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Peroxisomes harbor numerous enzymes that can produce or degrade hydrogen peroxide
(H2O2). Depending on its local concentration and environment, this oxidant can function as
a redox signaling molecule or cause stochastic oxidative damage. Currently, it is well-
accepted that dysfunctional peroxisomes are selectively removed by the autophagy-
lysosome pathway. This process, known as “pexophagy,” may serve a protective role in
curbing peroxisome-derived oxidative stress. Peroxisomes also have the intrinsic ability to
mediate and modulate H2O2-driven processes, including (selective) autophagy. However,
the molecular mechanisms underlying these phenomena are multifaceted and have only
recently begun to receive the attention they deserve. This review provides a
comprehensive overview of what is known about the bidirectional relationship between
peroxisomal H2O2 metabolism and (selective) autophagy. After introducing the general
concepts of (selective) autophagy, we critically examine the emerging roles of H2O2 as one
of the key modulators of the lysosome-dependent catabolic program. In addition, we
explore possible relationships among peroxisome functioning, cellular H2O2 levels, and
autophagic signaling in health and disease. Finally, we highlight the most important
challenges that need to be tackled to understand how alterations in peroxisomal H2O2

metabolism contribute to autophagy-related disorders.
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INTRODUCTION

Autophagy is a conserved catabolic program for the degradation of cytoplasmic components (e.g.,
dysfunctional organelles, protein aggregates, and non-specific portions of the cytoplasm) within the
lysosome (Kaur and Debnath, 2015). Dysregulation of this process has been linked to pathologies
such as neurodegeneration, cancer, and diabetes (Kenific and Debnath, 2015; Fang et al., 2019;
Muralidharan et al., 2021). Depending on the delivery route of the cytoplasmic material to the
lysosome interior, three primary types of autophagy have been recognized in mammalian cells:
microautophagy, macroautophagy, and chaperone-mediated autophagy (CMA) (Yim and
Mizushima, 2020).

Proteins degraded by CMA contain a KFERQ-like motif that binds to HSC70, a cytosolic
chaperone that delivers its cargo to the lysosomal surface for internalization and rapid degradation
(Kaushik and Cuervo, 2018) (all protein acronyms are annotated as in the UniProtKB database and
the full names can be retrieved in the Glossary). Approximately 30% of all soluble cytosolic proteins
contain such a CMA-targeting motif (Chiang et al., 1989), and-after binding of the substrate-
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chaperone complex to the transmembrane protein LAMP2A
(Cuervo and Dice, 2000)—the substrate proteins need to
unfold before they cross the lysosomal membrane (Rout et al.,
2014). These processes occur in cooperation with a set of
cochaperones (Rout et al., 2014; Kaushik and Cuervo, 2018).

In microautophagy, the lysosomal or endosomal membrane is
deformed to directly engulf cytosolic materials (Yim and
Mizushima, 2020). At the morphological level, cargo can be
engulfed through lysosomal protrusion, lysosomal
invagination, or endosomal invagination (Oku and Sakai,
2018). At the mechanistic level, many aspects remain to be
clarified (Mejlvang et al., 2018; Mesquita et al., 2021).
However, this degradation route requires neither LAMP2A nor
substrate unfolding (Yim and Mizushima, 2020).

Unlike the former two kinds of autophagy, macroautophagy
involves the sequestration of cargo at a distinct site from
lysosomes. During this process, a double-membrane structure
(the phagophore) is formed (Klionsky et al., 2021). This structure
wraps around the cytoplasmic target and creates, upon closure, a
separate compartment (the autophagosome). This short-lived
organelle subsequently fuses with lysosomes to deliver its
content for degradation (Kriegenburg et al., 2018). Given that
macroautophagy, hereafter referred to as “autophagy,” is widely
recognized as the major removal pathway for organelles in
mammalian cells (Klionsky et al., 2021), we focus here on the
double-sided redox connection between peroxisomes and this
type of autophagy: on one hand, as a major site of intracellular
H2O2 metabolism, peroxisomes have the potential to turn on and
tune autophagy, and this process may eliminate dysfunctional
peroxisomes and protect the cell from oxidative damage; on the
other hand, chronic impairment of peroxisome functionmay lead

to an accumulation of H2O2 levels that inhibit autophagy, thereby
driving a vicious cycle between peroxisome malfunction and
cellular redox imbalance.

THE CORE AUTOPHAGY MACHINERY

The canonical autophagy process can be divided into multiple
stages, including induction, phagophore nucleation and
elongation, cargo sequestration, phagophore closure,
autophagosome transport, and cargo degradation via fusion
with lysosomes (Figure 1A) (Parzych and Klionsky, 2014; Yim
andMizushima, 2020; Melia et al., 2020). Many of these processes
are executed by a dedicated cohort of autophagy-related (ATG)
proteins (Feng et al., 2014). Here, we mainly focus on the
molecular players involved in phagophore biogenesis
(Figure 1B) (Kawabata and Yoshimori, 2020).

The phagophore (or isolation membrane) is a small cup-
shaped pre-autophagosomal structure that can originate from
endomembranes (e.g., the ER membrane) containing
phosphatidylinositol 3-phosphate (PI3P)-enriched subdomains,
often referred to as omegasomes (Roberts and Ktistakis, 2013).
PI3P is a phospholipid that is mainly generated by the class III
phosphatidylinositol 3-kinase complex I (PI3KC3-C1), which is
composed of a catalytic subunit (PK3C3), a PI3-kinase regulatory
subunit (PI3R4), an allosteric modulator (BECN1), another
regulator (NRBF2), and a phagophore targeting subunit
(BAKOR) (Hurley and Young, 2017). Activation of the
PI3KC3-C1 complex requires the serine/threonine protein
kinase complex ULK. This complex, which integrates
upstream nutrient and energy signals to coordinate autophagy

FIGURE 1 | Distinct steps and core components of autophagy. (A) Different stages of canonical autophagy. (B) Ubiquitin-like conjugation systems involved in
phagophore biogenesis.
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induction, is made up of either ULK1 or ULK2 and 3 non-
catalytic subunits (ATG13, RBCC1, and ATGA1) (Hurley and
Young, 2017). Upon induction of autophagy, the ULK1 complex
becomes active and translocates to the omegasome, where it
exerts its function on PI3KC3-C1 (Mercer et al., 2018).

