ErbB family of tyrosine kinase
receptors, which consist of four members, ErbB1 (also
known as EGFR) [36], ErbB2 [37], ErbB3 [38,39], and
ErbB4 [40]. These receptors have been reported to be
involved in the regulation of proliferation and differenti-
ation in many tissues [41]. The EGF receptors are known
to form homodimers or heterodimers, and signal mainly
through mitogen-activated protein kinase (MAPK) or/and
phosphoinositide 3-kinase (PI3K) signaling pathway
[42,43]. In mammalian testis, all the members of the EGF
receptors are identified in various cell types such as germ
cells and Sertoli cells and at all spermatogenic stages, sug-
gesting that they are potentially responsive to EGF during
spermatogenesis and postnatal testis development,
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whereas their differential expressions are found in Leydig,
Sertoli, and peritubular cells [35].

In the present study, in order to determine the role of EGF
in spermatogonial proliferation and differentiation dur-
ing newt spermatogenesis, we examined whether the
addition of recombinant human (rh) EGF to the culture of
testicular fragments stimulated 5-bromo-2-deoxyuridine
(BrdU) incorporation and appearance of spermatocytes.
Next we isolated partial cDNA clones for the EGF recep-
tors, ErbB1, ErbB2, and ErbB4, from newt testis, and
examined their mRNA expressions by RT-PCR. Further-
more, we examined the effects of some inhibitors for
ErbB, PI3K, and MAPK on EGF-induced spermatogonial
proliferation to clarify the receptors and signaling path-
ways operated by EGF. Finally, in order to explore the
molecular mechanism by which spermatogonial prolifer-
ation was stimulated in response to EGF, we tested the
effect of thEGF on the gene expressions of SCF, c-kit,
neuregulinl, and ErbB family members, which are impli-
cated in spermatogonial proliferation, in the organ cul-
ture.

Methods

Animals and inhibitors

Animal experiments have been carried out under the con-
trol of the Guideline to Animal Experiment in Kumamoto
University. Adult male newts, Cynops pyrrhogaster, were
purchased from Hamamatsu Seibutsu Kyozai Ltd. (Hama-
matsu, Japan) and kept at 8 °C. Prior to be used for all the
experiments, newts were transferred to 22°C and fed fro-
zen Tubifex for 1 week. PD98059, a MAPK inhibitor, and
AG879, an ErbB2 inhibitor, were purchased from Calbio-
chem, AG1478, an EGFR inhibitor, and Wortmannin and
LY294002, PI3K inhibitors, from Sigma, and PD153035,
a pan ErbB inhibitor, from Biaffin (Kassel, Germany).

Organ culture of testicular fragments, histology, and BrdU
incorporation assay

The immature portions containing late spermatogonial
stage (5 - 7th generation) were removed from the whole
testes and cut transversely and longitudinally into several
pieces (1 - 2 mm in thickness). They were cultured on
floaters of nucleopore filters (Whatman, Cyclopore™
Track Etched Membrane) in 2 ml of Leibovitz's (L)-15
medium (70% tonicity for mammals, Gibco) supple-
mented with 10 mM HEPES/NaOH, pH 7.4, at 18°Cina
humidified incubator in the absence or presence of either
porcine FSH at 200 ng/ml (National Hormone & Peptide
Program, West Carson, CA) or thEGF (Sigma) at various
doses as indicated. The pieces were fixed in Bouin's fixa-
tive, embedded in paraffin wax, and serially sectioned at 5
pm. The sections were stained with hematoxylin and
eosin. After the fragments were cultured for 2 weeks, dif-
ferentiation of spermatogonia into primary spermatocytes
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was evaluated in the sections by histological observation

[5].

Proliferation of spermatogonia was assayed in the sec-
tions by immunohistochemical detection of BrdU incor-
porated into replicating DNA in the cells. After cultured
for 1 week, the fragments were labeled for 6 hrs by addi-
tion of BrdU and processed for immunohistochemistry
according to manufacturer's instructions (GE Healthcare).
For quantification of spermatogonial proliferation, a min-
imum of 300 - 500 cysts from at least 3 independent sec-
tions was examined for BrdU incorporation because all
the spermatogonia in a given cyst incorporate BrdU syn-
chronously into DNA during replication [44]. The fre-
quency of proliferation was expressed as a percentage
(means + SEM) of BrdU positive cysts among live ones in
3 sections obtained from 3 independent experiments.

