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Abstract

The inflammatory response to joint injury has been thought to play a key role in the develop-

ment of osteoarthritis. In this preclinical study, we hypothesized that synovial fluid presence

of inflammatory cytokines, as well as altered loading on the injured leg, would be associated

with greater development of macroscopic cartilage damage after an ACL injury. Thirty-six

Yucatan minipigs underwent ACL transection and were randomized to: 1) no further treat-

ment, 2) ACL reconstruction, or 3) scaffold-enhanced ACL restoration. Synovial fluid sam-

ples and gait data were obtained pre-operatively and at multiple time points post-

operatively. Cytokine levels were measured using a multiplex assay. Macroscopic cartilage

assessments were performed following euthanasia at 52 weeks. General estimating equa-

tion modeling found the presence of IL-1α, IL-1RA, IL-2, IL-4, IL-6, and IL-10 and MMP-2,

MMP-3, MMP-12, and MMP-13 in the synovial fluid was associated with better cartilage out-

comes. Higher peak pressure for the surgical hind leg and contralateral hind leg aligned with

worse cartilage outcomes. A support vector machine built with synovial fluid and gait metrics

also demonstrated cytokine presence was predictive of better cartilage outcomes. In conclu-

sion, this preclinical analysis suggests that synovial fluid devoid of cytokines may be a possi-

ble indicator that cartilage is more at risk of becoming pathologic after joint injury.

Introduction

Nearly 200,000 ACL tears occur each year in the United States [1]. Of the individuals who

experience such a tear, about half will develop posttraumatic osteoarthritis (PTOA) in one to

two decades [2]. This outcome discrepancy elicits two questions: (1) Why do some individuals

with seemingly similar medical histories develop PTOA while others do not? (2) More practi-

cally, are there biomarkers that can predict PTOA outcomes following injury so earlier inter-

vention can be initiated? While the first question is undoubtedly important, the second

question, being more targeted, is the focus of this study.

Biochemical markers are a longstanding osteoarthritis (OA) biomarker category. In partic-

ular, serum and urine biochemical markers (in combination with MR imaging) have been
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combined to produce promising OA phenotype classification systems [3]. These efforts have

led to mounting evidence that urinary CTX-II and serum MMP-1, MMP-3, COMP, and hya-

luronan have some predictive value for OA in addition to their classification uses [4]. Beyond

these media, there has been growing interest in synovial fluid biomarkers. Although these sig-

natures have been moderately successful in classifying OA burden [4, 5], they failed to predict

OA outcomes [6]. However, these synovial fluid studies have shortcomings in that they either

had insufficient quantities of most assayed targets, or they relied too heavily on imaging as a

proxy for progression of joint disease [5, 6]. Notably, one study found that synovial fluid levels

of MMP-3, TIMP-2, and VEGF prior to surgical incision for injury-related arthroscopy mod-

erately predicted patient pain scores five years postoperatively [7]. These inconsistent findings

suggest that the predictive capacity of synovial fluid biomarkers has yet to be resolved in the

context of PTOA and warrants further study.

In addition to biochemical markers, kinematic features, such as gait, have been linked to

PTOA outcomes following injury [8]. However, previous studies have defined outcomes by

either imaging or pain/function signs as opposed to direct observation of cartilage integrity.

Only recently have more modern techniques, such as machine learning, been employed to

find the connections between gait and OA—with most endeavors focusing on classifying

healthy and diseased joints as opposed to predicting these outcomes before they occur [9]. In

particular, Support Vector Machines (SVM), a machine learning tool that has been invaluable

in other areas of medicine such as predicting cancer responses to therapeutics, has been gain-

ing traction in OA research [10–13].

Therefore, we set out to (1) characterize the associations between the presence of synovial

fluid biomarkers at multiple early timepoints and posttraumatic macroscopic cartilage damage

at 52 weeks in the porcine model, (2) characterize the associations between spatiotemporal gait

parameters and posttraumatic macroscopic cartilage damage at 52 weeks, and (3) build Sup-

port Vector Machines to assess the individual and combined ability of these variables to pre-

dict posttraumatic macroscopic cartilage damage at 52 weeks.