Elongation of the phagophore requires the concerted action of
two ubiquitin-like conjugation systems. Here, it is worth noting
that the ATG protein family includes two ubiquitin-like protein
members, ATG8/MLP3/GBRL (here denoted as LC3) and
ATG12 (Mohan and Wollert, 2018). Following translation, the
pro-LC3 proteins first need to be cleaved into their LC3-I
counterparts to expose a glycine residue at their C-terminus.
This event, which is catalyzed by the cysteine protease ATG4, is
necessary to become a substrate for ATG7, an E1-like enzyme
that can activate both LC3-I and ATG12. ATG7 in turn transfers
its activated ubiquitin-like substrates to ATG3 (in case of LC3-I)
or ATG10 (in case of ATG12), two E2-like enzymes. Next,
ATG12 is transferred onto ATG5 to form a complex with E3-
like activity that, upon interaction with the A16L1 dimer (Lystad
et al., 2019), is targeted to the autophagosomal membrane, where
it stimulates the ATG3-mediated conjugation of LC3-I to
phosphatidylethanolamine (PE) (Martens and Fracchiolla,
2020). This lipidated form of LC3, termed LC3-II, is the active
form of LC3 and plays an important role in phagophore
membrane expansion, cargo selection, and membrane closure
(Li and Zhang, 2019). Note that ATG4 can also delipidate LC3-II
to release this molecule from the autophagosomal membrane for
reuse (Nakatogawa, 2013).

The closed autophagosome needs to be transported to and
fused with the lysosome for digestion. These processes require
cytoskeletal filaments, motor proteins, RABs, SNAREs, tethering
factors, and lysosomal hydrolases. For a detailed overview of these
factors, which are not further elaborated on here, the reader is
referred to other dedicated reviews (Nakamura and Yoshimori,
2017; Yim and Mizushima, 2020; Zhao et al., 2021).

CARGO RECEPTORS FOR SELECTIVE
AUTOPHAGY

Depending on the nature of the substrate, autophagy can be
classified into selective or non-selective (bulk) autophagy
(Lamark and Johansen, 2021). In bulk autophagy, portions
of the cytoplasm are randomly sequestered, degraded, and
recycled to compensate for nutrient deficiencies. Selective
autophagy, however, rather serves to eliminate functionally
redundant or damaged cytoplasmic components, which are
selectively sequestered and degraded as a stress response or
quality control mechanism. Examples of selective autophagy
processes in mammalian cells include aggrephagy (protein
aggregates), ER-phagy (ER), ferritinophagy (ferritin),
glycophagy (glycogen), lipophagy (lipid droplets), lysophagy
(lysosomes), mitophagy (mitochondria), nucleophagy
(nuclear fragments), pexophagy (peroxisomes), ribophagy
(ribosomes), xenophagy (bacteria and viruses), and
zymophagy (zymogen granules) (Gatica et al., 2018; Gubas
and Dikic, 2021).

Both selective and bulk autophagy utilize the same core
autophagy machinery. However, selective autophagy
pathways require the additional action of specific
autophagy receptors (SARs) including, among others,
BNIP3, BNI3L, CACO2, FUND1, NBR1, OPTN, RETR1,
and SQSTM (Figure 2A) (Gubas and Dikic, 2021). SARs
can act either independently or cooperatively to bridge
substrates to phagophores (Kirkin et al., 2009; Cemma
et al., 2011). Therefore, they possess a cargo-binding
domain as well as an LC3-interacting region. Given that
autophagic substrates are frequently ubiquitinated, the
cargo-binding domain is often a ubiquitin-binding domain
(Kirkin and Rogov, 2019). Specific examples of such
canonical SARs include SQSTM, NBR1, OPTN, and
CACO2 (Kim et al., 2016). Importantly, the specificity,
activity, and stability of most SARs are controlled by a
diverse range of post-translational modifications (e.g.,
phosphorylation, ubiquitination, acetylation) and structural
changes (e.g., oligomerization) (Gubas and Dikic, 2021),
which may vary within different cell types or under
specific environmental conditions.

CARGO RECEPTORS FOR PEXOPHAGY

To maintain peroxisome functionality, the superfluous and
dysfunctional organelles need to be selectively removed
through activation of a specialized form of autophagy, called

FIGURE 2 | Selective autophagy pathways and pexophagy receptors.
(A) Types of selective autophagy. (B) Cargo receptors involved in selective
pexophagy.

Frontiers in Cell and Developmental Biology | www.frontiersin.org December 2021 | Volume 9 | Article 8140473

Li et al. The Peroxisome-Autophagy Redox Connection

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


pexophagy (Nordgren et al., 2013). Currently, there is good
evidence that, in mammalian cells, pexophagy can occur
through both ubiquitin-dependent and -independent
mechanisms (Figure 2B) (Li and Wang, 2021).

Evidence that ubiquitin can indeed function as a self-removal
signal for peroxisomes was obtained from an elegant proof-of-
concept study showing that heterologous expression of
peroxisomal membrane protein (PMPs)-ubiquitin fusion
proteins in COS-7 or HeLa cells triggered pexophagy on
condition that the ubiquitin moiety was facing the cytosol
(Kim et al., 2008). Currently, the autophagy receptors SQSTM
and NBR1 are both recognized to participate in this process (Kim
et al., 2008; Deosaran et al., 2013; Germain and Kim, 2020).
However, given that 1) exogenous expression of NBR1, but not
SQSTM, promotes peroxisome clustering and lysosome targeting,
2) SQSTM increases the efficiency of NBR1-mediated pexophagy,
and 3) SQSTM is not required for pexophagy upon NBR1
overexpression, their precise roles may differ (Deosaran et al.,
2013). In addition, it cannot be ruled out that the relative
contribution of NBR1 and SQSTM (or any other SAR) to
pexophagy varies depending on the initial stimulus. In this
context, it is worthwhile noting that in oxidative stress-
induced pexophagy the contribution of SQSTM appears to be
more important than that of NBR1 (Zhang et al., 2013; Jo et al.,
2020b). Also, for a long time, it was unclear which endogenously
ubiquitinated protein was serving as a prime recruitment factor
for the SARs involved in pexophagy. Currently, it is common
knowledge that PEX5, the cycling import receptor for
peroxisomal matrix proteins, plays an active role in this
process (Subramani, 2015; Li and Wang, 2021). This
association is mainly based on the combined observations that
1) after delivery of its cargo into the peroxisome lumen, the
protein is monoubiquitinated on a conserved cysteine residue
(Cys11 in human PEX5) in order to be extracted from the
peroxisomal membrane by the receptor export machinery
(Carvalho et al., 2007; Francisco et al., 2017), 2) peroxisome-
associated PEX5 can also be ubiquitinated at Lys209 in response
to H2O2 treatment (Zhang et al., 2015), and 3) conditions
resulting in an accumulation of (mono)ubiquitinated PEX5 on
the peroxisomal membrane trigger peroxisome removal
(Nordgren et al., 2015; Zhang et al., 2015; Lee et al., 2018).
Importantly, these findings do not exclude that other
ubiquitinated peroxisome-associated proteins may also be
involved. Here, it should be noted that, besides peroxisome-
associated PEX5, also PMP70 is ubiquitinated during amino
acid starvation (Sargent et al., 2016). In addition, it is
currently accepted that, under basal conditions, the
ubiquitination state of PMPs is maintained at a low level by
the peroxisome-associated pool of USP30, a ubiquitin-specific
protease (Marcassa et al., 2018; Riccio et al., 2019).