Spermatogenic staging, and fractionation of germ cells and
somatic cells

The immature portions of testes containing early sperma-
togonial, late spermatogonial, or primary spermatocyte
stage exclusively was cut transversely into several pieces (1
-2 mm in thickness) and then each piece was cut longitu-
dinally (cephalo-caudally) into halves as described previ-
ously [45]. A half of each piece was processed for
histology, and the counterpart was used for RNA extrac-
tion followed by reverse transcription and polymerase
chain reaction (RT-PCR).

The testicular portions containing spermatogonial stage
were cut into small fragments and dissociated by incuba-
tion in 0.1% collagenase (type N-2, Nitta Zeratin Co.
Japan) for 3 hrs at room temperature and 1.5 kU/ml
DNase I (type IV, Sigma) for the last 5 min in L-15
medium followed by pipetting. The cell suspension was
washed in L-15 medium and the undissociated cell
clumps were removed by filtration through nylon gauze
(50 um). To remove dead cells, reticulocytes, and mature
sperm, the dissociated cells in L-15 medium (5 ml) were
put on 15% Nycodentz (Sigma) in L-15 medium (5 ml)
and centrifuged at 1,500 g for 10 min (HIMAC CT5DL,
HITACHI). The layer formed at the interface between L-15
medium and Nycodentz solution containing live sperma-
togonia and somatic cells was recovered and washed in L-
15 medium. The spermatogonia and somatic cells recov-
ered were then separated by culturing on gelatin-coated
dishes overnight. The supernatants containing spermato-
gonia in the dishes were gently transferred into new gela-
tin-coated dishes and then cultured overnight to remove
contaminated Sertoli cells. Next day, the supernatant were
gently recovered and centrifuged at 1,000 rpm for 10 min,
resulting in collecting spermatogonia. On the other hand,
Sertoli cells attached on the dishes were kept culturing at
25°C in L-15 medium supplemented with 10% fetal
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bovine serum for 10 days and 1 month to remove contam-
inated spermatogonia thoroughly. Spermatogonial and
Sertoli cell fraction, each of which purity was higher than
90%, were processed for RT-PCR.

cDNA cloning and RT-PCR

The cDNA clones encoding ErbB1, ErbB2, and ErbB4 in
newt testis were isolated by RT-PCR. Total RNA was
extracted from the immature portions containing sperma-
togonial stage of the testes, which had been homogenized
in ISOGEN (Nippon Gene) using a Dounce homogenizer,
and cDNA was reverse transcribed with oligo-d(T) primers
by a reverse transcriptase Superscript III (Invitrogen), as
described previously [46]. PCR was performed by ExTaq
polymerase (Takara) or Go Taq polymerase (TOYOBO) in
the condition for 45 cycles at 95°C for 0.5 min, 55°C for
0.5 min, and 72°C for 1 min using reverse transcribed
cDNA as a template with a sense and an antisense primer
that were designed on the basis of the nucleotide
sequences of ErbB1, ErbB2, and ErbB4 from human,
mouse, and rat in NCBI database, respectively, as follows:
ErbB1, 5'-CCA CGA GCA CAA GGA TAA CA-3' and 5'-
CAC TCC AGA GCC ATC CAT TT-3"; ErbB2, 5'-ATG TCC
GGG AAC ACA AAG AC-3' and 5'-GAT TCC AAT GCC
ATC CAC TT-3; ErbB4, 5'-CTG CAC GAG ACT AGT GAG
AC-3' and 5'-TGT GCG CAG GAA CAG AGA AC-3'. Each
of the amplified DNA fragments was inserted into
pT7Blue vector (Novagen). The nucleotide sequence was
completely determined using an Applied Biosystems
model 310 automated DNA sequencer.