We hypothesized that synovial fluid presence of inflammatory cytokines and MMPs, as well

as altered loading on the injured leg, would be associated with greater macroscopic cartilage

damage scores when evaluated by generalized estimating equations (GEE). We also hypothe-

sized that SVMs built with either synovial fluid data or gait data would predict cartilage dam-

age scores. Additionally, we posited that combining these datasets would enable the

construction of an SVM that exceeds the performance of both individual models.

Methods

Animal model

The Institutional Animal Care and Use Committee granted study approval before this experi-

ment was carried out. The study was designed following the ARRIVE guidelines [14]. The

study utilized samples from 36 Yucatan minipigs (Sinclair BioResources, Columbia, MO) in

late adolescence [age (mean±SD): 15.3±1.6 months; weight: 52.1±4.6 kg]. Each animal under-

went unilateral ACL transection and was randomized to one of three experimental groups: no

subsequent treatment (ACLT), immediate ligament reconstruction with bone-patellar tendon-

bone allograft (ACLR), or immediate ligament restoration using an extracellular matrix scaf-

fold combined with autologous blood (BE-R) as previously described by Karamchedu et al.

[15]. This previous study explored surgical group differences in gait metrics (e.g., stance time,

stance velocity, maximum force as % of body weight) as well as the effect of surgical group on

macroscopic and microscopic cartilage damage and synovitis at 52 weeks post-euthanasia [15].

An additional analysis by Karamchedu et al. 2021 explored surgical group differences in
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synovial fluid cytokine levels [16]. For that analysis, synovial fluid aspirations were performed

pre-operatively as well as at 1-, 4-, 12-, 26-, and 52-weeks following surgery [16]. The current

study builds on these two endeavors by combining their respective gait, synovial fluid concen-

trations, and macroscopic cartilage damage score data to create prognostic machine learning

models that predict cartilage outcomes. Details regarding animal husbandry, pain manage-

ment, and the IACUC-approved surgical procedures have been previously reported [15] and

can be found in S1 Appendix. Investigators were blinded to animal group assignments follow-

ing surgical operation.

Synovial fluid aspiration

Synovial fluid samples were collected at six timepoints (pre-operative, 1-, 4-, 12-, 26-, and

52-weeks) [16]. Under anesthesia, each pig was prone-positioned with their surgical limb

hanging over the side of the table in a 90-degree angle of flexion. A 23-gauge needle, outfitted

with a 3 ml syringe, was inserted through the patellar tendon to collect synovial fluid from the

femoral notch region. Aspiration occurred under slight negative pressure. If unsuccessful, the

draw was repeated after injection of 10 cc of sterile phosphate buffer saline. Following aspira-

tion, the collected synovial fluid underwent centrifugation at 1300 RCF, and the supernatant

was stored in 50 μl aliquots at -80 degrees Celsius. If the aspiration was unsuccessful, the collec-

tion was repeated after injecting an additional 10 cc of phosphate buffered saline. During the

same procedure, 10 ml of blood was collected from the cranial vena cava and portioned into

two 5 ml vacutainer serum separation tubes. Serum separated at room temperature for 30 min-

utes before being centrifuged for 15 minutes at 3000 RCF. The supernatant was stored in 1.5

ml aliquots. Serum samples were used to calculate synovial fluid dilution as described in the

next section [17].

Multiplex assay

Samples were thawed at room temperature for an hour and a half. A custom multiplex assay

kit (SPR#1178, Millipore, Burlington, MA) was used to assess the concentrations of 19 target

proteins, 8 matrix metalloproteinases (MMPs) and 11 cytokines (Table 1) as previously

described [16]. Each synovial fluid sample was assayed twice, and the average value was used.

Multiplex technology (Bioplex-200; BioRAD, Hercules, CA) was used to measure fluorescent

intensity. Fluorescent intensities and concentrations of standards were used to establish a stan-

dard curve. It should be noted that cytokine fluorescent intensities were considered

Table 1. The eight matrix metalloproteinases and eleven cytokines included in this experiment.

