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Abstract. Chloride ion efflux is an early event occur- 
ring after exposure of neutrophilic polymorphonuclear 
leukocytes (PMN) in suspension to several agonists, in- 
cluding cytokines such as tumor necrosis factor-a 
(TNF) and granulocyte/macrophage-colony stimulating 
factor (Shimizu, Y., R.H. Daniels, M,A. Elmore, M.J. 
Finnen, M.E. Hill, and J.M. Lackie. 1993. Biochem. 
Pharmacol. 9:1743-1751). We have studied TNF- 
induced C1- movements in PMN residing on fibronec- 
tin (FN) (FN-PMN) and their relationships to adher- 
ence, spreading, and activation of the respiratory burst. 
Occupancy of the TNF-R55 and engagement of [32 inte- 
grins cosignaled for an early, marked, and prolonged 
C1- efflux that was accompanied by a fall in intracellu- 
lar chloride levels (Cl-i). A possible causal relationship 

between CI- efflux, adherence, and respiratory burst 
was first suggested by kinetic studies, showing that 
TNF-induced CI- efflux preceded both the adhesive 
and metabolic response, and was then confirmed by in- 
hibition of all three responses by pretreating PMN with 
inhibitors of CI- efflux, such as ethacrynic acid. More- 
over, CI- efflux induced by means other than TNF 
treatment, i.e., by using Cl--free media, was followed 
by increased adherence, spreading, and metabolic acti- 
vation, thus mimicking TNF effects. These studies pro- 
vide the first evidence that a drastic decrease of CI- i in 
FN-PMN may represent an essential step in the cascade 
of events leading to activation of proadhesive mole- 
cules, reorganization of the cytoskeleton network, and 
assembly of the O2--forming NADPH oxidase. 

N 
'EtrrRoamLtC polymorphonuclear leukocytes (PMN) 1 

respond to both particulate and soluble stimuli 
with a vigorous respiratory burst. This leads to 

the release of toxic oxygen molecules that contribute to 
both the PMN microbicidal activity and the tissue inflam- 
matory damage. Among the physiologically relevant solu- 
ble stimuli, cytokines such as tumor necrosis factor-a 
(TNF), granulocyte/macrophage-colony stimulating fac- 
tor, and granulocyte-colony stimulating factor are pecu- 
liar, since they activate the respiratory burst only in PMN 
residing on biologic surfaces, e.g., on proteins of the extra- 
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1. Abbreviat ions used in this paper: 9-AC, anthracene-9-carboxylic acid; 
CHC, c~-cyano-4-hydroxy-cinnamic acid; C1-1, intracellular chloride con- 
tent; DIDS, 4,4'diisothiocyanatostilbene-2,2'-disulfonic acid; EA, ethacrynic 
acid; FBG, fibrinogen; FMLP, N-formyl-methyonil-leucyl-phenylalanine; 
FN, fibronectin; FN-PMN, PMN residing on FN-coated surfaces; G-buffer, 
glucuronate-containing buffer; MA, o-[(3-hydroxymercuri-2-methoxy- 
propyl)carbamoyl] phenoxyacetic acid; Oz-, superoxide anion; PMN, neu- 
trophilic polymorphonuclear leukocytes; s-PMN, PMN in suspension; poly 
(HEMA), poly(2-hydroxyethyl methacrylate); TNF, tumor necrosis fac- 
tor-a; TNF-R, TNF receptor. 

cellular matrix immobilized on a solid support, but not in 
PMN in suspension (34, 38, 39, 40). 

TNF is the most extensively studied in this respect. It 
has been shown that PMN exposed to TNF on several bio- 
logic surfaces, e.g., FBS, fibronectin (FN), and fibrinogen 
(FBG), adhere, spread, and activate their oxidative metab- 
olism (18, 34, 37, 41). 

Several lines of evidence indicate that this series of re- 
sponses is cosignaled by ligation of TNF receptors (TNF-R), 
more specifically the 55-kD TNF-R (TNF-R55) (34), and 
binding of activated proadhesive molecules to receptors 
on the biologic substrates. CDll/CD18 (132) integrins have 
been shown to be relevant in this respect, since: (a) PMN 
of leukocyte adhesion deficiency patients, which lack 132 
integrin expression (29), fail to respond to TNF with a 
metabolic burst (38), and (b) anti-132 mAbs inhibit both 
adherence and respiratory burst of PMN exposed to TNF 
on biologic surfaces (32, 34, 37, 38). 

The relative role of TNF- and 132 integrin-derived intra- 
cellular signals has not been clearly defined. It has been 
hypothesized that engagement of the TNF receptor leads 
to a modification, often called "activation," of the 132 inte- 
grins, which results in an increased affinity for the appro- 
priate surface ligand and in an adhesive PMN response 
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(33, 34, 37, 46, 59). Once adherent, the cells would rely on 
the signaling ability of 132 integrins to initiate the process 
of spreading with the ongoing activation of the respiratory 
burst (5, 37, 39, 41). 

The nature of the intracellular signals involved in TNF- 
induced activation of PMN oxidative metabolism on bio- 
logic surfaces has been a matter of recent studies. The re- 
lease of toxic oxygen molecules by TNF-stimulated PMN 
has been shown to be independent of a pertussis toxin-sen- 
sitive GTP-binding protein (31), weakly sensitive to pro- 
tein kinase C inhibitors (31), and strongly impaired by 
drugs that interfere with the assembly of the cytoskeleton 
network (31, 34, 37, 39). Furthermore, it is not accompa- 
nied by hydrolysis of phosphoinositides nor by the release 
of arachidonic acid (31). It has been also shown that occu- 
pation of TNF receptors and engagement of CD18 (132) in- 
tegrins interact synergistically to promote a sustained fall 
in cAMP in PMN plated on FBS- or FBG-coated surfaces 
(37). This drop in cAMP is permissive for TNF-induced 
spreading and metabolic activation, since cAMP-elevating 
agents prevent both responses. Also, tyrosine phosphory- 
lation has been demonstrated to be essential for PMN spread- 
ing and metabolic activation induced by TNF, since inhibi- 
tors of tyrosine kinases prevent spreading and metabolic 
activation of these cells on FBS- and FBG-coated surfaces 
(18, 19, 32). The participation of 132 integrin--derived signals 
in mediating protein tyrosine phosphorylation is formally 
proved by the observation that TNF does not trigger this 
response in leukocyte adhesion deficiency PMN (6, 19). 