Pexophagy can also take place in a ubiquitin-independent
manner. Indeed, LC3-II can be recruited to the peroxisomal
membrane through direct or indirect interactions with PEX14
or PJVK (Hara-Kuge and Fujiki, 2008; Jiang et al., 2015a; Li et al.,
2017; Defourny et al., 2019). PEX14 is a peroxisomal membrane
protein that normally functions as a docking factor for cargo-
loaded PEX5 (Fransen et al., 1998), and PJVK is a redox-sensitive

peroxisome-associated protein involved in sound-induced
peroxisome proliferation in auditory hair cells (Defourny
et al., 2019). Under conditions of starvation, where PEX5 is
mostly cargo-unloaded, PEX14 can interact with LC3-II,
thereby promoting peroxisome degradation (Hara-Kuge and
Fujiki, 2008). In a follow-up study, the same authors reported
that, upon starvation, PEX14 can also interact with NBR1 and
SQSTM1, thereby (most likely) triggering conformational
changes in PEX14 and increasing its affinity for LC3-II (Jiang
et al., 2015b). Finally, large-scale protein-protein interaction
studies have uncovered that PEX14 can also interact with
TNKS1 and TNKS2, which were subsequently demonstrated to
localize to peroxisomes and promote pexophagy under amino
acid starvation conditions (Li et al., 2017). Given that TNKS1 and
TNKS2 can also interact with ATG9A, an autophagosomal
protein that promotes phagophore membrane growth
(Nishimura and Tooze, 2020), it was suggested that the
PEX14-TNKS/2-ATG9A complex may function as a non-
canonical pexophagy receptor upon nutrient starvation (Li
et al., 2017).

TRIGGERS AND SIGNALING PATHWAYS
CONTROLLING (SELECTIVE) AUTOPHAGY

Autophagy serves a critical role in stress response and quality
control networks, and imbalances in this process have been
recognized as an important contributor to disease states such
as neurodegeneration, cardiac ischemia-reperfusion, liver disease,
Crohn’s disease, and infections (Murrow and Debnath, 2013).
Major cellular stresses that can be linked to autophagy include
nutrient and growth factor deprivation, hypoxia, ER stress, DNA
damage, and oxidative stress. In the following subsections, we
briefly outline how each of these factors can promote autophagy.
For more detailed information, we refer the reader to other
reviews.

Nutrient Deprivation
The basic processes underlying autophagy are controlled by
complex signaling pathways. Key regulators include the
mechanistic target of rapamycin complex 1 (mTORC1) and
AMP-activated protein kinase (AAPK), two kinases whose
activities respectively inhibit and stimulate autophagy
through a coordinated phosphorylation of ULK1 (Egan
et al., 2011; Kim et al., 2011): mTORC1 integrates signals
from growth factors, nutrients, oxygen levels, and energy
status; and AAPK is a sensor and regulator of cellular
energy status (Alers et al., 2012). Both mTORC1 and AAPK
are master regulators of cell metabolism, thereby linking
autophagy to this process (Murrow and Debnath, 2013;
Deleyto-Seldas and Efeyan, 2021). However, their actions
are in general antagonistic. For example, nutrient
deprivation, a condition well-known to induce autophagy,
inhibits and stimulates the activities of mTORC1 and
AAPK, respectively (Russell et al., 2014). A starvation-
induced activation of AAPK also results in phosphorylation
and activation of TSC2, a GTPase activating protein that
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functions as a key negative regulator of mTORC1 through the
TSC complex-RHEB signaling axis (Inoki et al., 2003).

Hypoxia
Hypoxia, a condition in which oxygen availability is limited, is a
significant contributor to cell damage in many acute (e.g.,
ischemic stroke) and chronic (e.g., pulmonary hypertension)
disease processes (Lee et al., 2019). Hypoxia can induce
autophagy through activation of multiple oxygen-sensitive
signaling pathways (Fang et al., 2015). One such pathway
involves hypoxia-inducible factors (HIFs). Under normoxic
conditions, transcription factors belonging to the HIF protein
family are rapidly degraded by the ubiquitin-proteasome system.
However, under hypoxic conditions, these proteins are stabilized
and translocated to the nucleus to initiate the transcription of
genes involved in cellular adaptation and survival, including a set
of genes essential for autophagy (e.g., ATG5, ATG7, ATG9A,
BECN1, BNIP3, and BNI3L) (Daskalaki et al., 2018). In addition,
HIF1 can act as regulator of autophagy by altering the expression
levels of genes involved in glucose metabolism (Kierans and
Taylor, 2020). Finally, autophagy can also be induced in a
HIF-independent manner through hypoxic stress-induced
activation of 1) the MK08 signaling pathway (Frazier et al.,
2007), 2) the AAPK/TSC2 pathway (Papandreaou et al., 2008),
or 3) the unfolded protein response in the ER (Rouschop et al.,
2010; Yang et al., 2019). Note that, under normoxic conditions,
ER stress can lead to either autophagy stimulation or inhibition
(Rashid et al., 2015).

DNA Integrity
A third factor that can induce autophagy is diminished DNA
integrity caused by, for example, UV-sunlight or metabolically-
derived reactive oxygen species (ROS) (Juretschke and Beli,
2021). Such insults trigger a set of DNA damage response
signaling pathways that lead to activation of PARP1, FOXO3,
ATM, and P53: 1) PARP1 is a predominantly nuclear enzyme
that converts NAD+ into poly(ADP-ribose), and hyperactivation
of this enzyme causes NAD+ and ATP depletion, a condition
promoting AAPK-mediated autophagy activation (Czarny et al.,
2015); 2) FOXO3 is a transcription factor known to control the
expression levels of multiple autophagy-related genes, including
MLP3B and BNIP3, and binding of FOXO3 to the protein kinase
ATM triggers autophosphorylation and activation of the latter
protein (Rodriguez-Rocha et al., 2011); 3) activation of ATM
triggers the initiation of a phosphorylation cascade that regulates
the activity of various downstream targets, including AAPK and
P53 (Rodriguez-Rocha et al., 2011); and 4) phosphorylation of
P53, a multifunctional transcription factor, results in a
transcriptional upregulation of TSC2 and PTEN, a negative
regulator of PI3K signaling (Rodriguez-Rocha et al., 2011). In
the end, all these events contribute to suppression of mTORC1
activity.