MMPs Cytokines

MMP-1 IL-1α

MMP-2 IL-1RA

MMP-3 IL-2

MMP-7 IL-4

MMP-9 IL-6

MMP-10 IL-8

MMP-12 IL-10

MMP-13 IL-12

IL-18

GM-CSF

TNFα

https://doi.org/10.1371/journal.pone.0268198.t001
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“detectable” if they had concentrations above their lowest standard. Therefore, each cytokine

had a different lower limit of detection, which ranged from 2.44 pg/mL (for MMP-9) to 94.7

pg/mL (for MMP-7). Mean fluorescent intensities served as input for 5PL logistic regressions

to obtain concentration estimates. Concentration estimates were then averaged between dupli-

cates using commercial software (Bioplex Manager; BioRAD, Hercules, CA). For each sample,

the ratio of synovial fluid urea concentration (post-averaging) to serum urea concentration

was obtained using a blood urea nitrogen (BUN) assay (ab83362, Cambridge, MA) [17]. Con-

centrations are expressed in picograms per milliliter (pg/ml).

Gait metrics

As previously described by Karamchedu et al., gait data were collected using a pressure mat

(HRV6 Walkway System; Tekscan Inc, Boston, MA), which had a sensing area of 292.6 x 44.7

cm [15]. Animals were conditioned to walk unidirectionally on the pressure mat with food

serving as a reward. Step calibrations were performed for each sensing tile using a custom 58

kg three-legged phantom, as recommended by the manufacturer. Data acquisition was initi-

ated by first hoof contact and continued at 104 Hz until the animal stepped off the mat. Data

collection and analyses took place using commercial software (Walkway 7.0; Tekscan Inc, Bos-

ton, MA). Gait data were collected at five timepoints (pre-operative, 4, 12, 26, and 52 weeks)

with no collection at 1 week because animals were still recovering from surgery [15]. For each

timepoint, five gait trials were conducted, and all metrics were averaged. Hoof strikes were

detected automatically by the software, and partial strikes were discarded. By recording force

and time, we were able to document maximum force (kg) as a percentage of body weight, max-

imum peak pressure (kPa), and impulse (kg-sec) as a percentage of body weight for each limb.

Spatiotemporal recordings allowed us to determine stride length, stride time, stride velocity,

and stance time.

Macroscopic cartilage assessment

After euthanasia and joint harvest at 52-weeks post-surgery, articular cartilage surfaces were

assessed for macroscopic damage according to Osteoarthritis Research Society International

(OARSI) guidelines for sheep and goat [18]. Damage to six articular surfaces, the medial femo-

ral condyle, medial tibial plateau, lateral femoral condyle, lateral tibial plateau, femoral troch-

lea, and patella, were scored from 0 (normal) to 4 (large erosions down to subchondral bone).

These scores were then summed to create a macroscopic score that ranged from 0 to 24.

Statistical analyses

All statistical analyses were carried out in R version 4.0.1 [19]. Pre-operative synovial fluid and

gait data were excluded from the analysis so that predictions would solely be based on post

ACL transection data. Synovial fluid data from week 1 were also excluded because no gait data

were collected at that time point.

A gaussian mixture model was used to soft cluster the 24-point damage scores into two sub-

populations. Subjects were ultimately labeled as having either “good” or “bad” cartilage out-

comes based on which subpopulation had greater than a 50% chance of belonging to.

Multiplex assay results were binarized by assigning a one if synovial fluid levels were above the

lower limit of quantification (i.e., presence) or a zero if the levels were below the lower limit of

quantification (i.e., absence). Subjects and synovial fluid targets were then hierarchically clus-

tered based on multiplex results according to the Ward.D2 method, which squares dissimilari-

ties before clustering based on variance minimization [20]. Results were visualized using a

heatmap.
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Each gait parameter was normalized to have zero-mean and unit-variance. Generalized esti-

mating equations (GEEs) were used (1) to model cartilage damage outcome as a function of

target protein presence in the synovial fluid while accounting for within-subject covariance,

and (2) to model cartilage damage outcome as a function of each gait parameter while account-

ing for within-subject covariance. GEEs were used because each subject had synovial fluid

sampled at multiple timepoints, which necessitated adjusting for within-subject covariance. A

p-value of 0.05 served as the threshold for statements about statistical significance.

Machine learning methods

Before training the machine learning models, the dataset of 129 synovial fluid and gait profiles

was randomly divided 70/30 into a training set (N = 91) and a testing set (N = 38), respectively.

The testing set remained untouched until a model had been optimized on the training set.

