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Whole-genome analysis of Mustela erminea finds
that pulsed hybridization impacts evolution at
high latitudes
Jocelyn P. Colella1, Tianying Lan2,3, Stephan C. Schuster4, Sandra L. Talbot5, Joseph A. Cook1 &

Charlotte Lindqvist2,3

At high latitudes, climatic shifts hypothetically initiate recurrent episodes of divergence by

isolating populations in glacial refugia—ice-free regions that enable terrestrial species per-

sistence. Upon glacial recession, populations subsequently expand and often come into

contact with other independently diverging populations, resulting in gene flow. To understand

how recurrent periods of isolation and contact may have impacted evolution at high latitudes,

we investigated introgression dynamics in the stoat (Mustela erminea), a Holarctic mam-

malian carnivore, using whole-genome sequences. We identify two spatio-temporally distinct

episodes of introgression coincident with large-scale climatic shifts: contemporary intro-

gression in a mainland contact zone and ancient contact ~200 km south of the contemporary

zone, in the archipelagos along North America’s North Pacific Coast. Repeated episodes of

gene flow highlight the central role of cyclic climates in structuring high-latitude diversity,

through refugial divergence and introgressive hybridization. When introgression is followed

by allopatric isolation (e.g., insularization) it may ultimately expedite divergence.
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G lacial refugia are fragmented pockets of unglaciated land
where terrestrial species have persisted and diverged
through ice ages, and which have significantly structured

biological diversity at high latitudes1–3. Three primary macro-
refugial locations are hypothesized to have enabled the persis-
tence of temperate terrestrial North American species through
Pleistocene glacial cycles (>24 glacial/interglacial cycles; 2.6
Mya–11.7 kya). These include an expansive Northern Beringian
refugium shared with Asia4 and two Southern refugia, separated
into East and West by the Rocky Mountains or Great Plains/
Mississippi drainage5,6. A fourth, smaller refugium (or series of
refugia), hypothesized to exist on areas of exposed continental
shelf during the last glacial maximum near contemporary
North Pacific Coastal archipelagos7–10, may have provided
another isolated sanctuary for long-term coastal persistence of
terrestrial species. Although this refugium has received varying
degrees of empirical support, its existence is critical to under-
standing dynamics of intercontinental biotic exchange and it may
have played a primary role in the early peopling of the
Americas11.

Phylogeography of high-latitude Mustela erminea, the stoat or
ermine (Family: Mustelidae) delineates four genetically
distinct mitochondrial lineages geographically corresponding to
these four refugia12. Although glacial isolation appears
to have impacted the long-term evolution of this mammalian
meso-carnivore, the effects of glacial recession and subsequent
secondary contact between refugial lineages remain unexplored.
Therefore, we investigated the consequences of cyclic
climates and pulsed introgression on genomic diversity in
this circumboreal species complex. During inter-glacial warming,
divergent lineages expanded from refugial centers until they
reached environmental or biological barriers13. In some cases,
admixture occurred upon secondary contact with other
lineages. If M. erminea experienced serial bouts of climate-
mediated introgression, a repeated signature of introgressive
hybridization should be evident in the genomes of refugial
descendants14.

Contact zones are windows into evolutionary processes15 now
being explored on a genomic scale. We define introgressive
hybridization as interbreeding and the movement of alleles
between two genetically distinct lineages. Although often difficult
to parse introgression from incomplete lineage sorting in closely
related taxa or lineages16, investigations of divergent lineages,
such as those within theM. erminea complex, provide insight into
the genomic consequences of introgression. For example, genetic
swamping or homogenization can prevent divergence between
mixing lineages, while Bateson–Dobzhansky–Muller17–19 and
mitonuclear20 incompatibilities can lead to hybrid breakdown,
thereby promoting divergence through reinforcement21,22.
Although our understanding of hybridization emerges largely
from research on plants23,24, the genomic era has uncovered
substantial reticulate evolution (e.g., introgressive hybridization)
in a growing number of animal species25,26, including humans27.
As histories of divergence and speciation-with-gene flow continue
to be discovered (e.g.,28,29), the implications of hybridization for
the conservation of evolutionarily distinct units appear
profound30.

To test whether genomic structure in stoats reflects refugial
origins and to explore the consequences of contact among
lineages, we generated ten whole-genome sequences of repre-
sentatives from each refugial clade. With expanded genomic
coverage, we test for signatures of refugial divergence and
introgression, characterize the timing of introgression events
relative to climatic oscillations, and infer the impact of intro-
gressive hybridization on divergence across the complex land-
scape of northwestern North America.