Oxidative Stress
Nutrient and growth factor deprivation, hypoxia, ER stress, and
DNA damage can all be linked to perturbations in the cellular
redox balance, another autophagy-modulating factor (Li et al.,

2015; Sedlackova and Korolchuk, 2020). Indeed, physiologically
relevant oxidants such as H2O2 can oxidatively modify proteins
that are directly or indirectly involved in autophagy regulation
and execution, thereby potentially effecting their localization,
binding affinities, and/or activities (Sedlackova and Korolchuk,
2020). For example, exposure of cells to H2O2 can 1) upregulate
the transcriptional expression of BECN, BNIP3, BNI3L, MLP3C,
and SQSTM through activation of HIF1, P53, FOXO3, NFKB,
and NF2L2 (Li et al., 2015), 2) activate PI3K signaling through
inactivation of PTEN (Koundouros and Poulogiannis, 2018), 3)
suppress mTORC1 activity through activation of ATM and
AAPK (Wible and Bratton, 2018), and 4) oxidize and inhibit
ATG4 (Wible and Bratton, 2018). For the underlying molecular
mechanisms and physiological consequences, we refer the reader
to Redox Regulation of Autophagy. Importantly, although it is
generally thought that oxidative stress always induces autophagy
as part of a cellular safeguard mechanism to limit oxidative injury,
also other critical factors (e.g., the amount of ROS, nutrient
availability, etc.) determine whether autophagy is effectively
induced or suppressed under conditions of oxidative stress
(Kma and Baruah, 2021).

TRIGGERS AND SIGNALING PATHWAYS
CONTROLLING PEXOPHAGY

Over the past decade, multiple studies have shown that
pexophagy can be triggered by various stress stimuli including
amino acid depletion (Li et al., 2017; Dutta et al., 2021), oxidative
stress (Zhang et al., 2013; Jo et al., 2015; Zhang et al., 2015;
Tripathi et al., 2016; Lee et al., 2018; Defourny et al., 2019; Jo et al.,
2020b; Daussy et al., 2020; Dutta et al., 2021), hypoxia (Walter
et al., 2014; Mu et al., 2020), viral infection (Daussy et al., 2020),
and dysfunctional peroxisome biogenesis (Yamashita et al., 2014;
Nordgren et al., 2015; Dahabieh et al., 2021; Wei et al., 2021). In
the following subsections, these triggers will be discussed in more
detail (Figure 3).

Amino Acid Starvation
Free amino acids play a vital role in cellular metabolism.
Examples include but are not limited to protein synthesis and
energy metabolism. Amino acids activate mTORC1 signaling and
amino acid starvation suppresses this pathway, thereby inducing
autophagy and pexophagy (Germain and Kim, 2020; Deretic and
Kroemer, 2021). On one hand, starvation-induced pexophagy can
be linked to PEX2, a peroxisomal membrane-associated E3
ubiquitin ligase that is rapidly degraded by the proteasome
under basal conditions (Sargent et al., 2016). Upon inhibition
of mTORC1 (e.g., during amino acid starvation or upon
rapamycin treatment), PEX2 is stabilized and promotes PMP
ubiquitination, thereby triggering pexophagy (Sargent et al.,
2016). On the other hand, starvation-induced pexophagy can
be further enhanced by a PEX14-dependent recruitment of
TNKS1/2 onto the peroxisomal membrane (Li et al., 2017).
The in vivo observation that hepatic peroxisome content is
dramatically decreased in rats fed with a low protein diet (Van
Zutphen et al., 2014) is in line with the idea that there is indeed a
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causal link between amino acid starvation and pexophagy.
However, direct effectors contributing to pexophagy upon
mTORC1 inhibition remain to be identified. Nevertheless, in
this regard, it must be noted that a very recent study
demonstrated that 1) MARH5, an E3 ubiquitin ligase
promoting mitophagy, can also be recruited to the
peroxisomal membrane through interaction with the PMP
import receptor PEX19 and its membrane docking protein
PEX3, 2) recruitment of this E3 ligase to the peroxisomal
membrane results in the ubiquitination of PMP70, and 3)
MARH5 is playing an important role in mTORC1 inhibition-
mediated pexophagy (Zheng et al., 2022). In addition, it is known
that prolonged nutrient deprivation causes a significant decrease
and increase in the intracellular GSH (Desideri et al., 2012) and
H2O2 levels (Scherz-Shouval et al., 2007b; Chen et al., 2009),
respectively.

Oxidative Stress
Over the last decade, multiple studies have suggested a strong
link between oxidative stress and pexophagy, both at the
cellular and organismal level. Examples include treatment of
Chang liver cells with the chemical 1,10-phenanthroline (Jo
et al., 2015), addition of H2O2 to HepG2 or HEK-293 cells
(Zhang et al., 2013), treatment of mouse embryonic fibroblasts
with 3-methyladenine (Ivashchenko et al., 2011), loss of
GRP75 in neuroblastoma cells (Jo et al., 2020b),
peroxisomal KillerRed-mediated ROS production in NIH/
3T3 cells (Chen et al., 2020), suppression of catalase

expression or activity in serum-starved HepG2 or RPE1
cells (Lee et al., 2018), and prolonged fasting of catalase-
deficient mice (Dutta et al., 2021). Note that catalase is a
major peroxisomal matrix protein that catalyzes the
degradation of H2O2. Although the underlying molecular
details have not yet been fully elucidated, different types of
oxidative stressors can induce pexophagy through distinct
mechanisms. For example, while it has been claimed that
external H2O2 triggers pexophagy through activation of
ATM (Zhang et al., 2015; Tripathi et al., 2016), this kinase
appears to be dispensable for the removal of peroxisomes that
are oxidatively damaged by activation of peroxisomal
KillerRed (Chen et al., 2020). Here, it is important to point
out that 1) activation of ATM not only suppresses mTORC1
activity (Wible and Bratton, 2018), but also triggers
phosphorylation of PEX5 at Ser 141, an event that
subsequently results in its ubiquitination at Lys 209 and the
recruitment of SQSTM to the peroxisomal membrane (Zhang
et al., 2015; Tripathi et al., 2016), and 2) intraperoxisomal ROS
production by KillerRed triggers a HSP7C-mediated
recruitment of CHIP, a ubiquitin E3 ligase, onto oxidatively
stressed peroxisomes, thereby promoting their selective
ubiquitination and autophagic degradation (Chen et al.,
2020). Finally, it is worth noting that pexophagy in
response to oxidative stress is no mammalian-specific
phenomenon. For example, it has been reported that
exposure of plant leaves to cadmium induces peroxisomal
glycolate oxidase activity (McCarthy et al., 2001), which in

FIGURE 3 | Triggers and signaling pathways controlling pexophagy.
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turn leads to increased intraperoxisomal H2O2 levels and
pexophagy induction (Calero and Muñoz et al., 2019).