This study implemented the SVM algorithm, a classical machine learning method that com-

putes a linear hyperplane to geometrically separate labeled points in variable space [21]. The

SVM was built in Python (Version 3.7.3) using scikit-learn [22, 23]. The training set was itera-

tively validated using leave-one-out cross-validation (LOOCV). For feature selection, we first

manually built four SVM models: synovial fluid data only, gait data only, synovial fluid and

gait data combined, and an SVM that only included features deemed significant by GEE analy-

sis. Second, we implemented our SVM with L1 (i.e., lasso) regularization with its cost function

shown here:

Cost ¼
XN

i¼1

½yi �
Xm

j¼1

ðwj � xijÞ�
2
þ

1

2NC

� �
Xm

j¼1

jwjj

N is the number of samples, m is the number of features, w is the weight (i.e., hyperplane coef-

ficient) for each feature, and C is the regularization parameter [23]. To further optimize the

models, we tested two kernel functions—linear and radial basis function (RBF)—to see which

would provide the greatest area under the receiver operating characteristic curve (AUROC).

For the linear and RBF kernels, we optimized the regularization parameter, C, by iteratively

increasingly it by 1.0 in log-10 space and recalculating the AUROC. The RBF kernel required

additional optimization of the γ parameter, which was also determined by iterations of 1.0 in

log-10 space while holding C constant. The optimal models were found using a linear kernel

with varying C values which are reported in the text. This is analogous to the grid search

method used in previous SVM OA prediction models [10].

Performance statistics are reported for both training set and testing set models. Receiver

Operating Characteristic (ROC) and Precision-Recall (PR) curves were generated for training

and testing sets to gauge sensitivity-specificity tradeoffs and Positive Predictive Value (PPV)-

sensitivity tradeoffs (S2-1 and S2-2 Fig in S2 Appendix; S3-1 and S3-2 Fig in S3 Appendix).

Area under the ROC curves and PR curves are reported. SVM models were optimized by

greatest AUROC to place equal focus on correctly predicting both good and bad cartilage

outcomes.

Results

Clustering and data allocation

A gaussian mixture model identified the presence of two subpopulations of damage score out-

comes on the 24-point macroscopic cartilage damage scale (Fig 1). Scores ranged from 1 to 18.

Damage scores were assigned to the cluster for which they had greater than a 50% chance of

belonging to. The optimal delineation between subpopulations fell between scores 8 and 9 (i.e.,
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scores 8 and below were classified as “good” outcomes, and scores 9 and above were classified

as “bad” outcomes). The full breakdown of cartilage sub-scores for the “good” cartilage and

“bad” cartilage groups can be found in the S4 Appendix. Of the 129 total synovial fluid pro-

files, 48 were in the less damaged (“good” cartilage) group, and 81 were in the more damaged

(“bad” cartilage) group. To ensure that training and testing sets had equal proportions of good

and bad outcomes, the 129 profiles were randomized with 70% of profiles going into the train-

ing set, and 30% of profiles going to the testing set (Fig 2).

Hierarchical clustering of subjects and synovial fluid targets produced a heatmap with qual-

itative evidence of separation between the outcome groups (Fig 3). Moreover, the two largest

clusters in the subject dendrogram featured qualitatively distinct synovial fluid profiles—with

“good” outcome subjects often having greater presence of the various cytokines and MMPs.

Generalized estimating equations

For the majority of the protein targets, presence in synovial fluid was associated with “good”

cartilage outcomes (Table 2). Specifically, cytokines IL-1α (OR = 3.9; P< .001), IL-1RA

(OR = 2.5; P = .024), IL-2 (OR = 3.3; P = .002), IL-4 (OR = 3.0; P = .006), IL-6 (OR = 2.6; P =

.017), and IL-10 (OR = 3.1; P = .004) were associated with less articular cartilage damage at 52

weeks. Similarly, presence of MMP-2 (OR = 2.2; P = .008), MMP-3 (OR = 3.4; P = .002),

MMP-12 (OR = 6.8; P = .006), and MMP-13 (OR = 3.4; P = .002) were each associated with

better cartilage outcomes. In the GEE analysis, no cytokines or MMPs were negatively associ-

ated with “good” outcomes.

Of the gait metrics, only those related to maximum peak pressure (kPa) were associated

with better outcomes (Table 3). In particular, higher peak pressures for the surgical hind leg

(OR = 0.44; P< .001) and contralateral hind leg (OR = 0.59; P = .010) were associated with

worse cartilage outcomes.