Results
Refugial origins and phylogeography. To test our hypothesis
that the four mitochondrial stoat lineages originated as the result
of isolation and divergence in each of the four major North
American refugia, we generated whole-genome sequences for ten
M. erminea drawn from each refugial lineage and two spatially
disjunct contact zones (the interior border of Alaska-Yukon
Territory and the NPC; Fig. 1). We contrasted mitochondrial and
nuclear phylogenies against geographic clade distributions, esti-
mated pairwise diversity metrics (pairwise mitochondrial and
nuclear divergence, FST31, relatedness32), and used ADMIX-
TURE33 analyses to define populations.

Our results showed strong mitochondrial (Fig. 1; Supplemen-
tary Fig. 1) and nuclear (Figs. 1–3; Supplementary Fig. 2;
Supplementary Table 1) support for four stoat clades geographi-
cally coincident with North American refugia. We identified deep
divergence of a highly distinctive West clade, a group previously
lacking strong nuclear support12 (Figs. 1, 2a and c; Supplemen-
tary Fig. 2; Supplementary Tables 1 and 2). We detected
substantial genetic divergence between mainland stoat lineages
(e.g., 21% average pairwise difference across >3 million autosomal
SNPs between Beringia and East clades), comparable to estimates
between Beringia stoats and the outgroup species, M. putorius
(domestic ferret, 20%), calling into question whether this
widespread mustelid is a single species (Supplementary Table 1).
Centrality of the Vermont sample is consistent with widespread
expansion of the East lineage from a single eastern refugium
followed by intra-clade divergence (Fig. 2b). Similar refugial
signatures have been detected in other North American species
(e.g., martens34 and black bears35). Additional structure within
the East clade (Fig. 2b) may reflect microrefugial diversification36.
Geographic proximity (Fig. 1) is not predictive of genetic
similarity (Fig. 2b; e.g., REV and BC), consistent with patterns
also uncovered in primary stoat prey species such as voles37 and
lemmings38.

The sister relationship between NPC and Beringia stoats,
combined with substantial genetic divergence (nuclear >10%;
mitochondrial >4%; Supplementary Table 1) between these clades
and their current geographic distributions, are consistent
with the Coastal Refugium Hypothesis7–10. Ancestry estimation33

identified autonomous East and West populations but a
single combined Beringia/NPC population (K= 3; Fig. 2c),
again highlighting the paleoendemic ancestry of the NPC
Island lineage. Pairwise mitochondrial divergence is also
particularly elevated for the NPC Island lineage, bordering the
species-level divergence threshold suggested for distinct mammal
species39.

Detecting introgression and determining source populations.
Evidence of recurrent introgressive hybridization, whether as a
single or recurrent event, should be evident in the genomes of
refugial descendants. We hypothesized that signatures of intro-
gression should be present in individuals collected within the
Alaska-Yukon Border hybrid zone and expected that stoats from
Beringia and East clades are the most likely source populations
based on contemporary clade distributions. In addition to con-
trasting mitochondrial and nuclear phylogenies for discordance,
we performed a series of tests for introgression including
ADMIXTURE33 and f3-statistics (Supplementary Table 3)40,41 to
assess shared genetic drift among all possible combinations of two
source populations42.

We identified mitonuclear discordance for two individuals
collected near the Alaska-Yukon border (herein SYT and YTAK,
representing Southern and Northern localities along the contact
zone, respectively), which can indicate a history of genomic
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introgression or incomplete lineage sorting. ADMIXTURE
identified the same two individuals as admixed between East
(K3: SYT 66%, YTAK 74%) and Beringia (K3: SYT 34%, YTAK
19%) clades or as a single, but distinct population, consistent with
shared source populations (Fig. 2c). Both Alaska-Yukon samples
were positioned between their hypothesized source populations in
our PCA results (Fig. 2a and b), with SYT closer to Beringia and

YTAK closer to the East clade, further supporting their mixed
ancestry and suggested asymmetric backcrossing distributions.
Lastly, f2 statistics, a measure of distance between populations,
were also lowest between the putative Alaska-Yukon hybrids and
their suspected source populations, further supporting their
derivation from the same source populations (Supplementary
Table 4).