Expressions of mRNA for SCF, c-kit, 3 members of the EGF
receptor, ErbB1, ErbB2, and ErbB4, and 2 isoforms of
neuregulinl, Ig-NRG1 and CRD-NRG]1, at the early sper-
matogonial, late spermatogonial, and spermatocyte stage,
and in the spermatogonia and Sertoli cells were analyzed
by RT-PCR. Total RNA was extracted from the testicular
portions containing the respective spermatogenic stage
and the testicular cells fractionated, and cDNA was reverse
transcribed with random hexamers. PCR was performed
in the condition for cycle numbers as indicated at 95°C
for 30 sec, 53°C for ErbB1, ErbB2, and ErbB4, and 55°C
for SCF, c-kit, EF-1a, Ig-NRG1, and CRD-NRGI1 for 30 -
60 sec, and 72°C for 60 sec with a sense and an antisense
primer specific for each of cDNA clones isolated from
newt as follows: ErbB1, 5'-GCC AAC AAG GAA ATT CTG
GA-3' and 5'-CCC TIT GCA ATC TGA ACA CA-3'; ErbB2,
5'-TCA CAG GAC CTG CTC AAC TG-3' and 5'-GTC GAG
CGA GTC CAA AGT CT-3'; ErbB4, 5'-TTG GTG TGT CCC
AGA TAG CC-3' and 5'-GCG CTG TAC TCC TTC TCG TC-
3'; SCF, 5'-GTG TAA CIT TCG GAA ATC CAT GCG G-3'
and 5'-ACT TCT TCG GGA CAA ACT GAC CCT C-3'; c-kit,
5'-CTC ACT CGT GGA CGC ATT ACA AAG A-3' and 5'-
TTC CAT ATG ACC AGA CAT CGCTCT C-3'; Ig-NRG1, 5'-
GCT GGT GCT GAA GTG TCA AG-3'and 5'-GTG CAT CTIT
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GCT CCA GTG AA-3'; CRD-NRGI, 5'-CCT TTA TAC TGA
CAC AGC TCC-3' and 5'-GGT GTC ACC CCT TIT GGT
TG-3'; EF-10, 5'-AGC CCT AGA CTC AAT CAT CC-3' and
5'-ATC CAA CAC AGG AGC GTATC-3".

Statistics
Data were obtained as the means + SEM from at least 3
independent experiments.

For statistical comparison, Student't t test was used. Prob-
ability (P) values less than 0.05 were considered to be sta-
tistically significant.

Results

Effect of EGF on the proliferation and differentiation of
spermatogonia in the testis

To examine whether EGF is able to stimulate the prolifer-
ation of spermatogonia dose-dependently in an endo-
crine manner in the testis, the testicular fragments
containing only spermatogonial stage were cultured for 1
week in the absence or presence of FSH or EGF and sub-
jected to BrdU incorporation assay. As shown in Fig. 1A
and 1B, EGF increased the incorporation of BrdU into
spermatogonia in a dose-dependent manner, with signifi-
cant stimulation achieved at the doses of 1000 and 4000
ng/ml. The effect was compatible with that of FSH at 200
ng/ml. Thus, EGF stimulated spermatogonial prolifera-
tion in the testis. On the other hand, unlike FSH, EGF
could not induce proliferation of Sertoli cells in the sper-
matogonial stages (data not shown).

To test whether EGF is able to stimulate the differentiation
of spermatogonia into primary spermatocytes in the testis,
the organs containing spermatogonial stage were cultured
for 2 weeks in the absence or presence of FSH or EGF and
observed for appearance of primary spermatocytes. As
shown in Fig. 1C, in contrast to FSH (200 ng/ml), EGF
could not stimulate the appearance of spermatocytes at
4000 ng/ml. Rather, dead cells were detected in the area of
the testis containing the 7th generation of spermatogonia
treated with EGF as well as the control, but not with FSH.
Thus, EGF seemed not to stimulate spermatogonial differ-
entiation into primary spermatocytes in the testis.

Cloning of EGF receptors in the testis

To clarify how EGF stimulated proliferation of the sper-
matogonia, we first cloned the cDNA for EGF receptors
from the testis by RT-PCR using total RNA prepared from
testes containing spermatogonial stage. ErbB1 (also
known as EGFR) comprises homodimer by itself and het-
erodimer with ErbB2, ErbB3, and ErbB4 to mediate the
signals [41]. Therefore, PCR cloning was performed for
these receptors and EGF from newt testis on the basis of
the homology to the nucleotide sequences of those that
have been previously isolated from other species. The par-
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Effect of EGF on spermatogonial proliferation and their dif-
ferentiation to primary spermatocytes. (A and B) Stimulatory
effect of EGF on spermatogonial proliferation. Testicular
fragments containing speramatogonial stage were cultured
for | week in the absence or presence of either FSH or vari-
ous doses of EGF indicated. (A) Immunohistochemistry for
BrdU incorporation in the sections of the fragments treated
without (Control) or with either FSH or EGF. (B) Spermato-
gonial proliferation was determined by counting BrdU posi-
tive cysts among live ones in at least 3 sections. *, P < 0.05.
(C) No effect of EGF on spermatogonial differentiation. Tes-
ticular fragments containing spermatogonial stage were cul-
tured for 2 weeks in the absence (Control) or presence of
either FSH or EGF, followed by staining with hematoxylin/
eosin. Primary spermatocytes are surrounded by black
dashes.

tial cDNA clones containing the highly conserved tyrosine
kinase domain of ErbB1, ErbB2, and ErbB4 were isolated,
and their predicted amino acid sequences exhibited
approximately 92%, 90~96, and 97% identity with those
of Xenopus laevis and mammals, respectively (Fig. 2A, B,
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and 2C). In this study, however, we have been unable to
clone ErbB3 and EGF cDNA from the testis.