Studies on other possible intracellular signals evoked in 
PMN by TNF include the analysis of inorganic ion move- 
ments. Elevations in cytosolic free Ca 2+ levels are still a 
matter of debate. In fact, while some authors obtained evi- 
dence for TNF-induced intracellular Ca 2+ changes (44, 48), 
others did not (42, 49). Other groups demonstrated that 
TNF causes a decrease of intracellular H ÷ concentration 
that leads to cytoplasmic alkalinization (49, 64). 

Recently, attention has been focused on chloride ion 
movements in TNF-stimulated PMN (48, 49). The intra- 
cellular C1- concentration of resting PMN is unusually 
high, being fourfold higher than that predicted on the basis 
of Nernst equation (3, 51). It has been shown that TNF 
(49), as well as other soluble stimuli (36, 49), causes an el- 
flux of chloride ions from PMN in suspension, with the 
concomitant decrease of the intracellular chloride content 
(Cl-i). The relevance of such a change to effector func- 
tions of PMN, e.g., adherence, spreading, and activation of 
the metabolic burst, has not been investigated. 

In this paper, we show that TNF-stimulated PMN resid- 
ing on FN-coated surfaces (FN-PMN) exhibit a massive 
C1- efflux accompanied by a concomitant decrease of C1- i 
that precedes adhesion, spreading, and activation of the 
respiratory burst. Inhibition of CI- efflux also inhibits ad- 
hesion, spreading, and activation of the burst, whereas in- 
duction of C1- fluxes by means other than TNF treatment 
(i.e., the use of Cl--free media) also causes PMN to ad- 
here, spread, and mount a respiratory burst on FN. We 
therefore suggest that C1- efflux plays a role in the elicita- 
tion of these three functions of FN-PMN. We also show 
that the TNF-dependent cascade of C1- efflux, adhesion, 
spreading, and respiratory burst of FN-PMN is initiated by 
occupancy of the TNF-R55 receptor. 

Materials and Methods 

Reagents 
o-glucuronic acid sodium salt, o-gluconic acid sodium salt, L-glutamic 
acid sodium salt, cytochrome c (type VI, from horse heart), anthracene- 
9-carboxylic acid (9-AC), [2,3-dichloro-4-(2-methylene-butyryl)phenoxy] 
acetic acid (ethacrynic acid [EA]), (o-[(3-hydroxymercuri-2-methoxy-pro- 
pyl)carbamoyl] phenoxyacetic acid; mersalyl acid [MA]) 5-[aminosulfo- 
nyl]-4-chloro-2-[(2-furanylmethyl)amino]benzoic acid (furosemide), (3- 
[aminosulfonyl]-5-[butylamino]-4-phenoxybenzoic acid) (bumetanide), 
(ct-cyano-4-hydroxy-cinnamic acid (CHC), 4,4'-diisothiocyanatostilbene- 
2,2'-disulfonic acid (DIDS), N-formyl-methionyMeucyl-phenylalanine 
(FMLP), PMA, and Triton X-100 were obtained from Sigma Chemical 
Co. (St. Louis, MO). Cytochalasin B and 3,3',5,5'-tetramethylbenzidine 
were obtained from Serva Feinbiochemica (Heidelberg, Germany). Per- 
coll was obtained from Pharmacia (Uppsala, Sweden). Fibronectin was 
purified from human plasma by affinity chromatography on gelatin, ac- 
cording to Ruoslahti et al. (45). Human recombinant TNF, produced in 
the yeast Pichia pastoris, was obtained from Bissendorf Biochemicals 
Gmbh (Hannover, Germany). Na36C1 (sp act 14 ~Ci/g CI-) was purchased 
from Amersham Intl. (Amersham, UK). 

Antibodies 
Purified mouse IgG1 mAb htr-9 and mAb utr-1, specific for the 55-kD 
TNF receptor (TNF-R55) and the 75-kD TNF-R (TNF-R75), respectively 
(8), were a generous gift of Dr. M. Brockhaus (Hoffmann-La Roche, 
Basel, Switzerland). Purified mouse IgG2a mAb H398, directed against 
the p55 TNF-R, was prepared as previously described (20, 58) and kindly 
donated by Dr. P. Scheurich (Institute of Cell Biology and Immunology, 
University of Stuttgart, Germany). mAb 60.3, a murine IgG2a that recog- 
nizes the CD18 subunit (common 13 chain) of the CDll/CD18 antigen 
complex (4), was kindly provided by Dr. J.M. Harlan (Washington Uni- 
versity, Seattle, WA). 

PMN Isolation 
Peripheral blood anticoagulated with EDTA was obtained from blood do- 
nors or from laboratory personnel. PMN were isolated according to the 
method described by Metcalf et al. (35), with slight modifications. Briefly, 
4 ml of anticoagulated fresh blood was layered onto a discontinuous gradi- 
ent of 62 and 75% Percoll in PBS and centrifuged at 200 g for 10 min and 
then at 400 g for an additional 15 rain. The neutrophil-containing layer 
was collected at the interface between the 62 and 75% Percoll and washed 
once in Hepes buffer (145 mM NaCl, 5 mM KCI, 1 mM MgCl2, 1 mM 
CaCl2, 5 mM glucose, 5 mM Hepes buffer, pH 7.4, and 0.2% BSA) with- 
out Ca 2÷ and Mg 2+. After a 10-s hypotonique lysis of contaminating eryth- 
rocytes, isolated PMN were washed again in Ca 2÷ and Mg2+-free Hepes 
buffer and resuspended at the desired concentration in the same medium. 
The resulting cell population contained 95-97% neutrophils, 2-3 % eosin- 
ophils, and 1-2% mononuclear cells. Unless otherwise stated, CaCI 2 and 
MgCI2 were added to the cell suspension just before the start of the func- 
tional assays. 

Preparation of Surfaces 
The coating of flat-bottomed microtiter plate-wells (MaxiSorp Immuno 
microwell plates, 442404; Nunc, Roskilde, Denmark) and of 6-well tissue- 
culture plates (Multidish 6-wells, 152795; Nunc) with FN was performed 
as previously described (15). Briefly, 50 or 750 ixl of 20 Ixg/ml FN in PBS 
was deposited into replicate wells of microtiter or 6-well tissue-culture 
plates, respectively. The plates were then left at 37°C for 1 to 2 h in a hu- 
midified incubator. Just before use, the wells were washed three times 
with PBS. 