Alaska-Yukon Territory
contact zone
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Fig. 1 Mustela erminea clade geographic distributions and phylogenetic relationships. a–c Stoat clade distributions (clade names reflect refugial origins)
based on amplicon mitochondrial haplotype distributions12 and IUCN (International Union for Conservation of Nature, www.iucn.org) range information.
Genomic samples are labeled with locality abbreviations: ANN (Annette Island, Alaska, USA), BC (southern British Columbia, Canada), KUP (Kupreanof
Island, Alaska, USA), MON (Mongolia), NM (New Mexico, USA), POW (Prince of Wales Island, Alaska, USA), REV (Revillagigedo Island, Alaska, USA),
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based on the presence of mixed mitochondrial haplotypes12. Scale bars are in kilometers. a Global sampling scheme. b North American sampling localities.
c Sampling within the northern North Pacific Coast (NPC) archipelagos. d Mid-point rooted maximum-likelihood phylogenies, scaled by genetic distance. d
(left) Complete mitochondrial genomes and d (right) autosomal SNPs for ten M. erminea individuals. Phylogenies demonstrate strong support for four
major refugial clades and mitonuclear discordance for hybrid samples (SYT, YTAK). Deep divergence between the NPC Island (POW) and Beringia (MON)
clades is evident in the long branches in both phylogenies
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Surprisingly, NPC Island stoats also tested positive for
admixture, with Beringia-East parentage (Table 1; Fig. 2a and
b). These island stoats have been isolated off the NPC (Prince of
Wales Island and the neighboring Haida Gwaii archipelago of
British Columbia, Canada [not sequenced here]) for at least

10,000 years12; therefore, we suspect they are derived from an
ancient hybridization event that occurred during an earlier
interglacial period, prior to the contemporary insularization of
this clade. We found no evidence of admixture, however, in the
Kupreanof Island sample.

Table 1 Source populations and admixture date estimates for each hybrid sample

Target Source1 Source2 f3-statistics MixMapper date estimates

f3 Err Z α Mixed drift Years (Ne= 375k)

NPC East Beringian −0.05 0.009 −5.28 0.48–0.59 0.00–0.00 0
SYT East Beringian −0.17 0.003 −48.66 0.52–0.78 0.00–0.00 0
YTAK East Beringian −0.15 0.003 −47.41 0.48-0.73 0.00–0.23 0–393,996.5

Admixture date estimates in years based on an effective population size (Ne) of 375k (ref. 12) for the North Pacific Coast island (NPC) and the two Alaska-Yukon hybrids (SYT from Southern Yukon and
YTAK from the northern Alaska-Yukon border). Err indicates the standard error and Z indicates the Z-score
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Fig. 2 Principal component analysis and ADMIXTURE results. a, b SNP principal component analysis (PCA). All samples identified as admixed by f3-
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Appalachia and consistent with PCA results suggesting East expansion from a single refugium
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Testing for asymmetric introgression. Biased or asymmetric
introgression may indicate a selective advantage, the existence of
genetic incompatibilities, or a demographic imbalance. Alter-
natively, equal contributions from both parental source popula-
tions may suggest that there are minimal genetic incompatibilities
between hybridizing stoat clades, as we would expect within a
single species. For the NPC Island clade, biased allelic overlap
with one source population may shed light on interglacial colo-
nization dynamics, as the island may have been colonized by both
Beringia and East ancestors who subsequently interbred. We used
F4-statistics, similar to D-statistics43,44 and ABBA/BABA45, to
highlight differential backcrossing histories among lineages and
used admixture graph fitting46 to estimate the topological pla-
cement of admixed samples relative to their potential sources.

First, our f4 results highlight the influence of repeated
glaciation in North America as reflected in multiple episodes of
gene flow between lineages originating in independent refugia.
Allele sharing (f4) reflected phylogenetic relationships, with
stepwise genetic distance from the ancestral Beringia clade
increasing with greater geographic distance from Beringia (Fig. 1;
Supplementary Tables 5 and 6), a pattern consistent with more
frequent or prolonged contact between geographically proximal
refugial lineages.

Admixture graph fitting identified SYT as the result of Beringia
and East admixture, while YTAK was produced from an ancestral
admixture event between East and a shared ancestor of all stoat
lineages (Fig. 3a and b; Supplementary Table 7). The vast majority

of f4 comparisons (Supplementary Tables 5 and 6) were highly
significant (Z-score >5), reflecting substantial intra-specific
divergence within M. erminea. Biased allelic overlap suggested
that YTAK shares more alleles with the East source, whereas SYT
is more backcrossed with the Beringia source (Table 2).
Differentially backcrossed hybrid offspring within this broad,
mainland contact zone suggests that hybridization between East
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Table 2 f4-statistics for hybrid samples (X) with M. putorius
outgroup (W)

W X Y Z f4 Z-scores

OG NPC East Beringia 0.30 31.79
OG NPC West East 0.32 76.99
OG NPC West Beringia 0.51 70.42
OG SYT East Beringia 0.13 9.29
OG SYT West East 0.37 86.48
OG SYT West Beringia 0.41 42.17
OG YTAK Beringia East 0.28 27.12
OG YTAK West East 0.40 90.67
OG YTAK West Beringia 0.08 10.18