Expression of the EGF receptors in the testis

To investigate the relevance of temporal and spatial
expressions of the EGF receptors identified from the testis
with spermatogonial proliferation induced by EGF, we
examined the expressions of ErbB1, ErbB2, and ErbB4 in
the spermatogenic stages and cell types by RT-PCR. Total
RNA extracted from testes containing early spermatogo-
nial (1st - 4th generation), late spermatogonial (5 - 7th
generation), and primary spermatocyte stages was reverse
transcribed with random hexamers, and then analyzed by
PCR using primers specific for the respective ErbB. The
transcripts for all the receptors were present in all the
stages examined (Fig. 3A). Both ErbB1 and ErbB2 tran-
scripts appeared less in the spermatogonial stages than in
the spermatocyte stage (Fig. 3B, upper and middle pan-
els). On the other hand, ErbB4 mRNA appeared more
abundant in the spermatogonial stages than in the sper-
matocyte stage (Fig. 3B, lower panel).

Testes containing spermatogonial stage were dissociated
by collagenase and fractionated into spermatogonia and
Sertoli cells by differential adhesiveness to gelatin. Sertoli
cell fractions were cultured for long periods (e.g. 10 days
and 1 month) to reduce the spermatogonial contamina-
tions. Total RNA prepared from the cell fractions was
reverse transcribed and analyzed by PCR as described
above. The purity of Sertoli cells in the fraction was evalu-
ated by detecting the mRNA expression of SCF specific for
the cells (Fig. 3C, 5th panel). As shown in Fig. 3C, the
transcripts for all the EGF receptors cloned were expressed
in both spermatogonia and Sertoli cells.

Functional EGF receptors executed in EGF-induced
proliferation

Next, to determine which combinations of EGF receptors
participate in EGF-induced spermatogonial proliferation,
we examined the dose-dependent influences of their
inhibitors by using them in the organ culture of the testis
treated with EGF. Testes containing spermatogonial stage
were cultured for 1 week in the presence of either EGF at
4000 ng/ml or FSH at 200 ng/ml without or together with
each of ErbB inhibitors and then subjected to BrdU incor-
poration assay. As shown in Fig. 4A, EGF-dependent sper-
matogonial proliferation was suppressed by a pan ErbB
inhibitor (PD153035), which inhibits ErbB1 and ErbB4
particularly, at 0.5, 2, or 10 uM remarkably even at the
lowest dose (0.5 uM) and completely at the highest dose
(10 uM), compared with the control (0 uM). By contrast,
FSH-dependent proliferation was dose-dependently sup-
pressed by PD153035 with complete inhibition at 10 uM.
A specific ErbB2 inhibitor (AG879) inhibited EGF-
dependent proliferation more strongly than FSH-depend-
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Figure 2

ErbB1 (EGFR)

Newt 1 EATSPKANKEILDEGYVMASVDHAHVCRLLGICLSSTVQLVTQLMPFGCLLDYVREHKDN 60@

Xenopus 334 EATSPKANKEILDEAYVMASVENPYVCRLLGICLTSTVQLITQLMPFGCLLDYVRENKDN 393
Human 749 EATSPKANKEILDEAYVMASVDNPHVCRLLGICLTSTVQLITQLMPFGCLLDYVREHKDN 808
Mouse 751 EATSPKANKEILDEAYVMASVDNPHVCRLLGICLTSTVQLITQLMPYGCLLDYVREHKDN 810
Rat 750 EATSPKANKEILDEAYVMASVDNPHVCRLLGICLTSTVQLITQLMPYGCLLDYVREHKDN 809