Measurements of 36Cl - Effiux from PMN in Suspension 
and Residing on FN-coated Surfaces 
PMN were preloaded with 36C1- following the method described by Sim- 
chowitz and De Weer (51). Briefly, PMN were suspended at 10-25 × 106 
cells per ml in Hepes buffer and incubated with 360- (3.0 i~Ci/ml) for 2 h 
at 37°C in a shaking water bath to equilibrate 36C1- between the intracellu- 
lar and extracellular compartment (51). For the 36C1- efflux studies, the 
cells were then washed twice with prewarmed unlabeled buffer to remove 
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the tracer and suspended in the same buffer at 2.5 × 106 cells per ml. Mea- 
surements of 36C1- efflux from PMN in suspension were performed by in- 
cubating the cells in poly(2-hydroxyethyl methacrylate) (poly[HEMA]) 
test tubes with or without 10 ng/ml TNF. At the desired times, 800-1xl ali- 
quots of the cell supension were collected from duplicate tubes and centri- 
fuged for 30 s at 12,000 g. Then, 750-V1 aliquots of the supernatants were 
withdrawn, and their radioactivity was counted by liquid scintillation 
counting in a B counter (LS6000TA; Beckman Instruments, Inc., Fuller- 
ton, CA). Measurements of 36C1- efflux from PMN residing on FN-coated 
surfaces were performed by incubating the cells in 6-well tissue-culture 
plates. 800-1~1 aliquots of PMN loaded with 36C1- were transferred to du- 
plicate wells, and the incubation was then started by adding 8 ~1 of 1 i~g/ml 
TNF (10 ng/ml final concentration). At the desired times, the incubation 
medium was collected from the wells and spun for 30 s at 12,000 g to pellet 
detached cells. 750-1~1 aliquots of the supernatants were then dispersed in 
the scintillation liquid and counted as described above. To assay the effect 
of CI- transport inhibitors, PMN were preincubated in suspension with 
the required compound for 10 min at 37°C. The percentage of efflux was 
calculated as follows: [(cpm in the supernatant of time x sample) - (cpm in 
the supernatant of time0 sample)]/[(total cpm of cell suspension) - (cpm 
of to supernatant)] × 100. 

Measurements of Intracellular 36CI- Content 
(36Cl-)t of PMN in Suspension and Residing on 
FN-coated Surfaces 
To determine the net movement of 36C1- in PMN, the changes in 36C1-i 
were measured. PMN suspended at 2.5 × 106 cells per ml in Hepes buffer 
were loaded with 36C1- as described in the previous paragraph and used 
without washing them free of the tracer. The assay with PMN in suspen- 
sion was performed by incubating the cells in poly(HEMA) test tubes. At 
the desired times, 800-t~1 aliquots of the PMN suspension were diluted in 
prewarmed PBS and exhaustively washed. After the last washing, the bot- 
tom of the tubes was cut off, and the cell pellet-associated radioactivity 
was measured as described above. Background value of 36C1- eventually 
trapped between intercellular spaces in the cell pellet was measured by 
centrifuging an aliquot of the cell suspension immediately after the addi- 
tion of Na36CI for the loading procedure. This radioactivity was found to 
account for <2% of the total radioactivity of the cell pellet after 2 h of 
loading with the tracer and, therefore, it was neglected in the calculations 
of 36C1- i. The 36C1- that remained associated to the cell pellet was ex- 
pressed as follows: (cpm in the cell pellet of timex sample)/(cpm in the cell 
pellet of t o sample) × 100. Measurements of 36Cl-i of PMN residing on FN 
were made in cells incubated in 6-well tissue-culture plates coated with FN 
as described above. On completion of the incubation, the plate was spun 
at 400 g for 10 min, and the supernatants were discarded. After exhaus- 
tively washing the wells with prewarmed PBS, the cell pellet was har- 
vested in 1% Triton X-100, and the associated radioactivity was counted 
as described above. Background value of 36C1- associated with the cells 
pelleted at the well bottom was measured with an aliquot of the cell sus- 
pension collected immediately after addition of Na36CI for the loading 
procedure. The 36C1- that remained associated to PMN was calculated as 
follows: [(cpm in the pellet of time x sample)-(background cpm)]/[(cpm in 
the pellet of time0 sample)-(background cpm)] × 100. 

Assay of 02- Production 
Production of superoxide anion (02-)  was measured by means of the su- 
peroxide dismutase-inhibitable cytochrome c reduction adapted for use in 
a microplate reader (Multiskan MCC/340; Labsystems Oy, Helsinki, Fin- 
land), as described in detail elsewhere (15). Briefly, 50 p~l of PMN suspen- 
sion (1.5 x 106 cells per ml) was added to the wells containing, in a 100-p,l 
vol, 0.12 mM cytochrome c, TNF, or other stimuli at a concentration 3.0 
times as high as the desired final concentration. Both the cell suspension 
and the plate were prewarmed for 5 rain at 37°C. At the desired times, the 
plate was read at 550 and 540 nm. The amount of reduced cytochrome c 
was calculated from the absorbance difference between 550 and 540 nm, 
using as a standard an absorbance of 0.037 OD units for 1 mmol of re- 
duced cytochrome c. 

Assay of Adherence 
Adherence assay was performed as previously described (16), with the ex- 
ception of a modification of the washing procedure to remove nonadher- 
ent PMN. Briefly, on completion of the incubation, the wells were filled 

with PBS, sealed up with strings of eight caps (cap band-8, MS22705; Mi- 
cronic, Lelystad, The Netherlands), and then the plate was centrifuged up- 
side down at 200 g for 5 min. After centrifugation, the strings were re- 
moved, the wells were flicked empty, and the quantitation of adherent 
PMN was performed by an enzymatic assay based on the measurement of 
myeloperoxidase activity (14). Unless otherwise stated, the assay of ad- 
herence was performed in the same wells as 02 - release assays after the 
last reading for O2- production was taken. 

Assessment of Cell Spreading 
2.5 × 105 PMN in 150 ixl were added to 16-mm-diam wells (NUNC, Inc., 
Naperville, IL) containing 13-mm-diam tissue-culture dishes (Thermanox; 
NUNC, Inc.) coated with FN as described above. On completion of the in- 
cubation procedures, the cells were fixed by adding an equal volume of 
1% glutaraldehyde in PBS. The dishes were then turned upside down on a 
drop of PBS and observed under phase contrast with a microscope (Leitz 
Biomed; Leica Mikroskopie & Sisteme GmbH, Wetzlar, Germany). 