F4(W,X:Y,Z) results for each hybrid sample (NPC North Pacific Coast island, SYT Southern
Alaska-Yukon border, and YTAK northern Alaska-Yukon border) relative to all possible parental
source populations (East, West, Beringia)
All Z-scores are positive for ease of interpretation and significant (>5). Rotating the order of a
pair (e.g., YZ to ZY) switches the sign +/− of both the f4-statistic and the Z-score but does not
change the relationships
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and Beringia lineages may have minimal negative fitness
consequences (e.g., reduced fertility, viability)47. These prelimin-
ary inferences require additional sequencing of hybrids from the
interior Alaska-Yukon hybrid zone to characterize the specific
genomic regions that may be crossing semi-permeable lineage
boundaries and to rigorously test for asymmetric introgression,
which could be driven by selection (e.g, genetic incompatibilities,
Darwin’s corollary to Haldane’s rule48), drift, or demographic
parameters. If gene flow is neutral, extended periods of contact
may promote fusion between East and Beringian lineages.
However, the contemporary persistence of both Old World
Beringian and New World East lineages in North America
suggests that gene flow during brief periods of interglacial contact
through the Pleistocene were insufficient to homogenize refugial
divergence.

Biased allele sharing between NPC and Beringia (Table 2) is
consistent with phylogenetic relationships (Fig. 1d) and three
possible evolutionary histories: (1) differential introgression
(selection) favoring Beringia alleles early in the NPC Island
clade’s origin; (2) extended or more frequent connection between
Beringia and NPC refugia throughout the Pleistocene; or (3)
stochasticity, potentially compounded by founder effects or
bottlenecks.

Timing introgressive events. Given the pattern of North
American glaciation49, the current geographic isolation of the
NPC Island clade, and the limited dispersal abilities of insular M.
erminea50, we suspect that hybridization is not ongoing on NPC
islands. In contrast, based on the current distribution of mito-
chondrial diversity12 and our understanding of postglacial
population expansion, we expect that stoats from East and Ber-
ingia clades are actively interbreeding along the Alaska-Yukon
border. To approximate the timing of admixture events, we
converted drift unit branch lengths (D), output from MixMap-
per51, to absolute time (years) using the formula D ≈ 1−e−t/2Ne

(solved for t generations)52.
The estimated time of admixture for Alaska-Yukon hybrids did

not differ from zero (Table 1), suggesting that the Alaska-Yukon
Territory border is an active hybrid zone between the leading-
edge of Beringia and East stoat clades. In contrast, NPC
admixture is estimated at up to 394 kya (Table 1; Supplementary
Table 8), prior to the Wisconsin glacial (30–80kya53,54) and
Sangamonian interglacial (80–140kya53,54). The weaker NPC
hybrid signal relative to contemporary Alaska-Yukon hybrids (f3
Z-score), the insular isolation of this clade for at least the past
10,000 years12,55, and the short generation time of stoats (2
years56) suggest that NPC Island admixture is more ancient than
that occurring in the mainland Alaska-Yukon zone. We
hypothesize that the hybrid origin of the NPC clade predated a
period of glaciation and refugial isolation, but this point requires
further exploration with expanded sampling and tests of linkage
disequilibrium. If NPC stoats continue to evolve in isolation, our
results suggest that continued divergence in allopatry may
ultimately lead to speciation.

Based on our results, NPC islands were colonized either by
admixed individuals or independent invasions of both parental
lineages (East, Beringia) that subsequently hybridized. Introgres-
sive hybridization, preceding divergence in isolation, may have
disproportionately elevated the evolutionary distance between
NPC Island stoats and other lineages (Figs. 1, 2, and 3d, e;
Supplementary Tables 1–4). Isolation of a genetically recombi-
nant population, at least through the Last Glacial Maximum, in a
coastal refugium reinforced an evolutionary trajectory indepen-
dent from either source population (Supplementary Fig. 3).
Further, low amplicon variation in NPC stoats12 suggests that

island founder effects or a bottleneck5 occurred among NPC
stoats in the coastal refugium57. Drift may impact small
populations and may have further accelerated NPC stoat
differentiation.

Historical demography. We expected glacial cycling (periods of
isolation/contact) to have impacted the historical demography of
each refugial stoat clade differentially. Further, we hypothesized
that individuals with a history of introgression will exhibit ele-
vated effective population sizes (Ne), with a distribution most
similar to that of their most-backcrossed source population (East
for YTAK, and Beringia for SYT). Last, we expected cladogenesis
to coincide with refugial isolation during glacial periods and
demographic troughs, while Ne is expected to rise during inter-
glacials as a consequence of population expansion.