Hypoxia
Given that peroxisomal respiration can be responsible for up to
20% of the oxygen consumption in tissues such a liver (De Duve
and Baudhuin, 1966), it may not come as a surprise that limited
oxygen availability (e.g., as a consequence of inadequate vascular
networks in solid tumors) and hypoxia mimicking conditions
(e.g., upon treatment of cells with HIF prolyl hydroxylase
inhibitors such as DMOG) have been found to trigger
pexophagy in an EPAS1-dependent manner, at least in certain
cell types (Walter et al., 2014; Schönenberger et al., 2015; Mu
et al., 2020). EPAS1 is a hypoxia-inducible transcription factor
that, under normoxic conditions, is rapidly targeted for
proteasomal degradation through hydroxylation by oxygen-
sensing prolyl hydroxylases and subsequent recruitment of the
von Hippel-Lindau (VHL) ubiquitination complex (Påhlman and
Mohlin, 2018). In vivo evidence suggested that hypoxia-induced
pexophagy involves both NBR1 and SQSTM (Walter et al., 2014).
However, although there is evidence that hypoxia can induce ROS
formation (Paddenberg et al., 2003; Rathore et al., 2008), the
precise mechanisms underlying EPAS1-mediated pexophagy are
unclear. Intriguingly, another study reported that peroxisomes
are intact and even essential for growth of K562 and HEK-293
cells under hypoxia (Jain et al., 2020). Importantly, these
researchers also demonstrated that this phenotype, which was
attributed to the organelle’s role in maintenance of membrane
fluidity, strongly depended on the medium lipid content and cell
seeding conditions (Jain et al., 2020). As such, these seemingly
conflicting data may be explained by differences in experimental
conditions.

Viral and Bacterial Infections
Two recent studies have shown that pexophagy can also be
modulated by pathogenesis-related proteins. One study
demonstrated that the human immunodeficiency virus type
1 (HIV1) envelope glycoprotein (Env) has the potential to
induce pexophagy in non-infected bystander CD4+ T cells
(Daussy et al., 2020). The authors also demonstrated that HIV1
Env can provoke excessive ROS production, a condition that
eventually leads to apoptosis thereby very likely contributing
to the acquired immunodeficiency syndrome in HIV1-infected
patients (Daussy et al., 2020). The other study showed that,
upon infection of macrophages, Mycobacterium tuberculosis
Rv3034c, a putative acetyltransferase, can 1) suppress
pexophagy through phosphorylation of mTORC1, an event
associated with the down-regulation of pexophagy-associated
proteins (e.g., ATG5, NBR1, and SQSTM), and 2) activate
peroxisome proliferator activated receptor-γ, a transcription
factor that initiates the transcription of peroxisome biogenesis
(e.g., PEX3, PEX5, and PEX19) and proliferation (e.g.,
PEX11B, FIS1, and DNM1L) factors (Ganguli et al., 2020).
These changes are likely to favor redox homeostasis, thereby
allowing the parasite to avoid ROS-mediated killing (Ganguli
et al., 2020). Once again, the precise underlying molecular
mechanisms remain unclear.

Dysfunctional Peroxisome Biogenesis
Another emerging pexophagy trigger is dysregulated PMP or
matrix protein import. For example, the peroxisomal membrane
proteins PEX3 and PEX16 are essential for PMP assembly, and
both overexpression of PEX3 (Yamashita et al., 2014) or silencing
of PEX16 (Wei et al., 2021) have been shown to induce pexophagy
in an NBR1-and SQSTM-dependent manner, respectively. In
addition, conditions leading to an accumulation of (mono)
ubiquitinated PEX5 on the peroxisomal membrane (Nordgren
et al., 2015; Park et al., 2021b; Dahabieh et al., 2021) can also
trigger pexophagy. Note that the latter observation strongly
indicates that peroxisome-associated monoubiquitinated PEX5
acts as a key surveillance factor for selective elimination of
peroxisomes with a defective PEX5 export machinery
(Nordgren et al., 2015; Law et al., 2017; Nazarko, 2017).

REDOX REGULATION OF AUTOPHAGY

Currently, it is widely accepted that autophagy represents a prime
mechanism of protection against oxidative damage (Ornatowski
et al., 2020; Yun et al., 2020). In addition, autophagic activity is
governed by complex redox-mediated signaling pathways that,
depending on the context, exert positive or negative regulatory
activities at the transcriptional and/or protein level (Scherz-
Shouval et al., 2007a; Park et al., 2021a; Redza-Dutordoir and
Averill-Bates, 2021; Zhou et al., 2021). In the following
subsections, we first briefly explain the mechanisms behind
H2O2 signaling. Next, we elaborate further on how autophagic
activity can be directly (e.g., through oxidative modification of
autophagy-related proteins) or indirectly (e.g., through oxidative
modification of transcription factors or signaling proteins)
modulated by H2O2, the major ROS in redox regulation of
biological activities (Lismont et al., 2019b; Sies and Jones, 2020).

The Concept of H2O2 Signaling
A main mechanism by which H2O2 achieves specificity as
signaling molecule is through direct oxidation of thiolate
groups (RS−) in target proteins (Sies and Jones, 2020). These
groups can react with H2O2 to form sulfenic acid (RSOH), an
intermediate in inter- or intramolecular disulfide bond formation
that–in the presence of high H2O2 concentrations–can be further
oxidized to sulfinic (RSO2H) or sulfonic (RSO3H) acid. The latter
modification is irreversible and causes permanent oxidative
damage. Disulfide bond formation can act as a molecular
switch to regulate the activity, localization, and stability of
redox-sensitive proteins. Importantly, protein thiols with a low
reactivity towards H2O2 can also form disulfide bonds through a
redox relay mechanism whereby thiol peroxidases shuttle
oxidative equivalents from H2O2 to other target proteins
(Stöcker et al., 2018).