Scanning Electron Microscopy 
2.5 × 105 PMN were deposited onto 13-mm-round tissue-culture dishes 
(Thermanox, NUNC, Inc.), coated with FN as described above. After in- 
cubation, nonadherent cells were removed by gently aspirating the incu- 
bation medium. The neutrophils that remained adherent to the surfaces 
were fixed with 2% glutaraldehyde, dehydrated in graded ethanols (30- 
100%), and then processed by conventional techniques for scanning EM. 

Results 

Chloride Movements in TNF-stimulated PMN 

Chloride movements in FN-PMN or in suspension (s-PMN) 
were monitored by assaying 36C1- efflux from and 36Cl-i  of 
cells preloaded with 36C1- by incubation in a 3 6 C1 - - co n -  

taining medium. To assay 36C1- e f f l u x ,  the cells were 
washed free of the hot loading medium that was replaced 
with cold medium. TNF, or the appropriate control solu- 
tion, was then added, and, at the end of the experiment, 
the 36C1- released in the extracellular compartment was 
measured. To assay 36Cl-i ,  which reflects net Cl- move- 
ments, TNF, or the appropriate control solution, was 
added to 36Cl--loaded cells maintained in the hot loading 
medium. At the end of the experiment, the cells were ex- 
haustively washed free of the radioactive buffer, and the 
c e l l - a s s o c i a t e d  36C|- was measured. The results, shown in 
Table I, were as follows: 

(a) Resting s-PMN showed a 20% 36C1- efflux after 20 
min incubation, which did not appreciably vary in the next 
20 rain. The finding that this efflux was not paralleled by 
an equivalent drop in 36Cl-i  indicates that this does not re- 
flect a net 36C1- o u t f l o w ,  but rather is a consequence of 
Cl-/C1- self-exchange. 

(b) Addition of TNF to s-PMN induced a net 36C1- ef- 
flux, as indicated by the concomitant decrease in 36C1-i by 
20 min. The loss of 36CI-i  w a s  at least in part regained af- 
terwards. 

(c) Resting FN-PMN exhibited a net 36C1- efflux, ac- 
companied by a corresponding drop in 36Cl-i ,  that was vir- 
tually complete within 20 rain. The anti-132 integrin mAb 
60.3 (10 ixg/ml final concentration), which inhibited the 
basal PMN adhesion by ~30% (18.1 -4- 2.8% adherence in 
the presence of mAb 60.3 vs 25.8 -+ 3.2% control adher- 
ence, mean +_ SEM, n = 3), had a minor inhibitory effect 
on 36C1- efflux from unstimulated FN-PMN (34.9 +- 3.8% 
36C1- efflux in the presence of mAb 60.3 vs 39.1 _+ 2.2% 
c o n t r o l  36C1- CfflUX, mean +_ SEM, n = 3). This suggests 
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Table I. Chloride Movements in PMN in Suspension (s-PMN) 
or Residing on FN-coated Surfaces (FN-PMN) 

36C1- effiux 
(percentage of release) 3~C1 i (percentage of t o) 

s-PMN FN-PMN s-PMN FN-PMN 

% % 

rest20mi n 19.9 _+ 1.6 35.8 _+ 1.5 96.7 -- 1.3 75.8 _+ 2.2 

reSh0m~n 21.0 -+ 2.3 37.8 -- 4.0 91.0 ± 1.2 66.0 ± 2.0 

TNF20min 54.4 ± 3.9 72.9 ± 1.9" 66.2 ± 2.3 26.5 ±- 3.8 

TNF40min 61.6 ± 3.0 84.5 ± 3.2* 75.3 ± 3 . 2  7.5 ± 2.8 

Loading of PMN with 36C1- was performed by incubating the cells for 2 h at 37°C 
with 3.0 ~tCi/ml Na36CI. To assay 36C1- efflux, the cells were subjected to the experi- 
mental procedures after washing them free of the tracer. To assay 36Cl-i, PMN were 
used without washing. The cells were incubated at 37°C either in suspension in poly 
(HEMA) test tubes (s-PMN) or in tissue-culture plate-wells coated with FN (FN- 
PMN). To measure 36C1 effiux, aliquots of the supematants were collected at stated 
times from both the tubes and the wells and counted for radioactivity. Changes in 
36C1-i in s-PMN and in FN-PMN were estimated by counting the cell pellet-associ- 
ated radioactivity after the washing steps. Data are expressed as described in detail in 
Materials and Methods and represent the means -+ SEM of three to five experiments 
(in duplicate). 
* The differences between TNF-stimulated 36C1- eff]ux of s-PMN and FN-PMN at 20 
and 40 min were statistically significant (P < 0.02), as calculated by two-tailed t test 
on paired data. 

that the 132-independent adhesion of PMN to FN is suffi- 
cient, per se, to induce a net outward C1- movement. 

(d) Addition of TNF to FN-PMN drastically increased 
b o t h  3 6 C 1 -  efflux and drop in 3 6 C l - i .  After 20 min, >70% 
of the intracellular tracer was lost. At variance with resting 
FN-PMN, this 36C1- efflux continued afterwards and 
reached N85% in the next 20 min. There was no evidence 
of a tendency to regain the lost intracellular 3 6 C 1 - ,  suggest- 
ing that adhesion to FN counteracts the chloride "regain- 
ing mechanism" operating in s-PMN. In the presence of mAb 
60.3, which inhibited by ~60% TNF-induced adherence to 
FN (25.8 --+ 4.3% vs 62.8 + 3.7% adherence, mean __+ SEM, 
n = 3), the chloride efflux was markedly inhibited (49.8 _+ 
3.5% vs 81.9 --- 4.5% 3 6 C 1 -  efflux, mean _ SEM, n = 3) 
and brought back to values similar to those observed in 
TNF-treated s-PMN. 

Findings a and b confirm previously reported data (49). 
Findings c and d are new, suggesting that basal PMN ad- 
herence to FN and, more dramatically, TNF-stimulated 
adherence are sufficient conditions to trigger C1- move- 
ments in FN-PMN. 