Newt 61 IGSNHLLNWCVQIAKGMNYLEERRLVHRDLAARNVLVRTPQHVKITDFGLAKLLGADEKE 120
Xenopus 394 IGSRHLLNWCVQIAKGMNYLEERRLVHRDLAARNVLVKGPQHVKITDFGLAKLLGADEKA 453
Human 809 IGSQYLLNWCVQIAKGMNYLEDRRLVHRDLAARNVLVKTPQHVKITDFGLAKLLGAEEKE 868
Mouse 811 IGSQYLLNWCVQIAKGMNYLEDRRLVHRDLAARNVLVKTPQHVKITDFGLAKLLGAEEKE 870
Rat 810 IGSQYLLNWCVQIAKGMNYLEDRRLVHRDLAARNVLVKTPQHVKITDFGLAKLLGAEEKE 869

Newt 121 YHAEGGKVPIKWMALE 136
Xenopus 454 YHAEGGKVPIKWMALE 469
Human 869 YHAEGGKVPIKWMALE 884
Mouse 871 YHAEGGKVPIKWMALE 886

Rat 870 YHAEGGKVPIKWMALE 885
B ErbB2
Newt 1 GSQDLLNWCVQIAKGMNYLEDVRLVHRDLAARNVLVRNPNHVKITDFGLARLLDIDETEY 60

Xenopus 811 GSRDLLNWCVQIAKGMTYLEEVRLVHRDLAARNVLVKSPTHVKITDFGLARLLDVDETEY 874
Human 814 GSQDLLNWCMQIAKGMSYLEDVRLVHRDLAARNVLVKSPNHVKITDFGLARLLDIDETEY 877
GSQDLLNWCVQIAKGMSYLEEVRLVHRDLAARNVLVKSPNHVKITDFGLARLLDIDETEY 878
Rat 816 GSQDLLNWCVQIAKGMSYLEDVRLVHRDLAARNVLVKSPNHVKITDFGLARLLDIDETEY 879

Mouse 815

Newt 61
Xenopus 875
Human 878
Mouse 879

ErbB4

Newt 1
Xenopus 827
Chick 807
Human 820
Mouse 820
Rat 820
Newt ol
Xenopus 887
Chick 867
Human 880
Mouse 880
Rat 880

HADGGKVPIKWM 72

HADGGKVPIKWM 886
HADGGKVPIKWM 889
HADGGKVPIKWM 890
Rat 880 HADGGKVPIKWM 891

LLNWCVQIAKGMMYLEERRLVHRDLAARNVLVKSP SHVKITDFGLARLLEGDEKEYSADG 60
LLNWCVQIAKGMMYLEERRLVHRDLAARNVLVKSPNHVKITDFGLARLLEGDEKEYNADG 886
LLNWCVQIAKGMMYLEERRLVHRDLAARNVLVKSPNHVKITDFGLARLLEGDEKEYNADG 866
LLNWCVQIAKGMMYLEERRLVHRDLAARNVLVKSPNHVKITDFGLARLLEGDEKEYNADG 879
LLNWCVQIAKGMMYLEERRLVHRDLAARNVLVKSPNHVKITDFGLARLLEGDEKEYNADG 879
LLNWCVQIAKGMMYLEERRLVHRDLAARNVLVKSPNHVKITDFGLARLLEGDEKEYNADG 879

GKMPIKWMALE
GKMPIKWMALE
GKMPIKWMALE
GKMPIKWMALE
GKMPIKWMALE
GKMPIKWMALE

71

897
877
890
890
890
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Cloning of the receptors for EGF. The deduced amino acid sequences of ErbBI (A), ErbB2 (B), and ErbB4 (C), whose partial
cDNA clones were isolated from newt testis containing spermatogonial stage by RT-PCR, were aligned with those from mam-
mals and Xenopus laevis. The residue numbers are shown at the both sides. The positions where the amino acid residues of
ErbBl, ErbB2, and ErbB4 are identical and distinct among species are indicated in black and shaded letters, respectively.
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Figure 3

Expressions of mRNA for ErBl, ErbB2, and ErbB4 in various spermatogenic stages and testicular cell types. The expressions of
ErbBl (200 bp), ErbB2 (150 bp), and ErbB4 (150 bp) were analyzed by semi-quantitative RT-PCR. Total RNA was extracted
from the testes containing early spermatogonial (Ist — 4th generation), late spermatogonial (5th — 7th generation), and primary
spermatocyte stages (A and B), and from the fractionated spermatogonia and Sertoli cells, the latter of which were cultured for
10 days and | month (C). The cycle numbers in PCR were 35 (A) and 33 (B), and 35 for ErbB| and ErbB2 and 40 for ErbB4
(C). Elongation factor-1a (EF-1a, 550 bp, 25 cycles) is the internal control. SCF is a Sertoli cell-specific marker. Data are rep-
resentative of at least 3 independent experiments.
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Figure 4