Stoat demographic histories (PSMC58; Fig. 3d, e) showed
clade-level responses to cyclic glaciation, highlighting the central
role of large-scale climatic shifts in shaping diversity at high
latitudes through episodic isolation and contact. Overall low, but
relatively stable Ne in East and West clades reflected similar
demographic responses to New World glacial cycling, where the
West refugium was likely smaller than the East, as reflected in
smaller Ne (Fig. 3d). Unlike Nearctic populations, Western
Beringia experienced substantial expansion historically, corre-
sponding to reduced glaciation in eastern Eurasia and the larger
size of Beringia compared to the NPC refugium. Dates of
cladogenesis mirrored estimates from the calibrated mitochon-
drial genome phylogeny (Supplementary Fig. 1), with inter-clade
divergence beginning around 2 Mya when Beringia split from the
other stoat lineages, followed by West (1.3 Mya) divergence, and
most recently Island/East (0.9 Mya) cladogenesis (Fig. 3d).
However, the hybrid ancestry of the NPC island sample suggest
that cladogenesis estimates based on Ne may be unreliable. As
expected, when hybrid distributions are juxtaposed against their
parental populations (Fig. 3e), they mirror that of their most-
backcrossed source population, but with an upward shifted Ne

59.
If the increase in hybrid Ne occurs at the time of hybridization
between parental populations59, SYT and YTAK admixture may
be older than predicted based on admixture date estimates alone.

Combined with diversity metrics (Supplementary Fig. 2;
Supplementary Tables 1–4), highly distinct demographic histories
suggest taxonomic revision of M. erminea may be warranted,
pending wider geographic sampling. This is a particularly
compelling example of cryptic diversification in carnivores when
contrasted against weakly differentiated PSMC demographic
histories uncovered in some canid60 (wolf, dingo, domestic
dog) and felid61 (tiger, leopard, cheetah) genomes.

Discussion
We document multiple temporally and spatially offset bouts of
introgressive contact between divergent stoat lineages, corre-
sponding to distinct phases of glacial cycling. Therefore, we
predict that other higher latitude species with shared biogeo-
graphic histories may also exhibit genomic signatures of repeated
introgression corresponding to cyclic climates. This process of
recurrent introgressive hybridization between geographically
proximal lineages, followed by refugial or insular isolation and
divergence, may contribute to elevated levels of island endemism,
particularly for continental archipelagos adjacent to glacially
dynamic mainland areas.

When backcrossing occurs into both parental populations, as
in the Alaska-Yukon hybrid zone, introgression may be stochastic
or selectively neutral. Consequently, extended periods of contact
may lead to homogenization18,62 and result in a net loss of
regional diversity63, such that the divergent lineages evident today
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(East, Beringia) may be ephemeral64. The narrow Alaska-Yukon
hybrid zone and strong East-Beringia genomic differentiation,
however, suggests that such peripheral hybrid populations are
ephemeral and minimally contribute to long-term evolution of
high latitude diversity. If introgression events are temporary,
genomic evidence of serial hybridization offers a model for
detecting refugia and tracking colonization routes among high
latitude species. Here, we provide yet another example of intro-
gressive hybridization in mammals, highlighting both the pre-
valence and varied role of introgression in mammalian evolution.
Our results demonstrate that, for geographically widespread
species, the long-term evolutionary role of introgression often
may be inconsequential relative to larger biogeographical pro-
cesses, such as island vicariance, refugial isolation, or rapid
environmental change.

In some situations, however, a population bottleneck in a small
refugium or in response to insularization can enable the tem-
porary persistence of less fit recombinant genotypes65. Even a
temporary reduction in fitness can enable traversal between
fitness-landscape optima and promulgate alternative evolutionary
trajectories, which can permanently impact the genomic structure
of high latitude populations and potentially lead to specia-
tion65,66. Genomic evidence of hybridization, followed by diver-
gence in geographic isolation, is consistent with a hybrid origin
for the NPC lineage. Though still incipient in this case, the
process of introgression followed by allopatry may lead to hybrid
speciation67. Hybridization can catalyze the evolution of repro-
ductive barriers68 or expedite divergence through the rapid gen-
eration of novel genetic recombinants. Although the mechanisms
underlying this special case of divergence with gene flow remain
elusive, a plausible precondition for speciation is the separation of
lineages into allopatric ranges, which may enhance the genetic
divergence of a recombinant population, even if introgression is
not directly implicated in speciation. Therefore, NPC stoats
potentially highlight the integral role of post-hybridization allo-
patric divergence in the evolutionary histories of island and
refugial taxa, but expanded insular sampling is required to fully
test this mechanism of divergence.