Interestingly, we found that two anti-TNF-R55 mAbs, 
i.e., mAb H398 and mAb htr-9, directly triggered a 3 6 C 1 -  

efflux from FN-PMN (60.5 and 59.5% after 20 min of incu- 
bation, respectively), comparable to that induced by TNF 
in the same cell population (69.5%). By contrast, an anti- 
TNF-R75 mAb, utr-1, was ineffective in this respect 
( 3 3 . 9 %  3 6 C 1 -  efflux in the presence of mAb utr-1 vs 35.5% 
3 6 C 1 -  efflux of control). These findings are in line with pre- 
viously reported data, showing that mAbs H398 and htr-9, 
but not mAb utr-1, mimic TNF-induced functional re- 
sponses of FN-PMN, such as adherence and metabolic ac- 
tivation (34), and indicating that TNF-R55 signals also for 
C1- efflux. 

Relationships between Cl- Effiux, Adherence, and 
Activation of  the Respiratory Burst in FN-PMN 

It is well established that exposure of PMN to TNF mark- 

edly enhances their adherence to immobilized FN, which 
is followed by spreading of the cells onto the surface and 
consequent activation of their oxidative metabolism (34, 
38). We addressed the problem of the possible relation- 
ships between the TNF-induced CI- efflux, described in 
the previous paragraphs, and activation of PMN adher- 
ence and oxidative metabolism, by simultaneously running 
time course experiments of the three responses. The re- 
sults are shown in Fig. 1. The time of the half-maximal re- 
sponse (MRs0) to TNF was 11 min for 3 6 C 1 -  e f f l u x  ( a ) ,  20 
min for adherence (b), and 28 min for 02-  production (c), 
indicating that CI- efflux precedes adherence, and this, in 
turn, precedes the onset of the metabolic burst. TNF- 
induced PMN spreading, paralleling the metabolic response, 
began to be well detectable by 20 min of incubation (d). 
This finding confirmed previously reported data (39) and, 
in addition, indicated that spreading, like adherence and 
respiratory burst, is subsequent to the full activation of C1- 
efflux. 

Chloride efflux preceded the onset of the other two re- 
sponses even in unstimulated PMN. In fact, an appreciable 
release of 3 6 C 1 -  w a s  evident after 5 min of incubation, 
when adherence and 02-  production were hardly detect- 
able. 

Effect o f  Cl- Transport lnhibitors on 
TNF-induced C1- Effiux, Adherence, and Metabolic 
Activation of  FN-PMN 

The results reported in the previous paragraph raised the 
possibility of a causal relationship between CI- efflux and 
PMN adherence and metabolic activation on FN-coated 
surfaces. Such a possibility was tackled in experiments in 
which the effect on PMN adherence and activation of the 
respiratory burst of agents that may interfere with C1- ef- 
flux was investigated. Several drugs, belonging to diverse 
classes of CI- transport blockers, were tested: (a) EA and 
MA, both belonging to the phenoxyacetates family, have 
been reported to block chloride channels in rat and frog 
muscles (7); EA also inhibits ATP-dependent CI- trans- 
porters of human neutrophils (49, 51) and rat brain mi- 
crosomes (26, 50); (b) bumetanide and furosemide, both 
members of the benzoates family; bumetanide is a blocker 
of C1- secretion in the epithelial cell lines T84 (11, 12) and 
MDCK (9), and furosemide acts on the same chloride 
transport mechanisms as EA (26, 49, 50, 51); (c) 9-AC, a 
polycyclic compound, known to inhibit C1- channels in ca- 
nine tracheal epithelial cells (61), rat colonic enterocytes 
(13), and rat vascular smooth muscle cells (2); (d) DIDS, a 
member of the sulfonic acids family that blocks human 
erythrocyte anion channels (10) and chloride channels of 
mouse macrophages (43) and of the human hystiocytic cell 
line U937 (28); (e) CHC, an inhibitor of the ATP-depen- 
dent and -independent chloride transport of human neu- 
trophils (51) and of an ATP-independent CI- carrier of 
human erythrocytes (23). 

After preliminary dose-response experiments, three of 
the above mentioned drugs, i.e., bumetanide, 9-AC, and 
DIDS, proved unsuitable for subsequent experiments 
since they affected per se one or more PMN responses 
even at concentrations that were ineffective or slightly ef- 
fective on C1- efflux. In particular, 1 mM bumetanide sub- 
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Figure 1. Kinetics of 36C1- efflux, adherence, and 02 production by FN-PMN. 36C1- effiux (a) was measured as described in the legend 
to Table I. Adherence (b) and O2- production (c) were assayed with aliquots of 36Cl--loaded PMN used to measure 36C1- efflux. Both 
the cell suspensions and the plates were prewarmed at 37°C for 5 min. For assay of PMN adherence, 50 txl of PMN suspension (1.5 × 106/ 
ml) were added to FN-coated wells containing, in a 100-p~l vol, 15 ng/ml TNF (final concentration 10 ng/ml). On completion of the incuba- 
tion, nonadherent PMN were removed by centrifuging the plates upside down, and the number of adherent cells was determined by as- 
saying myeloperoxidase activity (14). The percentage of adherence was calculated using a calibration curve with known amounts of 
PMN. For assay of 02- production, 50 I~1 of PMN suspension (1.5 x 106/ml) was added to FN-coated wells containing, in a 100-1xl vol, 
0.18 mM cytochrome c (final concentration 0.12 mM) and 15 ng/ml TNF (final concentration 10 ng/ml). The plates were incubated at 
37°C and read at the stated times in an automated microplate reader. Nanomoles of 02- were calculated as detailed in Materials and 
Methods. Data represent the means of four to seven experiments (in duplicate). (Bars) SEM; not shown when smaller than the symbols. 
(Open circles) Resting PMN; (closed circles) TNF-stimulated PMN. (d) TNF-induced PMN spreading onto FN-coated surfaces. (Inset) 
Unstimulated PMN. Bar, 5 p.m. 

stantially stimulated both resting (+ 95 %) and TNF-induced 
(+ 40%) adherence, and had a minor enhancing effect (+  
15%) on TNF-induced 02 -  generation. Also, D I D S  and 
9-AC strongly stimulated (+ 50% to + 450%) resting and 
TNF-induced adherence and 02 -  production by FN-PMN 
at concentrations totally ineffective or only slightly inhibi- 
tory on C1- effiux (0.2 to 0.5 mM for D I D S  and 1 and 2 
mM for 9-AC, respectively). 