Fig 1. 70% of the data were allocated to training and building the SVM models. The remaining 30% of the data remained untouched for later assessment of

the trained models. At every level of analysis, there were more “bad” outcome samples than “good” outcome samples.

https://doi.org/10.1371/journal.pone.0268198.g001
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Fig 2. A gaussian mixture model was used to evaluate the presence of two clusters of cartilage damage outcomes.

The red and blue lines represent the different gaussian distributions for “good” and “bad” outcomes, respectively. The

optimal delineation between the two damage outcomes is between scores 8 and 9.

https://doi.org/10.1371/journal.pone.0268198.g002

Fig 3. Heatmap of cytokine and MMP presence in the synovial fluid samples. Darker color indicates presence;

lighter color indicates absence. Rows and columns are hierarchically clustered according to Ward.D2. Binary and

24-point scale cartilage outcomes are depicted as well as each subject’s treatment and time of synovial fluid aspiration.

https://doi.org/10.1371/journal.pone.0268198.g003
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Table 2. Linear model parameter estimates.

Biomarker Coefficient OR [95% CI] P-value

GM-CSF -0.01482 0.9853 [0.3962, 2.45] .975

TNFα -38.95 1.209e-17 [0, Inf] .999

IL-1α 1.35 3.856 [1.782, 8.345] < .001�

IL-1RA 0.9163 2.5 [1.131, 5.528] .024�

IL-2 1.208 3.346 [1.564, 7.16] .002�

IL-4 1.107 3.025 [1.368, 6.689] .006�

IL-6 0.938 2.555 [1.184, 5.513] .017�

IL-8 0.5693 1.767 [0.7126, 4.381] .219

IL-10 1.131 3.099 [1.449, 6.628] .004�

IL-12 0.4109 1.508 [0.6252, 3.639] .360

IL-18 1.892 6.63 [0.814, 54] .077

MMP-1 1.892 6.63 [0.814, 54] .077

MMP-2 2.182 8.865 [1.772, 44.35] .008�

MMP-3 1.238 3.449 [1.553, 7.656] .002�

MMP-7 0.6806 1.975 [0.5346, 7.296] .307

MMP-9 0.1719 1.187 [0.3611, 3.905] .777

MMP-10 0.1978 1.219 [0.5376, 2.763] .636

MMP-12 1.91 6.75 [1.707, 26.7] .006�

MMP-13 1.23 3.421 [1.594, 7.341] .002�

GEEs account for within-sample covariance and assess connection between synovial fluid target presence and “good”

cartilage outcome. Significant findings (P < .05) are denoted with an asterisk. OR = odds ratio.

https://doi.org/10.1371/journal.pone.0268198.t002

Table 3. Linear model parameter estimates.

Gait Parameter Coefficient OR [95% CI] P-value

Stride length (hind) 0.1766 1.193 [0.8262, 1.723] .346

Stride length (contra) 0.2365 1.267 [0.8748, 1.835] .211

Stride length (ratio) -0.1918 0.8255 [0.5634, 1.209] .325

Stride velocity (hind) 0.2098 1.233 [0.8494, 1.791] .270

Stride velocity (contra) 0.2268 1.255 [0.8632, 1.824] .235

Stride velocity (ratio) -0.1099 0.8959 [0.6202, 1.294] .558

Max pressure (hind) -0.8241 0.4386 [0.2839, 0.6776] < .001�

Max pressure (contra) -0.5225 0.593 [0.3995, 0.8803] .010�

Max pressure (ratio) -0.381 0.6832 [0.4526, 1.031] .070

Max force BW% (hind) 0.1278 1.136 [0.7855, 1.644] .497

Max force BW% (contra) 0.2399 1.271 [0.8801, 1.836] .201

Max force BW% (ratio) -0.04874 0.9524 [0.6613, 1.372] .793

Impulse BW% (hind) -0.05411 0.9473 [0.6555, 1.369] .773

Impulse BW% (contra) -0.05299 0.9484 [0.6549, 1.373] .779

Impulse BW% (ratio) 0.05266 1.054 [0.7286, 1.525] .780

GEEs account for within-sample covariance and assess connection between gait metrics and “good” cartilage

outcomes. Values in red highlight significant findings (P-value < 0.05). OR = odds ratio, Max = maximum, BW% =

percent body weight.

https://doi.org/10.1371/journal.pone.0268198.t003
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Models and predictive performance

TNFα was excluded from SVM construction because the training set failed to include any

synovial samples with TNFα present. All samples with TNFα presence had been randomized

to the testing set, and only a few samples had TNFα presence to begin with, so having none in

the training set was statistically likely.