It has long been argued that pre-zygotic isolation is reinforced
when diverging groups return to parapatry and hybridize18,20,
although this idea is not without controversy. Under this sce-
nario, hybridization between incipient species can result in unfit
hybrids and natural selection might act against hybridization,
reinforcing pre-zygotic isolation mechanisms, eventually leading
to speciation and avoiding maladaptive hybridization18,69. In this
fashion, continuing and progressive reinforcement of pre-zygotic
mechanisms would ultimately result in speciation and complete
isolation between lineages18,70, if hybridization and selective
pressures on both lineages are symmetrical71. With an active and
plausibly ongoing hybrid zone, along with more ancient island
admixture, stoats provide a unique opportunity to investigate the
impact of symmetrical versus asymmetrical introgression using
genomics.

With multiple waves of mainland colonizers corresponding to
climatic cycles and potentially adding novel genetic elements to
insular genomic architectures, the process of repeated, climate-
mediated hybridization may have played a role in diversification
across other land-bridge island systems. Irish stoats, for example,
exhibit elevated genetic diversity compared to neighboring
populations in Great Britain, despite persisting on a smaller
island farther from a continental source13,72. In this parallel
system, the English Channel separating Britain from the Eur-
opean mainland has been serially exposed through Pleistocene
glacial cycles73, effectively homogenizing populations across the
Channel. On the other hand, the Irish Sea, nearly twice the depth
of the English Channel, further separates Ireland from Britain,

presenting a formidable barrier to gene flow that allowed only
occasional influx of novel alleles from mainland or British
immigrants during extreme glacial events. This mechanism of
post-hybridization allopatric divergence is not restricted to land
bridge or continental archipelagos. Oceanic island populations of
Darwin’s storied finches on the Galapagos Islands also were
impacted by climate-mediated pulsed hybridization that was
coincident with changes in sea level due to glaciation74.

Admixture in this insular endemic (NPC Island stoats, sub-
species: M. e. haidarum) poses a particular challenge for the U.S.
Endangered Species Act, which currently denies protection for
hybrid taxa30,75. Mustela erminea haidarum is federally protected
in Canada on the Haida Gwaii Islands of British Columbia56, but
also occurs on Prince of Wales Island, Alaska, where it has no
protection. This study is congruent with previous work noting
that this island-restricted stoat subspecies is genetically12,76 and
morphologically77 distinctive, but levels of management protec-
tion at the federal level differ profoundly between Canada and the
United States.

Genomic signatures of repeated admixture and refugial isola-
tion among North American stoats highlight the episodic role of
Late Quaternary climate cycles in generating and structuring high
latitude diversity. We demonstrate two instances of gene flow
between stoat lineages coincident with interglacial periods: one
contemporaneous along the interior Alaska-Yukon border and a
second, more ancient event, occurring along the NPC that left a
signature that persisted through multiple glacial cycles. Each
hybridization event exemplifies an antagonistic outcome of
hybridization (e.g., homogenization versus diversity generation)
within a single species complex, highlighting the multifaceted role
of introgression in mammalian evolution and the varied temporal
and geographic scales at which this process unfolds. At high
latitudes, where dramatic range shifts in response to glacial
cycling afforded recurring opportunities for contact and isolation,
ephemeral hybridization has repeatedly shaped biological
diversity2,78,79.

Methods
Sequencing, assembly and post-processing. Contact zones and populations
were defined based on expanded mitochondrial sampling12. Ten whole-genome
sequences for representatives from each refugial stoat clade, and with additional
sampling in suspected contact zones (Fig. 1), were generated on an Illumina HiSeq
2000 (paired-end reads [100 bp]), three samples in four Illumina lanes and the
remaining samples in one lane each (Supplementary Table 9). Liver subsamples
were obtained post-mortem from the University of New Mexico’s Museum of
Southwestern Biology in compliance with ethical regulations (IACUC #16-200526-
MC). We used a DNeasy Blood and Tissue Kit (QIAGEN, USA) extraction. Next-
generation sequencing libraries were prepared using the Illumina TruSeq DNA
Sample Prep Kit. Our genome assembly pipeline followed Lan et al.79 with reads
examined using FastQC80 and adapter sequences and sex chromosomes removed
(Trimmomatic v0.33 (ref. 81)). Quality scales were compared across samples and
rescaled to Illumina 1.8+ phred+ 33 quality score, when necessary, to maintain
consistency (Picard v1.9: http://picard.sourceforge.net; SAMTools82). Reads were
mapped to the domestic ferret genome83 (Mustela putorius furo) using the
Burrows-Wheeler aligner84 (BWA). An additional BWA iteration extracted mito-
chondrial genomes. Final depth of coverage ranged from 10 to 61× (Supplementary
Table 9). PCR duplicates were removed using the MarkDuplicates tools from the
Picard suite. Nuclear and mitochondrial genome consensus sequences were called
using mpileup in SAMtools. SNPs were called using HaplotypeCaller in the
Genomic Analysis Toolkit85 (GATK) for all stoats and again against each of two
outgroups (M. putorius and Martes americana) and filtered by minimum depth
(minDP= 2), genotype quality (minGQ= 30), minimum minor allele frequency
(MAF= 0.1), and scaffold size and location (1Mb), and then private alleles and
indels were removed using VCFtools86 (Supplementary Table 10). We intentionally
selected an MAF of 0.1 to remove singletons (e.g., individual-specific, rare muta-
tions), and thereby any potential sequencing errors, which are more common in
low-coverage genomes. Although singletons can be informative when analyzing
within population variation, our analyses focus on shared alleles (e.g., f-statistics) to
identify introgression and backcrossing histories, therefore singletons, since they
are not shared, do not provide information about allelic overlap among popula-
tions. Our minDP (2) was set as one-third of the coverage of our lowest coverage
samples (e.g., roughly one-third of 8×) as recommended by the PSMC manual.
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Also, 2 is the minimum requirement for detecting heterozygotes. Format conver-
sions (vcf, ped, bed) were conducted using PLINK87. Missing data were removed
(--max-missing) based on analysis specifications. SNPs were spaced (1 per 50 bp
window) to account for linkage disequilibrium (e.g., 25) and sorted into 46
‘pseudo-chromosomes’ to enable the application of human-specific analyses on a
non-model system with 40 chromosomes.