As shown in Fig. 2, the remaining compounds tested 
were found to coordinately inhibit C1- efflux (upper 
panel), adherence, and 02 -  generation (lower panel) by 
TNF-stimulated FN-PMN. The I(;50 were as follows: 2.5 
mM for CHC, 0.75 mM for MA, and 0.085 mM for EA.  
The IC50 of  furosemide could not be exactly assessed, since 
the poor  solubility of this compound hampered its use at 
concentrations >2.5 mM. At  this concentration, furo- 

semide inhibited by ~ 5 0 %  all three responses. These re- 
sults strongly indicate that, whatever the C1- transport 
mechanism involved, the effiux of this anion appears to 
play a major role in regulating adherence and 02 -  genera: 
tion of  TNF-stimulated FN-PMN. 

Due to its potency on a molar basis (~10 times as high 
as MA, ~17  times as high as furosemide, and >25 times as 
high as CHC), E A  was selected for subsequent studies. 
Fig. 3 shows that the effect of E A  on TNF-induced 36C1- 
efflux (upper panel), adherence (middle panel), and 0 2 -  
production (lower panel) was dose dependent  and that the 
pattern of inhibition was similar for the three responses. 

Adhesion is the first of  a series of sequential steps that 
lead to activation of  the respiratory burst in TNF-treated 
PMN (32, 34, 37, 38). Impairment of cell adherence, in fact, 
is invariably accompanied by inhibition of the respiratory 
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Figure 2. Effect of CI transport inhibitors on TNF-induced 
36C1-  e f f l u x ,  adherence, and 02- production of FN-PMN. Assays 
of 36C1- efflux (upper panel), adherence, and 02- production 
(lower panels) were as described in detail in the legends to Table 
I and Fig. 1, respectively. PMN were preincubated in suspension 
with control buffer or the drugs (CHC: 5 raM; furosemide: 2.5 
mM; MA: 1.5 mM; EA: 0.150 raM) for 10 min at 37°C in a shaking 
water bath, and then added to FN-coated wells. Data represent 
the means of three to seven experiments (in duplicate). (Bars) SEM. 

burst (32, 34, 37, 38). The results of Fig. 2 and 3, showing 
that E A  pretreatment of PMN inhibited both adherence 
and 02-  generation, agree with this notion and indicate 
that C1- efflux is important  for the TNF-induced adher- 
ence of PMN to FN. 

It has been recently shown that adherence, though nec- 
essary, is not sufficient for PMN to respond with a respira- 
tory burst when exposed to TNF, and that a postadhesive 
event, i.e., spreading, is also required (34, 37, 38). Since in 
our model, adhesion to FN was found not only to enhance 
but also to prolong TNF-induced C1- efflux (see Table I 
and Fig. 1), we wondered whether C1- movements,  apart 
from being involved in the initial adhesion step, could be 
relevant also in the subsequent spreading and metabolic 
activation. 

To test for this possibility, we first incubated PMN in 
suspension with TNF, to allow CI- efflux and 132 integrin 
activation to occur. Subsequently, the cells were plated in 
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Figure 3. Effect of different concentrations of EA on 36C1- efflux 
(upper panel), adherence (middle panel), and 02 - generation 
(lower panel) of TNF-stimulated FN-PMN. Assays of 36C1-  ef- 
flux, adherence, and 02- production were as described in the leg- 
ends to Table I and Fig. 1. PMN were preincubated with control 
buffer or different concentrations of EA for 10 min at 37°C in a 
shaking water bath, and then placed into FN-coated wells in the 
presence of 10 ng/ml TNF. Data represent the means of three to 
eight experiments (in duplicate). (Bars) SEM. 

EA-containing wells, to prevent any further C1- release, 
and adherence and 02 -  production were assayed. 

The results of these experiments are shown in Table II  
and Fig. 4. PMN, exposed in suspension to TNF and then 
plated in EA-containing wells, adhered to FN to the same 
extent as did TNF-stimulated PMN plated in wells in the 
absence of E A  (59.1 -+ 11.1% adherence in the presence 
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Table II. Effect of EA on Adherence and 02- Production of 
FN-PMN 

Pretreatment in Treatment in 
suspension wells Adherence O2-/106 PMN 

% nmol 

None TNF 64.7 ± 5.2 40.7 ± 6.1 

EA 100 p~M TNF 25.2 --. 8.0 4.3 ± 2.2 

TNF None 66.0 ± 8.7 38.6 - 7.1 

TNF EA 100 I~M 59.1 --- 11.1 20.1 ± 5.7* 

PMN were pretreated in suspension at 37°C for 10 min with control buffer or 100 p~M 
EA, and for 15 min with 10 ng/ml TNF. The cells were then seeded in FN-coated 
wells, and adherence and 02 production were measured after a 60-min incubation as 
described in the legend to Fig. 1. For other details, see Materials and Methods. Data 
represent the means ± SEM of five experiments (in duplicate). 
*The difference between TNF-induced 02- production by PMN treated or not in the 
wells with EA was statistically significant (P <0.015), as calculated by one-tailed t 
test on paired data. 

of EA vs 66.0 --+ 8.7% adherence in the absence of EA, 
mean - SEM, n = 5), but their respiratory burst was 
markedly lower (20.1 + 5.7 vs 38.6 ± 7.1 nmol of O2-, 
mean - SEM, n = 5; P < 0.015 by one-tailed t test on 
paired data). Scanning EM observations revealed that 
cells treated in suspension with TNF and then plated in 
EA-containing wells (Fig. 4 b) spread onto FN much less 
than did cells treated in suspension with TNF and plated 
without EA (Fig. 4 a). A quantitative evaluation of the in- 
hibitory effect of EA on TNF-induced PMN spreading on 
FN-coated surfaces was carried out by phase-contrast mi- 
croscopy examination of cells treated with different con- 
centrations of the compound. The results, shown in Table 
III, clearly demonstrated that EA inhibited PMN spread- 
ing in a dose-dependent fashion. Taken altogether, these 
results suggest that CI- efflux, besides adherence, may 
regulate both spreading and metabolic activation of TNF- 
treated FN-PMN and further support the current view that 
spreading, rather than a mere adhesion, is essential for the 
metabolic activation of these cells (18, 37, 41). 