Dose-dependent effects of inhibitors for ErbB on EGF-stimulated spermatogonial proliferation. Testicular fragments containing
spermatogonial stage treated without (0) or with various doses of pan ErbB4 inhibitor (PD153035) (A), an ErbB2-specific inhib-
itor (AG879) (B), or an ErbB|-specific inhibitor (AG1478) (C) were cultured for | week in the absence (Control) or presence
of either FSH (200 ng/pl) or EGF (4000 ng/pl), followed by BrdU incorporation assay. *, P < 0.05; **, P < 0.01.
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ent proliferation at the both doses of 0.5 and 2 uM (Fig.
4B). For a specific ErbB1 inhibitor (AG1478), its inhibi-
tory effects on EGF- and FSH-dependent proliferation
were almost the same at the both doses of 1 and 10 uM
(Fig. 4C).

Functional intracellular signaling pathways executed in
EGF-induced proliferation

Furthermore, to identify intracellular signal transduction
pathways implicated in EGF-induced spermatogonial pro-
liferation, we tested the dose-dependent influences of the
inhibitors for MAPK and PI3K in the organ culture of the
testis treated with EGF. It is reported that MAPK and PI3K
cascades function downstream of EGF signaling [42,43].
Testes containing spermatogonial stage were cultured for
1 week in the presence of either EGF at 4000 ng/ml or FSH
at 200 ng/ml without or together with a MAPK inhibitor
(PD98059) and PI3K inhibitors (Wortmannin and
LY294002) at 0.5, 2, or 10 uM and then subjected to BrdU
incorporation assay. As shown in Fig. 5A and 5B, EGF- as
well as FSH-dependent spermatogonial proliferation were
lowered by a half in the presence of PD98059 and Wort-
mannin relative to the control (0 pM). LY294002 barely
suppressed either of EGF- and FSH-dependent prolifera-
tion (Fig. 5C).

Effect of EGF on the expressions of mRNA for neuregulin|,
ErbB family members, SCF, and c-kit

To explore the molecular mechanism by which spermato-
gonial proliferation was stimulated by EGF signaling, we
analyzed changes in the expression of the EGF receptors,
their ligands Immunoglobulin-like domain containing
neuregulinl (Ig-NRG1) and cysteine-rich domain con-
taining neuregulinl (CRD-NRGI1), c-kit, and its ligand
SCF in the organ cultures of the testes treated with EGF by
RT-PCR. It has been reported in mammalian [11,12] and
newt testis (Abe et al., in preparation) that SCF is upregu-
lated in Sertoli cells by FSH and enhances spermatogonial
proliferation via c-kit. Both Ig-NRG1 and CRD-NRG1
belong to EGF-like peptide family. Recently, Ig-NRG1 has
been shown to be upregulated in Sertoli cells in response
to FSH and stimulate spermatogonial proliferation in
newt tesits (Oral et al., submitted). Testes containing sper-
matogonial stage were cultured for 1 week in the absence
or presence of EGF or FSH and used for total RNA extrac-
tion. Interestingly, RT-PCR analyses showed that the
expression of ErbB4 mRNA was clearly promoted by only
EGF (Fig. 6, 3rd panel), and that of SCF mRNA was signif-
icantly promoted by not only FSH but also EGF (Fig. 6,
4th panel). In addition, Ig-NRG1, but not CRD-NRG1,
was more drastically upregulated by EGF than by FSH
(Fig. 6, 7th panel). The expressions of other genes exam-
ined remained unchanged in the testes treated with FSH
and EGF compared to the control.

http://www.rbej.com/content/6/1/7

Discussion

In this study, EGF has been shown to stimulate spermato-
gonial proliferation, but not their differentiation into
spermatocytes, in newt testis harboring germ cells
enclosed in cysts with the blood-testis barrier consisting of
Sertoli cells. This result was consistent with that in mam-
malian spermatogonia [27,34,35], suggesting that the
stimulatory effect of EGF on spermatogonial proliferation
was highly conserved beyond species. However, unlike
mouse spermatogonia, which are located outside of the
blood-testis barrier, newt spermatogonia are enclosed by
Sertoli cells and located inside of the blood-testis barrier,
so that EGF could not act on spermatogonia directly like
an endocrine manner. In addition, EGF seemed not to
stimulate Sertoli cell proliferation (data not shown),
regardless of requirement for Sertoli cells in EGF-induced
spermatogonial proliferation. These findings suggested
that EGF could function as an indirect trigger specific for
spermatogonial proliferation by altering gene expression
for some direct stimulators locally within the cysts. There-
fore, EGF may be defined as an additional endocrine fac-
tor, which could regulate spermatogonial proliferation in
concert with endocrine factors like FSH [13-15], in newt
testis.