Phylogenetic methods. jModeltest88,89 estimated the most appropriate model of
evolution for mitochondrial genomes and autosomal SNPs, with and without
outgroup sequences (M. putorius and Martes americana). We generated phylo-
genies for the entire mitochondrial genome (calibrated/uncalibrated) and auto-
somal nuclear SNPs (uncalibrated) using RAxML90 (GTRCAT model, 10,000
generations, random starting seed) and Beast291 (1 million generations, 4 chains, 2
runs, sampling frequency of 1000). It should be noted that phylogeny inference
using highly variable data (e.g., SNPs) can induce acquisition bias resulting in
longer branch lengths92, however, other divergence metrics (e.g., PCA, relatedness,
FST) provide additional evidence of substantial divergence between refugial stoat
clades. The oldest known M. erminea fossil93 (1.8 My) was used as a log-normal
fossil calibration (mean= 5.16, sd= 0.25, offset= 180) to estimate divergence
times in Beast2 (Supplementary Fig. 1) following the TreeThinkers tutorial (http://
treethinkers.org/tutorials/divergence-time-estimation-using-beast/). A log-normal
distribution places the highest probability on ages that are somewhat older than the
fossil date, with non-zero probability to infinity. Log-normal distributional priors
were selected to place 1.8 Mya at the median and shape priors encompassed late
Pliocene to early Pleistocene, similar to Harding and Smith94. Fossil-calibrated
divergence estimates separate two pairs of stoat clades (Beringia-NPC and
East–West) at 4.47 Mya (±1.21My, Pliocene), with the Beringia-NPC split dated
within the early Pleistocene at 2.1 Mya (±0.6 My), over 1 million years before
East–West cladogenesis (1 Mya ± 0.32; Supplementary Fig. 1). Phylogenies were
visualized in FigTree v1.2.2 (http://tree.bio.ed.ac.uk/software/figtree/).

Traditional phylogenetic approaches were contrasted against TreeMix ancestral
graphs modeling historic gene flow (migration events) among populations95. To
accommodate genetic exchange between populations of the same species, TreeMix
uses genome-wide allele frequency data to infer historical relationships among
populations to maximize the composite likelihood of the sample covariance matrix
(What), while modeling both cladogenesis and migration. TreeMix iterates over a
standard bifurcating topology to identify a series of migration edges that most
increase the likelihood score. TreeMix was run without default sample size
corrections (-noss), because multiple populations were comprised of a single
individual. We limited the number of migration events (-m) to three, to examine
only the most influential events among the few groups examined. TreeMix
simulations with M. putorius as the outgroup identified ancient geneflow between
Beringia stoat ancestors and M. putorius. Simulations were re-run with M.
americana as an outgroup to assess whether long-branch attraction between
distantly diverged M. erminea and M. americana (>11Mya96) impacts migration
inference in TreeMix, but results were consistent, regardless of the outgroup used.
After TreeMix identified gene flow between M. erminea and M. putorius
(Supplementary Fig. 4), we only show Admixture Graph results with M. americana
as outgroup.

PCAs were generated in SNPrelate97. Diversity statistics (relatedness2,
Supplementary Fig. 2; nucleotide diversity, Supplementary Table 11; FST,
Supplementary Table 2) were calculated using VCFtools. For ADMIXTURE33

analysis, sites with >80% missing data were removed and the lowest cross-
validation (cv= 10- and 5-fold) score identified the most appropriate number of
populations (K= 6) by iteratively leaving a sample out and reexamining the
partitioning of genetic structure among the remaining samples.