A possible toxic effect of EA on PMN was ruled out on 
the basis of experiments, not reported here in detail, dem- 
onstrating that (a) PMN treated with 50 to 250 I~M EA 
were >95 % viable, as judged by the Trypan blue exclusion 
test; (b) the inhibitory effect of EA was reversible, since 
PMN treated for 10 min with 100 or 150 IxM EA, washed 
twice and tested for adherence and 02-  production on FN, 
responded to TNF to the same extent as did untreated 
PMN; (c) s-PMN pretreated with 100 or 150 ixM EA re- 
sponded to either the chemotactic peptide FMLP (10 -7 M) 

Table IlL Effect of Different Concentrations of EA on 
TNF-induced Spreading of PMN on FN-coated Surfaces 

[EA] Spread PMN Not spread PMN 

p.M % % 

-- 79.6 --+ 5.2 20.4 ----- 2.1 

50 63.9 ± 3.3 36.1 -- 3.3 

75 39.4 ± 3.0 60.6 ± 4.1 

100 18.6 ± 1.5 81.4 ± 3.8 

150 10.6 ± 0.8 89.4 ± 2.4 

Assay conditions were as described in the legend to Fig. 3. For other experimental de- 
tails, see Materials and Methods. Data are the means ± SEM of three to five determi- 
nations carried out by examining a corresponding number of randomly chosen micro- 
scopic fields. At least 300 cells per experimental condition were scored. 

or PMA (20 ng/ml) with a respiratory burst strictly compa- 
rable to that of untreated PMN (30.1 and 29.0 nmol of 02-  
of FMLP-stimulated PMN treated with 100 and 150 IxM 
EA, respectively, vs 26.8 nmol of 02-  of untreated cells; 
180.1 and 176.9 nmol of 02-  of PMA-stimulated PMN 
treated with 100 and 150 IxM EA, respectively, vs 166.9 
nmol of 02-  of untreated cells). 

Unstimulated P MN  Suspended in Cl--free Medium 
Release Chloride Ions, Adhere to FN, and Have an 
Activated Respiratory Burst 

The results of the previous paragraphs suggest that CI- el- 
flux precedes and is related to increased adherence, 
spreading, and metabolic burst of TNF-stimulated FN- 
PMN. If correct, the expectation is that C1- efflux induced 
by means other than TNF treatment would mimic those 
three responses to TNF. 

This was done by suspending the PMN in a Cl--free 
medium, i.e., a medium where C1- was replaced by the 
cell-impermeant anion glucuronate (G-buffer). In such a 
m e d i u m ,  CI- i was shown to progressively decrease as a 
consequence of a forced chloride efflux down its concen- 
tration gradient (52). 

Fig. 5 shows that FN-PMN in G-buffer exhibited a mas- 
sive efflux of 36C1- accompanied by a decrease of 36Cl - i  

(d), a considerable increase in adherence, and a vigorous 
respiratory burst (e and f, respectively). All three re- 
sponses were strictly comparable to those observed in 
TNF-treated PMN in CI- buffer (a, b, and c, respectively). 
Similar results were obtained when CI- was replaced by 
other cell-impermeant anions, e.g., gluconate, known to 
cause progressive efflux of C1- from amphibian neurones 
(1), or glutamate. In particular, PMN suspended in 
glutamate-containing buffer increased their adherence 
and 02-  production by 97 and 231%, respectively, over 
the responses of unstimulated PMN in a - -bu f fe r .  Similar, 
although less pronounced, was the enhancement of these 
PMN responses in gluconate-containing buffer (+70% for 
adherence and + 163% for 02-  production). 

Fig. 6 shows that the addition of EA to FN-PMN sus- 
pended in G-buffer caused a considerable inhibition of 
36C1- efflux (left  panel), adherence (middle panel), and 
02-  production (right panel), further supporting the hy- 
pothesis that efflux of C1- is related to the activation of the 
adhesive and metabolic response of FN-PMN. 

Fig. 4 c is a scanning EM micrograph showing that un- 
stimulated FN-PMN in G-buffer also spread in a fashion 
similar to that of TNF-stimulated PMN in CI- buffer (Fig. 
4 a). The extent of spreading may be more easily appreci- 
ated if compared to the roundish appearance of unstimu- 
lated PMN in CI- buffer (Fig. 4 d). Spreading of EA- 
treated FN-PMN in G-buffer was also markedly reduced 
(not shown). 

Discuss ion  

The present study is the first one that analyzes chloride ion 
movements in human PMN residing on biologic surfaces 
and demonstrates a relationship between modifications of 
the intracellular chloride levels and PMN responses trig- 
gered by TNF, such as adherence, spreading, and activa- 
tion of the respiratory burst. 
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Figure 5. Effect of C1--free buffer on 36C1- efflux, 36C1-i, adherence, and 0 2- generation of FN-PMN. 36C1- efflux, 36C1-i, adherence, 
and O2- generation were assayed in TNF-stimulated FN-PMN bathed in Cl--containing buffer (a, b, and c, respectively; TNF final con- 
centration 10 ng/ml) and in unstimulated FN-PMN bathed in C1--free glucuronate-containing buffer (d, e, and f, respectively). Assays of 
36C1- efflux and 36C1-i were as described in the legend to Table I. Adherence and 02-  generation were measured after a 60-min incuba- 
tion at 37°C as detailed in the legend to Fig. 1. Each point in the graphs shown in a and d represents the mean of duplicate assays of one 
experiment representative of three that gave similar results. (a) 36C1- efflux, (open squares); 36Cl-i, (closed squares); (d) 36C1- effiux, 
(open triangles); 36Cl-i, (closed triangles). In b, c, e, and f, the data represent the means _+ SEM of five experiments (in duplicate). 

It has been recently shown that CI- effiux is a phenome- 
non that occurs early in PMN treated in suspension with a 
variety of priming and/or activating agonists (49). TNF, 
along with granulocyte/macrophage-colony stimulating 
factor, was identified as the most potent stimulator of C1- 
effiux, suggesting that chloride release may represent an 
important event in the signal transduction pathway acti- 
vated by this cytokine. Nevertheless, the role of CI- move- 
ments in the modulation of PMN responses to TNF is not 
defined yet. 

The model of the PMN residing on surfaces coated with 
FN permitted us to show the following: 

(a) Basal adhesion of PMN to FN stimulates per sea  net 
CI- efflux, leading to a decrease of Cl-i. Such an effiux 
was likely mediated by the 132-independent basal adhesion 
of PMN to FN, since it was only minimally affected by the 
anti-132 mAb 60.3. 