Conversely, when the organ culture of mammalian testes,
in which spermatogonia have a potential to be the direct
target for endocrine factors, is exposed to added factors, it
is unclear whether the factors stimulate spermatogonial
proliferation directly in a paracrine manner or indirectly
via somatic cells including Sertoli cells in an endocrine
manner [23,33-35]. Thus, the mechanism of action of
hormones and growth factors on spermatogonia
remained incompletely understood in the testis of newt as
well as of other species. Their endocrine effects could be
investigated with newt testis, in which spermatogonia
should never be the direct target for endocrine factors.
Therefore, clarifying the physiological mechanism of
action and function of EGF in such an organism seems
linked to elucidating its endocrine function in unamni-
otes.

The present analyses by RT-PCR show that the EGF recep-
tors, ErbB1, ErbB2, and ErbB4, are localized in Sertoli cells
as well as spermatogonia at the spermatogonial and sper-
matocyte stages examined, indicating that the receptors
expressed in Sertoli cells are initially responsive to EGF
because it (molecular weight of approximately 6 kDa)
very probably can not penetrate into cysts to act on sper-
matogonia due to the existence of the blood-testis barrier
[6]. Thus, the expression patterns for the EGF receptors
could be enough to explain the mechanism of action on
Sertoli cells in an endocrine manner. Further evidence for
the initial site of action on Sertoli cells of EGF was pro-
vided by using ErbB inhibitors as described below.
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Figure 5

Dose-dependent effects of inhibitors for MAPK and PI3K on EGF-stimulated spermatogonial proliferation. Testicular fragments
containing spermatogonial stage treated without (0) or with various doses of a MAPK-specific inhibitor (PD98059) (A) or
PI3K-specific inhibitors (Wortmannin (B) and LY294002 (C)), were cultured for | week in the absence (Control) or presence
of either FSH (200 ng/pl) or EGF (4000 ng/pl), followed by BrdU incorporation assay. *, P < 0.05; **, P < 0.01.
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Figure 6

Effects of EGF on mRNA expressions for the EGF receptors,
SCF, c-kit and neuregulin|. Total RNA was extracted from
the testicular fragments containing spermatogonial stage cul-
tured for | week in the absence (Control) or presence of
either EGF (4000 ng/ul) or FSH (200 ng/ul), and analyzed by
RT-PCR for expressions of ErbBl (200 bp, 35 cycles), ErbB2
(150 bp, 35 cycles), ErbB4 (150 bp, 35 cycles), SCF (390 bp,
33 cycles), c-kit (200 bp, 40 cycles), CRD-NRGI (300 bp, 45
cycles), and Ig-NRGI (450 bp, 45 cycles). EF-1a (550 bp, 25
cycles) is the internal control.

We examined how the stimulatory action of EGF on sper-
matogonial proliferation is caused using inhibitors for the
EGF receptors, and MAPK and PI3K. An inhibitor specific
for ErtbB1, AG1478, suppressed spermatogonial prolifera-
tion induced by EGF. A similar suppressive effect was seen
with an inhibitor specific for ErbB2, AG879, and an inhib-
itor for ErbB1 and ErbB4, PD153035. Considering the
general combinations of the EGF receptors, ErbB1 is
thought to form homodimer by itself and heterodimer
with ErbB2 and ErbB4 to signal EGF in Sertoli cells, result-
ing in stimulating spermatogonial proliferation.

