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ABSTRACT Pseudomonas resinovorans strain MO-1, which possesses a high ability
to oxidize Mn(II), has been isolated from oligotrophic pond sediment. The draft ge-
nome sequence consists of 6,252,942 bp and has a G�C content of 63.4%. Strain
MO-1 has 5,694 coding sequences, including 13 putative Mn(II) oxidation genes.

Mn(II)-oxidizing bacteria (MnOB) produce biogenic Mn(III, IV) oxides (Bio-MnOx) in
a wide variety of environments (1). The produced Bio-MnOx is abundant in natural

environments and adsorbs metal ions and/or oxidizes metals (2), thereby contributing
to the oxidation of organic matter (3, 4). Phylogenetically diverse MnOB species exist,
many with differing Mn(II) oxidation abilities (5). However, the oxidation mechanisms
are still not fully elucidated. Additionally, why MnOB oxidize Mn(II) at all remains
unclear (6). The isolation and characterization of diverse MnOB are essential for
solving these questions. We isolated and screened more than 50 strains of MnOB
from various environments and identified the strain with the highest Mn(II) oxida-
tion ability from a manganese- and iron-rich sediment in an oligotrophic pond
(34°39.891=N, 132°71.226=E). We named this bacterium MO-1; it is a Pseudomonas
resinovorans strain, yet surprisingly, it has not been confirmed as a MnOB. Here, we
present the draft genome sequence and putative Mn(II) oxidation genes of strain MO-1.

Strain MO-1 genomic DNA was extracted using a commercial kit (NucleoSpin tissue
kit; Macherey-Nagel), according to the manufacturer’s protocol. The extracted DNA was
sequenced using a 101-bp paired-end sequencing method with an Illumina HiSeq 2500
platform at Hokkaido System Science Co., Ltd. (Sapporo, Japan), obtaining 22,074,708
reads, with approximately 350-fold genome coverage. After the adaptors were
trimmed using the Trimmomatic program version 0.36 (7), the cleaned sequence reads
were assembled using the Platanus program version 1.2.4 (8). We obtained 122 contigs
by removing short contigs of less than 300 bp, resulting in a draft genome of
6,252,942 bp, with a G�C content of 63.4%. The longest contig has 314,004 bp, and the
calculated N50 length is 110,654 bp. The draft genome was annotated using the
Microbial Genome Annotation Pipeline (MiGAP) version 1.060 (http://www.migap.org/)
and was estimated to have 5,694 coding sequences (CDSs), including 2 rRNA genes and
61 tRNA genes.

Two gene families encoding multicopper oxidase (MCO) and heme peroxidase
oxidase domains play an important role in Mn(II) oxidation in several MnOB. Of our
5,694 CDSs, 1, 8, and 4 CDSs were identified as being related to Mn(II) oxidation; these
were homologous to mnxG (locus tag PputGB1_2447 under GenBank accession no.
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CP000926), mcoA (locus tag PputGB1_2665 under GenBank accession no. CP000926)
and mopA (locus tag PputGB1_3353 under GenBank accession no. CP000926) of
Pseudomonas putida GB-1 (9, 10), respectively, using BLASTP analysis (E value � e�50)
(11). The highest similarities between our sequences and those P. putida sequences
calculated by the Needleman-Wunsch global alignment algorithm (12) are 82.2, 67.3,
and 56.7% for mnxG, mcoA, and mopA, respectively. Strain MO-1 possesses 13
putative Mn(II) oxidation genes, much more than the 3 annotated Mn(II) oxidation
genes in P. putida GB-1.

Accession number(s). The P. resinovorans strain MO-1 genome sequence has been
deposited in DDBJ/EMBL/GenBank under the accession no. BDMA00000000. The ver-
sion described in this paper is the first version, BDMA01000000.
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