H2O2 as a Modulator of ATG Activity
Accumulating evidence points to H2O2 as a potent modulator of
ATG activity (Lizama-Manibusan and McLaughlin, 2013). For
example, it has been demonstrated that the human cysteine
proteases ATG4A and ATG4B are direct targets for oxidation
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by H2O2, thereby rendering them enzymatically inactive through
formation of inter- or intramolecular disulfide bridges (Scherz-
Shouval et al., 2007b; Zheng et al., 2020). Given the dual function
of ATG4 as pro-LC3 cleavage and LC3-II delipidating enzyme
(Figure 1), these activities need to be tightly controlled to ensure
LC3-I lipidation and autophagy progression when cells are
exposed to oxidative insults. To cope with this dual role, it has
been proposed that 1) the oxidative modification of ATG4 is
mainly taking place at autophagosomes in close vicinity to H2O2-
generating platforms such as mitochondria (Scherz-Shouval et al.,
2007b), and 2) the ATG4-dependent cleavage of pro-LC3 into
their LC3-I counterparts is more efficient than LC3-II
deconjugation (and thus less impacted by partial inhibition of
ATG4 activity) (Wible and Bratton, 2018). Nevertheless,
although disulfide-bonded ATG4 can be efficiently reduced by
the thioredoxin system, it can be expected that harsh or long-term
exposure to oxidative stress will eventually fully inhibit ATG4
activity, thereby rather blocking than inducing LC3 lipid
conjugation and autophagy (Wible and Bratton, 2018). Besides
ATG4, also ATG3, ATG7, and ATG10 have been demonstrated
to be redox-sensitive (Filomeni et al., 2010; Frudd et al., 2018).
Under basal conditions, ATG3 and ATG7 form inactive
thioester-bonded complexes with LC3; upon stimulation of
autophagy, ATG3 and ATG7 become active and dissociate
from LC3, thereby freeing their catalytic thiols; and under
oxidative stress conditions, the non-LC3-shielded thiols in
ATG3 and ATG7 form intermolecular disulfide linkages,
thereby preventing LC3 lipidation, autophagosome maturation,
and autophagy (Frudd et al., 2018). In analogy, it can be expected
that the catalytic cysteine of ATG10, another E2-like enzyme,
displays a redox-sensitive behavior (Filomeni et al., 2010).
However, despite the observation that ATG10 is sensitive to
oxidation by H2O2, this has apparently no impact on the
conjugation of ATG5 to ATG12, at least not under the
conditions tested (Frudd et al., 2018).

H2O2 as a Modulator of SARs Activity
Another important redox-regulated protein in autophagy is the
autophagy receptor SQSTM. This protein can undergo self-
polymerization through intermolecular disulfide bond
formation, thereby facilitating cargo selection and degradation
through high-avidity binding to LC3-II on nascent autophagic
membranes (Cha-Molstad et al., 2018). The formation of such
disulfide-linked conjugates is promoted by oxidative stress
conditions, thereby activating prosurvival autophagy (Carroll
et al., 2018). Whether or not the other SARs have the capacity
to form similar disulfide-linked complexes, remains to be
established.

H2O2 as a Modulator of Transcriptional
Autophagy Regulation
H2O2-induced posttranslational modifications can also modulate
the stability, subcellular localization, and/or activity of many
transcription factors (Marinho et al., 2014; Li et al., 2015).
Here, we briefly summarize the main impact of H2O2 on
HIF1A, P53, NF2L2, and FOXO, all of which have been

implicated in autophagy regulation. For more details regarding
the complex molecular mechanisms involved in the adaptive
responses, we refer the reader to the references cited. HIF1A is
the main driver of transcriptional responses to hypoxia, and
H2O2-induced activation of HIF1A promotes the transcription
of BNIP3 and BNI3L, thereby promoting selective mitophagy
(Fan et al., 2019; Asgari et al., 2021). The tumor suppressor
protein P53 can, depending on its intracellular location (e.g.,
cytoplasm versus nuclear) and the cellular environment (e.g.,
normal physiological conditions versus nutrient starvation or
hypoxia), modulate autophagy at multiple levels and through
diverse mechanisms (Hu et al., 2019). For example, nuclear-
localized P53 can directly upregulate the expression levels of
TSC2 and the β-scaffolding subunit of AAPK, thereby enhancing
autophagy through inhibition of mTORC1 signaling; and
cytoplasmic P53 can inhibit autophagosome formation
through binding to RBCC1, an A16L1 interactor and
component of the ULK complex (Hu et al., 2019). NF2L2 is a
transcription factor that controls the expression of genes
containing an antioxidant response element in their promoter,
such as SQSTM (Puissant et al., 2012). H2O2 can enhance the
expression, stability, and nuclear localization of NF2L2 through
sequestration of oxidized KEAP1, a thiol-rich protein that
promotes the continuous ubiquitin-mediated degradation of
NF2L2 under basal conditions (Li et al., 2015; Yin et al.,
2015). Finally, H2O2 can also activate FOXO transcription
factors, which stimulate the transcription of LC3, BNIP3, and
ATG12 (Sengupta et al., 2009; Li et al., 2015; Deng et al., 2021a).

H2O2 as aModulator of Autophagy Signaling
Pathways
Finally, H2O2 can also indirectly promote or inhibit autophagy
via modulation of the AAPK, PI3K, and mitogen-activated
protein kinase (MK) signaling pathways. Importantly, the
outcome is context specific. For example, 1) exposure of
HEK-293 cells to H2O2 results in S-glutathionylation of
Cys299 and Cys304 (likely Cys297 and Cys302 in UniProt
ID P54646) in AAPK2, a catalytic subunit of AAPK, and 2)
these oxidative modifications stimulate AAPK activity through
release of the autoinhibitory domain from its catalytic core,
even under non-ATP depleting conditions (Zmijewski et al.,
2010). On the other hand, oxidation of Cys130 and Cys174 has
been reported to interfere with AAPK activity under energy
starvation conditions, at least in mouse cardiomyocytes (Shao
et al., 2014). For PI3K, it was shown that the α- and β-catalytic
subunits respectively inhibit and promote autophagy in
response to moderate and high levels of ROS (Kma and
Baruah, 2021). The α-subunit inhibits autophagy through
activation of AKT, a serine/threonine kinase that activates
mTORC1 activity and arrests autophagic gene expression; and
the β-subunit promotes autophagy through stimulating the
activities of PI3KC3-C1 and FOXO (Kma and Baruah, 2021).
High levels of ROS can also potentiate the PI3K/AKT pathway
through inactivation of PTEN, a phosphatase that counteracts
PI3K signaling through dephosphorylation of
phosphatidylinositol (3,4,5)-trisphosphate to
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phosphatidylinositol (4,5)-bisphosphate (Koundouros and
Poulogiannis, 2018).

MKs are a group of ROS-regulated serine-threonine protein
kinases that play a role in diverse cellular processes (Son et al.,
2011), including autophagy (Cagnol and Chambard, 2010;
Zhou et al., 2015; He et al., 2018). This class of kinases can
be grouped in three subclasses: the extracellular signal-
regulated kinases, the c-jun N-terminal kinases, and the p38
kinases (Son et al., 2011; Sui et al., 2014). In general, these MKs
can be activated by various oxidative stressors, including H2O2

(Son et al., 2011), and this subsequently triggers the initiation
of complex signaling cascades that eventually modulate,
among other processes, autophagic activity. For example,
ROS-induced activation of the extracellular signal-regulated
kinase pathway can induce adaptive and protective autophagy-
associated responses in urinary protein-irritated renal tubular
epithelial cells (Deng et al., 2021b); c-jun N-terminal kinase
activation can enhance autophagy through 1) upregulation of
LC3 (Sun et al., 2011) and DRAM1, a damage-regulated
autophagy modulator (Lorin et al., 2010), and 2) the
liberation of BECN1 from BCL2/B2CL1 (Zhou et al., 2011);
and ROS-induced activation of p38 can induce the expression
of various autophagy-related genes (McClung et al., 2010).