EGF-stimulated proliferation was suppressed by each of
MAPK inhibitor PD98059 and PI3K inhibitors Wortman-
nin and LY294002. MAPK and PI3K may be expressed
ubiquitously in various cells and are well known to play

http://www.rbej.com/content/6/1/7

important roles in the intracellular signaling. These results
suggested both kinase cascades function downstream of
the EGF receptors in a concert or/and independent man-
ner. However, we can not rule out a possibility that these
inhibitors used here are probably able to penetrate the
blood-testis barrier into cysts to inhibit the activity of EGF
receptors, MAPK, and PI3K, which are localized not only
in Sertoli cells but also in spermatogonia, because their
molecular weights are less than 500 Da [6]. In such a view,
we could believe that the inhibitors for the EGF receptors
also suppressed spermatogonial proliferation induced by
FSH. Since FSH receptor is expressed only in Sertoli cells,
FSH can not stimulate the proliferation directly, support-
ing the existence of some ligands (EGF-like peptides) for
the EGF receptors such as Ig-NRG1 mediating the prolifer-
ation stimulating action of FSH that are produced and
secreted in Sertoli cells and subsequently triggers the sper-
matogonial proliferation within the cysts (Oral et al., sub-
mitted). The dose responses of suppression in the
spermatogonial proliferation induced by EGF to all of the
inhibitors for the EGF receptors were slightly stronger
than that induced by FSH, suggesting that low doses of the
inhibitors are enough to suppress EGF-mediated activity
of the EGF receptor in Sertoli cells, but their high doses are
necessary to FSH-mediated activity of the EGF receptor in
spermatogonia. Anyway, since the EGF receptors are
expressed at least in both spermatogonia and Sertoli cells,
the inhibitors seemed to block the signaling within the
both cell types, consequently inhibiting EGF-dependent
spermatogonial proliferation.

For the molecular mechanism stimulating spermatogo-
nial proliferation by EGF, we can easily imagine an idea
that Sertoli cells express and secrete some factors locally in
response to EGF, and they act on germ cells directly in
newt testis. Surprisingly, our data demonstrated first that
EGF upregulated the transcripts of SCF, Ig-NRG1, and
ErbB4. It is known that SCF is a growth factor for sperma-
togonia and expressed in Sertoli cells, and its expression is
promoted by FSH in mammalian [12] and newt testis
(Abe et al., in preparation). Recently, we have shown that
Ig-NRG1 expressed in Sertoli cells is upregulated by FSH
and mediates FSH-stimulated spermatogonial prolifera-
tion within the cysts (Oral et al., submitted). Thus, EGF
was shown to mimic, in part, FSH effects on enhanced
SCF and Ig-NRG1 expressions and stimulated spermato-
gonial proliferation potentially, but not on stimulated
proliferation of Sertoli cells and other somatic cells,
though this biological significance is not understood at
all. Therefore, SCF and Ig-NRG1 whose expressions are
enhanced in Sertoli cells in response to EGF may be
secreted from Sertoli cells locally and then act on germ
cells directly to stimulate spermatogonial proliferation in
newt testis. Furthermore, EGF increased the ErbB4 expres-
sion, but in which testicular cell type this event occurs
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remains unknown. If an increase in ErbB4 expression
occurs in spermatogonia, their responsibility to the lig-
ands (EGF-like peptides) for ErbB4 that are secreted from
testicular cells including Sertoli cells might be enhanced,
leading to activating the signaling pathways downstream
of ErbB4 and then stimulating spermatogonial prolifera-
tion more efficiently. On the other hand, if an increase in
ErbB4 expression occurs in Sertoli cells and other somatic
cells in newt testis, like mammalian testis where the EGF
receptors are also found in Leydig, Sertoli, and peritubular
cells [35], they might be highly responsive to the ligands
for the EGF receptors and secrete different kinds of such
ligands, leading to stimulating spermatogonial prolifera-
tion consequently. Now we are under investigation about
in which cell types the expression of ErbB4 is promoted
after EGF stimulation.

Conclusion

The effect of EGF on spermatogonial proliferation was
investigated in the organ culture of newt testis, indicating
that it is potentially responsive to EGF in an endocrine
manner during spermatogenesis. However, in the testis,
endocrine factors are unable to act on germ cells but on
somatic cells directly by the existence of the blood-testis
barrier [6]. Therefore, we aimed to clarify the mechanism
of action of EGF on spermatogonial proliferation. The
present study identified the functional receptors, ErbB1,
ErbB2, and ErbB4, and intracellular signaling pathways,
MAPK cascade and PI3K cascade, in EGF-mediated sper-
matogonial proliferation. Subsequently, we aimed to
explore the mechanism causing the proliferation. This
study presents first data that expressions of SCF and Ig-
NRG1 are enhanced by EGF as well as by FSH, and that of
ErbB4 is enhanced by EGF but not by FSH, in the testis.
These data suggest that the EGF-stimulated spermatogo-
nial proliferation is in part mediated by elevating the
expression of SCF and Ig-NRG1 via the EGF receptors in
Sertoli cells.
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