The SVM built solely with synovial fluid data (AUROC = .609) featured the lowest perfor-

mance statistics in every category except for specificity when compared to the other three

models (Table 4). Coefficients for the hyperplane built by the synovial fluid only SVM were

roughly evenly divided in terms of being positive (i.e., predictive of “good” cartilage) and nega-

tive (i.e., predictive of “bad” cartilage) (Fig 4A). Negative predictive value (NPV) and specific-

ity were the top performance statistics for this model, which suggest this model better predicts

“bad” cartilage outcomes.

The SVM built solely with gait data (AUROC = .689) outperformed the synovial fluid-only

model (Table 4). Following L1 feature selection, the maximum peak pressure of the hind sur-

gical leg and contralateral leg contributed the most to prediction (Fig 4B). All positive

Table 4. Training performance statistics for the four support vector machines built in this study.

Training Model AUROC AUPRC Accuracy Precision Recall NPV Specificity

Synovial Fluid (C = 1000.0) .609 .502 .615 .435 .313 .676 .780

Gait (C = 0.1) .689 .585 .714 .636 .438 .739 .864

Synovial Fluid + Gait (C = 10000.0) .778 .698 .670 .525 .656 .784 .678

GEE (C = 1.0) .752 .694 .736 .700 .438 .746 .898

Each model was optimized to have the highest area under the receiver operating characteristic (AUROC) possible, based on the regularization parameter and L1 feature

selection. AUPRC = area under precision recall curve, NPV = negative predictive value.

https://doi.org/10.1371/journal.pone.0268198.t004

Fig 4. Model coefficients for three Support Vector Machines: (A) synovial fluid-only, (B) gait-only, and (C) the combination of synovial fluid targets and gait

metrics.

https://doi.org/10.1371/journal.pone.0268198.g004
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coefficients were related to the contralateral leg, and the only surgical leg coefficient (maxi-

mum peak pressure) was related to “poor” outcomes. NPV and specificity were the top perfor-

mance statistics for this model which suggests this model better predicts “bad” cartilage

outcomes (Table 4).

The SVM built with all synovial fluid targets and all gait metrics (AUROC = .778) featured

the highest performance in four of the seven categories collected (Table 4). Compared to the

synovial fluid-only model, the combined model maintained a coefficient direction for the fol-

lowing: MMP-1, MMP-2, MMP-3, MMP-7, MMP-9, MMP-10, MMP-12, MMP-13, IL-1α, IL-

2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-18, and GM-CSF (Fig 4C). Between the SVM models, only

IL-1RA switched direction between the models. Compared to the gait-only model, the com-

bined model changed the direction of most coefficients. In the combined model, the coeffi-

cient most predictive of “good” outcomes was higher stride velocity of the contralateral hind

leg while the coefficient most predictive of “bad” outcomes was higher stride velocity of the

hind surgical leg. NPV and AUROC were the top performance statistics for this model.

The SVM built solely with significant features from GEE analysis (AUROC = .752) featured

the highest performance in three of the seven categories collected (Table 4). Presence of IL-2,

IL-4, MMP-2, and MMP-12 were predictive of “good” cartilage outcomes while presence of

IL-10 and MMP-3 were predictive of “bad” outcomes (Fig 5). Higher maximum peak pres-

sures of the hind contralateral leg and hind surgical leg were predictive of “bad” outcomes

with the latter being the most predictive. AUROC and specificity were the top performance

statistics for this model. The ROC curves, PR curves, and confusion matrices are reported for

each model’s training (S2-1-S2-3 Fig in S2 Appendix).

Upon testing, every model featured a decrease in AUROC, though all models but the syno-

vial fluid-only model had an AUROC that remained higher than 0.6 (Table 5). Similar to the

training performances, NPV and specificity were consistently among the top performance sta-

tistics for each model. The ROC curves, PR curves, and confusion matrices are reported for

each model’s testing (S3-1-S3-3 Fig in S3 Appendix).