THE PEROXISOME-AUTOPHAGY
SIGNALING AXES

Peroxisomes act as master regulators of cellular lipid and H2O2

metabolism (Van Veldhoven, 2010; Lismont et al., 2015), and
emerging evidence hints changes in peroxisomal lipid or H2O2

metabolism have the potential to modulate autophagic activity
(Figure 4). Specifically, peroxisomal β-oxidation-derived acetyl-
CoA can downregulate autophagy by enhancing acetylation of the
mTORC1 subunit RPTOR, a process driving mTORC1 activation
(He et al., 2020); defects in peroxisomal β-oxidation can suppress
autophagy through redox imbalances associated with an
accumulation of very-long-chain fatty acids (VLCFAs)
(Fourcade et al., 2015; Launay et al., 2015); and (peroxisome-
derived) H2O2 can activate the peroxisomal pool of ATM
(Tripathi et al., 2016), an event that enhances 1) autophagic
flux through AAPK-TSC2-mediated suppression of mTORC1
activity, and 2) pexophagy through phosphorylation and
subsequent ubiquitination of the peroxisome-associated pool
of PEX5 (Zhang et al., 2013; Tripathi and Walker, 2016). At
first sight, these findings appear somewhat paradoxical. However,
this may highlight the complexity of the peroxisome-autophagy
signaling axis and point to the importance of other factors. For
example, it is well known that disturbances in peroxisomal fitness
are intrinsically linked to mitochondrial redox imbalances
(Fransen et al., 2017). In addition, we recently found that
peroxisomes with a dysfunctional H2O2 metabolism are not
necessarily predisposed to pexophagy, even though
peroxisome-derived H2O2 has the potential to oxidize redox-
sensitive cysteine residues in PEX5, PTEN, NFKB1, TF65, and
FOXO3 (Lismont et al., 2019a), all proteins whose activities can
be linked to pexophagy or autophagy regulation (Subramani,
2015; Füllgrabe et al., 2016; Koundouros and Poulogiannis, 2018).
Importantly, given that H2O2 shows a Janus-faced effect on
autophagy (see Redox Regulation of Autophagy), it remains to
be investigated whether the observed oxidative modifications lead
to autophagy stimulation or inhibition. In addition, it still must be
clarified if and to which extent other redox-sensitive autophagy-
related proteins can act as a target of peroxisome-derived H2O2.

THE OXIDATIVE STRESS-PEXOPHAGY
SIGNALING AXES

Oxidative stress is generally considered as one of the key
mediators of cellular aging, a process that coincides with a
decline in autophagic activity (Leidal et al., 2018) and a build-
up of peroxisomes with a disturbed H2O2 metabolism (Legakis
et al., 2002; Houri et al., 2020). Given that 1) in senescent cells,
peroxisomes accumulate excessive amounts of PEX5 on their
membranes (Legakis et al., 2002), 2) extraction of PEX5 from the
peroxisomal membrane requires monoubiquitination of the
protein at Cys11 (Carvalho et al., 2007), 3) Cys11 of human
PEX5 functions as a redox switch that modulates the protein’s
activity in response to intracellular oxidative stress (Apanasets
et al., 2014), and 4) excessive peroxisomal H2O2 production
decreases the intracellular levels of the (peroxisome-associated)

FIGURE 4 | The peroxisome-autophagy signaling axes.
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PEX5Cys11-ubiquitin thioester conjugate (Lismont et al., 2019a),
these findings point to an oxidative stress-induced decrease in
PEX5-mediated pexophagy. On the other hand, dysfunctional
autophagy/pexophagy will also lead to accumulation of SQSTM, a
SAR linking autophagy and NF2L2 signaling through KEAP1
sequestration (Jiang et al., 2015a; Bartolini et al., 2018). This in
turn enhances the expression of peroxisome proliferator-
activated receptor-γ coactivator-1α, a protein whose expression
is antioxidant response element-regulated (Gureev et al., 2019)
and causes peroxisomal remodeling and biogenesis (Bagattin
et al., 2010). As such, oxidative insults and defects in
autophagy can lead to an accumulation of oxidatively burned-
out peroxisomes, thereby fueling a vicious circle of oxidative
injury (Vasko and Goligorsky, 2013).

PEXOPHAGY AND DISEASE

Pexophagy acts as a global regulator of peroxisome homeostasis
and quality control and, as such, it does not come as a surprise
that perturbations in this process have been linked to multiple
disease conditions. Examples include the peroxisome biogenesis
disorders (Nazarko, 2017), cancer (Walter et al., 2014; Dahabieh
et al., 2018), lipopolysaccharide-induced acute kidney injury
(Vasko, 2016), malnutrition-associated liver steatosis (van
Zutphen et al., 2014), diabetes (Chu et al., 2020), noise-
induced hearing loss (Defourny et al., 2019), HIV1 infections
(Daussy et al., 2020), and neurodegenerative diseases such as
Alzheimer’s and Parkinson’s disease (Jo et al., 2020a). In the
following paragraphs, we outline these examples in more detail.

In case of peroxisome biogenesis disorders, it was suggested
that 1) in patients with mutations in genes coding for proteins
constituting the ubiquitin-PEX5 export machinery, the disease
phenotype is rather caused by excessive removal of peroxisomes
than by defects in the peroxisomal matrix protein import
machinery (Nazarko, 2017), and 2) low doses of autophagy
inhibitors improve peroxisomal matrix protein import and
peroxisome function without compromising cell viability (Law
et al., 2017). Unfortunately, these findings could not be confirmed
by others (Klouwer et al., 2021).

Both excessive and defective pexophagy have been linked to
cancer (Dahabieh et al., 2018). For example, loss of peroxisomes
due to enhanced pexophagy leads to metabolic alterations that
have been suggested to promote amalignant phenotype in human
clear cell renal cell carcinomas (Walter et al., 2014); and high
expression levels of PEX6, PEX26 or MTOR, three negative
regulators of pexophagy, have been associated with decreased
patient survival in diffuse large B-cell lymphoma, lung cancer and
melanoma cohorts. In the latter case, interference with the
function of these proteins increased pexophagy and thwarted
drug resistance in human melanoma and lymphoma cells
(Dahabieh et al., 2021).