(b) TNF greatly amplifies and prolongs CI- efflux from 
FN-PMN. Much of this effiux relies on 132-dependent ad- 
hesion, since mAb 60.3, which strongly decreases 132- 
dependent adherence of TNF-treated PMN to FN (this pa- 
per; 34, 59), brings the efflux back to about the values of 
PMN stimulated by TNF in suspension. This suggests that 
engagement of the 132 integrins (previously activated by 

Figure 4. Scanning EM micrographs of PMN residing on FN-coated surfaces. PMN in C1--containing buffer were preincubated in sus- 
pension for 15 min at 37°C with 10 ng/ml TNF (a and b) and transferred onto FN-coated surfaces in the absence (a) or in the presence (b) 
of 100 ixM EA. (c) Appearance of unstimulated PMN bathed in Cl--free glucuronate-containing buffer. (d) Appearance of unstimu- 
lated PMN bathed in C1--containing buffer. Bar, 10 ixm. 
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Figure 6. Effect of EA on 
36C1- efflux (left), adherence 
(middle), and 02- generation 
(right) of unstimulated FN- 
PMN bathed in a- - f ree  glu- 
curonate-containing buffer. 
The cells were preincubated 
in suspension for 10 min at 
37°C with control buffer or 
200 I~M EA, transferred to 
FN-coated wells, and then in- 
cubated for an additional 60 
min. 36C1- efflux, adherence, 
and 02- generation were 
measured thereafter, as de- 
tailed in the legends to Table 
I and Fig. 1. Data are repre- 
sentative of three indepen- 
dent experiments (in dupli- 
cate). 

TNF) by their counter-receptor on FN signals per se for an 
additional C1- efflux. 

(c) CI- efflux induced by means other than TNF treat- 
ment, i.e., by placing FN-PMN in Cl--free media, was fol- 
lowed by a qualitative and quantitative mimicry of TNF 
effects, i.e., increased adherence, spreading, and activation 
of the metabolic burst. These findings provide new evi- 
dence in favor of a close correlation between lowering of 
C1- i and activation of PMN functions and are in agree- 
ment with previous results by Grinstein and co-workers 
(22), showing that suspension of permeabilized PMN in 
Cl--depleted media elicited protein phosphorylation, actin 
polymerization, secretion of lysozyme, and a respiratory 
burst, and those by Fittschen and Henson (17), showing 
that PMN bathed in a C1--free medium selectively and 
consistently released specific granules. 

(d) Inhibition of the C1- efflux from either TNF-treated 
FN-PMN or FN-PMN in C1--free media by the C1- trans- 
port inhibitor E A  resulted in almost complete inhibition 
of adherence, spreading, and metabolic burst. 

(e) The use of EA as an inhibitor of CI- efflux permitted 
us also to establish that the release of C1- may be indepen- 
dently linked to adhesion on one side, and spreading and 
activation of the metabolic burst on the other. In fact, if 
PMN are incubated in suspension with TNF (in this step, 
C1- efflux and activation of the integrins have occurred) 
and then placed to adhere to FN in the presence of EA, 
cell spreading and the metabolic burst are considerably 
impaired, while adhesion is not (Table II), since it relies on 
the integrins activated in suspension. This indicates that 
the C1- efflux triggered by the integrin engagement in the 
adhesion step has a role in the two subsequent events, i.e., 
spreading and activation of the burst. 

We believe that the results discussed above can be in- 
corporated in the following coherent picture. When TNF 
contacts FN-PMN, the first change that occurs is a C1- ef- 
flux that can be clearly detected as early as 5 min after 
TNF addition. This is followed by adherence but not nec- 
essarily by spreading and activation of the burst. Then, ad- 
hesion signals for an additional CI- efflux that makes the 
cells proceed toward spreading and metabolic activation. 

How does TNF trigger C1- extrusion? Kagan et al. have 
suggested that TNF itself in the trimeric form may act as 
an ion channel within the plasma membrane of histiocytic 
lymphoma cells (27). This does not seem to apply to our 
situation, since the effects of TNF treatment could be fully 
reproduced with two agonistic anti-TNF-R55 mAbs, indi- 
cating that the phenomena we have investigated are recep- 
tor mediated. Further studies are needed to elucidate the 
connections between the postreceptor events and the stim- 
ulation of CI- release. 

Chloride movements in PMN may occur through di- 
verse pathways. Detailed studies by Simchowitz and co- 
workers have identified at least three different mecha- 
nisms regulating C1- traffic in resting PMN, i.e., passive 
electrodiffusion, a CI-/CI- exchanger, and an ATP-driven 
CI- transport system that is responsible for the unusually 
high intracellular CI- concentration (51). Stretch-activated 
C1- channels have been demonstrated to operate in rest- 
ing PMN subjected to hypotonic stress (54). More re- 
cently, voltage-gated and Ca2+-activated C1- channels, 
stimulated by FMLP and PMA (47) or TNF (48), respec- 
tively, have been identified by the patch-clamp technique 
in PMN. Also, PMN have been shown to belong to a cate- 
gory of nonepithelial cells in which low levels of mRNA 
transcripts of the cystic fibrosis transmembrane regulator 
gene have been detected (63), but the formal proof that 
this CI- channel is expressed on the PMN is lacking so far. 

Which one(s) of these pathways is (are) involved in the 
TNF-mediated and 132 integrin-mediated CI- extrusion? 
This is under investigation, as is the nature of the ion(s) 
cotransported or transported in parallel with C1-. At this 
stage of the work, we can only exclude any role for the cys- 
tic fibrosis transmembrane regulator, since PMN isolated 
from two cystic fibrosis patients responded normally to 
TNF (unpublished observations). 

Another question concerns the link between decrease in 
E1 i and activation of PMN adhesiveness, spreading, and 
respiratory burst. Since cytoplasmic pH (25, 53), mem- 
brane potential (30, 55, 56), and cell volume (24, 25, 54, 60, 
62) have been shown to be controlled by C1- movements 
in diverse cell types, experiments are in progress to pick up 
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possible connections between one or more of such param- 
eters and activation of proadhesive molecules, reorganization 
of the cytoskeleton network, and assembly of the 02-- 
forming NADPH oxidase, which are the basic changes un- 
derlying activation of the PMN functions studied in this 
paper. 
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