Introgression analyses. F-statistics were run in AdmixTools41 and MixMapper51

using M. americana as an outgroup after TreeMix identified ancient gene flow
between M. erminea and M. putorius (Supplementary Fig. 4). f2 statistics [f2(Pop1,
Pop2)] quantify drift through summary statistics (e.g., allele frequencies, hetero-
zygosity, covariance, and the probability of two lineages coalescing), with larger
values indicating greater divergence42 (Supplementary Table 4). f2 statistics were
generated from the compute_moment_stats and compute_most_additive_trees
functions in MixMapper with 1000 bootstraps and SNP blocks of 50 (1 per 50 bp).
f3-statistics explicitly test for admixture (AdmixTools, 3PopTest) and considered
all permutations where Source1, Source2, and the Target samples came from dif-
ferent populations. Populations (e.g., clades) were defined by phylogenetic rela-
tionships (Fig. 1) and ADMIXTURE results (Fig. 2c). A positive f3 value does not
necessarily indicate the absence of admixture42. Small sample sizes and the absence
of a linkage map forM. erminea prevents linkage disequilibrium-based estimates of
Ne and refined dating of admixture events.

To parse the backcrossing history of each hybrid sample, f4-statistics were used.
We used block-jackknifing to accommodate non-independence between loci42.
Although f-statistics alone cannot deduce the direction of gene flow in a system,
admixture graph fitting can test whether a proposed evolutionary model fits the
data well45,51. Admixture Graph46 fit hybrid individuals into a non-admixed tree
topology (Supplementary Fig. 5a) based on f4 results (Supplementary Tables 5 and
6). We ran an additional Admixture Graph simulation on the optimal (lowest
minimal error) 4-taxa non-admixed backbone topology identified by Admixture

Graph (Supplementary Fig. 5b; Supplementary Table 12) and again for Alaska-
Yukon hybrids onto a 5-taxon backbone (Supplementary Fig. 5c) to
evaluate how inferred relationships changed (Supplementary Fig. 6). We compared
individuals from each population against members of alternative populations (e.g.,
f4 (Outgroup, NPC; East, Beringia)). We also compared hybrid individuals (as
identified by f3-statistics) against individuals from ‘pure’ populations (e.g.,
f4(Outgroup, Hybrid; East, Beringia)) and admixed populations (e.g., f4
(East, SYT; Beringia; YTAK)) to decipher the backcrossing histories of hybrid
samples and characterize patterns of gene flow across populations. f4-
statistics are negative (Z-score ≤−5) if there is more allelic overlap between X and
Y than between X and Z since the evolutionary split between Y and Z, and positive
(Z-score ≥5) if there has been more recent gene flow between X and Z than
between X and Y. f4 results are in Table 2, Supplementary Tables 5 and 6, and
Supplementary Fig. 7. Dawson et al.’s12 Ne Model 2 using multi-locus
Approximate Bayesian Computation approximates mean clade Ne at: 250k for
Beringia, 50k for NPC, 125k for East, and 75k for West; therefore, the
combined Ne for NPC, East, and Beringia populations is 375k. D is tightly
correlated with Ne and additional efforts to refine historical population sizes
(Pleistocene, Pliocene) should improve the resolution of our admixture date
estimates. Generational output was converted to years using a M. erminea
generation time of 2 years56.

Historical demography. PSMC58 was used on consensus genomic sequence
data (using both complete and down-sampled sequence data) to characterize his-
torical demography (Fig. 3d, e) by examining heterozygosity densities in
a 100 bp sliding windows across the genome. PSMC was run twice for
each individual, once utilizing all mapped sequence data (coverage 10–61×) and
again on data down-sampled to 10× coverage (matching the lowest coverage
sample) using the DownsampleSam tool (Picard). Results were scaled
by a general mammalian mutation rate (2.2 × 10−9 per base pair per year98) and
stoat generation time, resulting in distributions of Ne through time (Fig. 3d, e). One
hundred PSMC bootstrap replicates were performed and plotted for both full-
coverage and down-sampled data to confirm consistent distributional shapes and
enable comparison across individuals, as PSMC is sensitive to variation in coverage
depth (ideal coverage 18× (ref. 99)).

Code availability. Our custom python spacing script is available on
GitHub at https://github.com/jpcolella/Ermine_WGS_2018.

Data Availability. Genomic reads are available in NCBI’s Sequence Read Archive,
accession: SRP138989. Assembled FASTA files are available on Dryad (https://doi.
org/10.5061/dryad.bv2g720).
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