Pexophagy was also found to protect auditory hair cells against
noise-induced oxidative damage (Defourny et al., 2019) and to
attenuate lipopolysaccharide-induced acute kidney injury (Vasko
et al., 2013; Vasko, 2016). In these conditions, the removal of
dysfunctional peroxisomes may serve a quality control function

to prevent ROS accumulation. On the other hand, enhanced
peroxisome turnover because of HIV1 Env expression (Daussy
et al., 2020) or mutations in GRP75 (Jo et al., 2020b) sensitize,
respectively bystander CD4+ T lymphocytes and neuronal cells to
oxidative injury, thereby potentially contributing to viral
spreading and the progression of Parkinson’s disease. Finally,
severe malnutrition-induced pexophagy contributes to hepatic
mitochondrial dysfunction (Van Zutphen et al., 2014), and short-
term inhibition of pexophagy benefits the health of pancreatic
β-cells through elevation of ether phospholipid biosynthesis and
by counteracting depletion of n-3 polyunsaturated fatty acids
after fat-feeding (Chu et al., 2020).

CONCLUSION AND PERSPECTIVES

Pexophagy is a complex cellular process that is tightly regulated at
multiple levels and by distinct stimuli. The data presented in this
review support the view that changes in the intracellular redox
state have the potential to balance this process through activity
modulation of autophagy-related proteins, transcription factors,
kinases, phosphatases, and PEX5. An increasing number of
studies started to examine the relationship between
peroxisomal H2O2 emission and pexophagy, with a focus on
the role of peroxisome-associated ubiquitin-PEX5. Major hurdles
that have slowed down these studies include the lack of 1) easily
accessible and reliable tools to monitor pexophagy in a dynamic
manner, 2) compounds that rapidly and selectively trigger
peroxisome degradation, and 3) study models that allow the
modulation of peroxisomal H2O2 production in a time- and
dose-dependent manner. Here, it is important to highlight that
traditional platforms for studying pexophagy mainly focus on
immunoblot and (immuno)cytochemistry analyses of key
autophagy and peroxisome markers, which only provide a
snapshot of a dynamic situation. In addition, unlike what is
sometimes thought, amino acid starvation-induced pexophagy is
a non-selective process, as also other kinds of cargo (e.g., portions
of the cytosol, endoplasmic reticulum, and mitochondria) are
sequestered during this type of “metabolic” autophagy (Deretic
and Kroemer, 2021; and references therein). Furthermore,
although there is mounting evidence that disturbances in
peroxisomal H2O2 metabolism can trigger pexophagy, some
frequently cited key experiments have been carried out by
treating cells with external H2O2 (Zhang et al., 2013), a
condition incomparable with intraperoxisomal H2O2

production (Lismont et al., 2021). As such, the recent
development of 1) a genetically modified human cell line in
which the intraperoxisomal production of H2O2 can be selectively
modulated in a dose- and time-dependent manner (Lismont
et al., 2019a), 2) a peroxisome-targeted variant of mKeima, a
pH-sensitive red fluorescent protein suitable for imaging
pexophagy in cellulo (Marcassa et al., 2018; Jo et al., 2020b),
and 3) new fluorescent probes for in vitro and in vivo
quantification of H2O2 (Ye et al., 2020), offers new
opportunities to dynamically monitor (e.g., by flow cytometry)
and study pexophagy flux in living cells in response to controlled
fluctuations in peroxisomal H2O2 levels.
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Despite the tremendous progress made in recent years,
additional work is needed to better understand the
peroxisome-autophagy redox connection and to sort out the
exact nature of the mechanisms underlying the seemingly
contradictory observations regarding the role of amino acid
starvation, oxidative stress, and hypoxia in pexophagy
regulation. Questions that deserve further research include but
are not limited to: Which proteins with an established role in
autophagy regulation are direct or indirect targets of peroxisome-
derived H2O2? How do the corresponding oxidative
modifications affect the activities of these proteins? Are the
cellular responses induced dose-, time-, and cell type-specific?
Do the in vitro studies recapitulate the in vivo situation?
Obtaining answers to these questions will not only help us to
unravel the molecular mechanisms underlying the Janus-role of
pexophagy in health and disease, but also aid researchers to
screen for pharmacological pexophagy regulators that can be used
in a clinical setting to compensate for genetic and age-related
changes in peroxisome homeostasis.
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GLOSSARY

AAPK AMP-activated protein kinase

ATG autophagy-related protein

ATM ataxia telangiectasia mutated

BAKOR beclin 1-associated autophagy-related key regulator

BCL B-cell CLL/lymphoma

B2Cl Bcl-2-like protein

BECN beclin

BNIP ATM, ataxia telangiectasia mutated; BCL2/adenovirus E1B 19 kDa
protein-interacting protein

BNI3L BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like

CACO calcium-binding and coiled-coil domain-containing protein

CHIP C-terminus of Hsc70-interacting protein

CMA chaperone-mediated autophagy

DMOG dimethyloxalylglycine

DNM1L dynamin-1-like protein

DRAM DNA damage-regulated autophagy modulator protein

Env envelope glycoprotein

EPAS endothelial PAS domain-containing protein

ER endoplasmic reticulum;

FIS fission protein

FOXO forkhead box protein

FUND FUN14 domain-containing protein

GRP stress-70 protein

HIF hypoxia-inducible factor

HIV1 human immunodeficiency virus type 1

HSP7C constitutive heat shock protein 70

HSC70 heat shock cognate 70 kDa protein

HSPA heat shock protein family A

KEAP Kelch-like ECH-associated protein

LAMP lysosome-associated membrane glycoprotein

LC3 microtubule associated protein 1 light chain 3

MARH5 membrane-associated RING-CH protein V

MK mitogen-activated protein kinase

MLP3 microtubule-associated proteins 1A/1B light chain

NBR next to BRCA1 gene protein

mTORC mechanistic target of rapamycin complex

NF2L2 nuclear factor erythroid 2-related factor

NFKB nuclear factor NF-kappa-B

NRBF nuclear receptor-binding factor

OPTN optineurin

P53 cellular tumor antigen p53

PARP poly (ADP-ribose) polymerase

PE phosphatidylethanolamine

PEX peroxin

PI3KC phosphatidyl 3-kinase complex

PI3P phosphatidylinositol 3-phosphate

PI3R4 phosphoinositide 3-kinase regulatory subunit

PJVK pejvakin

PK3C phosphatidylinositol 3-kinase catalytic subunit

PMP peroxisomal membrane protein

PTEN Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-
specificity protein phosphatase

RAB RAS-associated binding

RBCC RB1-inducible coiled-coil protein

RETR reticulophagy regulator

RHEB RAS homologue enriched in brain

ROS reactive oxygen species

RPTOR regulatory-associated protein of mTOR. SAR, specific autophagy
receptor

SNARE soluble N-ethylmaleimide-sensitive fusion protein attachment
receptor

SQSTM sequestosome

TF transcription factor

TNKS poly (ADP-ribose) polymerase tankyrase

TSC tuberin

ULK UNC-51 like autophagy activating kinase

USP ubiquitin carboxyl-terminal hydrolase

VHL Von Hippel-Lindau

VLCFA very-long-chain fatty acid
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