Discussion

Although we hypothesized that increased presence of inflammatory cytokines and MMPs

would be associated with worse outcomes, we found that increased presence of anti-

Fig 5. Model coefficients for support vector machine composed of significant features from Generalized Estimation Equation (GEE) analysis.

https://doi.org/10.1371/journal.pone.0268198.g005
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inflammatory markers (e.g., IL-2 and IL-4) and matrix metalloproteinases (e.g., MMP-2 and

MMP-12) were associated with better outcomes in both GEE analysis and SVM prediction.

With these synovial fluid cytokines and MMPs, we constructed SVMs with satisfactory NPVs

and specificities while maintaining adequate AUROCs. Incorporating gait metrics resulted in

improved model performance and combining synovial fluid and gait features often resulted in

the best predictive performances, which affirmed our last hypothesis. Applying these models

to an untouched testing set maintained good prediction of worse quality cartilage. Other cyto-

kines, MMPs, and gait metrics were significant in some models, but not others, and this lack of

total concordance, particularly across the gait utilizing SVMs, means that further studies are

warranted to verify their predictive utility.

Synovial fluid findings in this study add to the growing narrative that inflammatory mark-

ers in the synovial fluid are tied to advancing cartilage disease. For instance, every SVM model

that utilized synovial fluid data applied a positive weight to the anti-inflammatory cytokines

IL-2 and IL-4—indicating their increased presence as predictive of good cartilage outcomes—

and a negative weight to the anti-inflammatory cytokine IL-10. The IL-2 finding goes against a

prior study which found an inverse relationship between IL-2 and arthroscopy-visualized car-

tilage integrity [24]. However, this prior study only had 4 subjects in its less damaged group,

and cross-sectionally assessed synovial fluid at a single time point (the end point), while our

longitudinal study had higher numbers and used multiple time points prior to cartilage assess-

ment to make its prediction. The IL-4 finding is in accordance with prior studies that found

IL-4 to be associated with less osteoarthritic cartilage, and the IL-10 finding is consistent with

prior reports of IL-10 associating with greater OA burden—though, as mentioned before,

these prior studies evaluated synovial fluid only at the time of OA assessment and not leading

up to the assessment [25, 26]. Lastly, IL-18 levels have also been linked to development of OA

[27]. Although the probabilistic GEE evidence for a connection between IL-18 and cartilage

outcomes was not as strong as it was for other biomarkers in this study, the tremendous GEE

effect size (OR = 6.63; P = .077) suggests that IL-18 might still have a role.

Both the GEE analysis and all SVM models suggested that MMP-2 and MMP-12 presence

are predictive of better cartilage outcomes. Prior efforts to evaluate synovial fluid MMP-2 lev-

els in OA samples were inconclusive in that it remains unclear if MMP-2 is a hallmark of better

or worse OA outcomes [28]. Regarding MMP-12 there have been attempts to distinguish early

OA from late-stage OA using synovial fluid MMP levels, but these attempts did not find

MMP-12 levels to be of relevance [29]. Our study, therefore, puts forth a novel suggestion that

MMP-12 presence in synovial fluid is positively associated with better cartilage outcomes in

subjects with OA.

The GEE analysis also found that synovial fluid MMP-3 was predictive of good outcomes,

however, every SVM model applied a negative weight to MMP-3, indicating its increased pres-

ence as predictive of poor cartilage outcomes. This is in accordance with a prior study linking

synovial fluid MMP-3 to OA symptoms and radiographically evident disease [5]. A more

Table 5. Testing performance statistics for the four support vector machines built in this study.

Testing Model AUROC AUPRC Accuracy Precision Recall NPV Specificity

Synovial Fluid (C = 1000.0) .518 .443 .605 .333 .154 .656 .84

Gait (C = 0.1) .637 .533 .632 .462 .462 .72 .72

Synovial Fluid + Gait (C = 10000.0) .618 .460 .632 .462 .462 .72 .72

GEE (C = 1.0) .665 .480 .605 .429 .462 .708 .68

AUROC = area under the receiver operating characteristic, AUPRC = area under precision recall curve, NPV = negative predictive value.

https://doi.org/10.1371/journal.pone.0268198.t005
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recent study also found a link between synovial fluid MMP-3 at time of surgery and OA symp-

toms five years out, but this study failed to specify the directionality of the relationship [7].

Additionally, a prior study sampled synovial fluid following ACL injury and measured MMP-

3 levels but failed to find an association with OA outcomes 16 years out [6]. Thus, further

work is needed to define the role of MMP-3 in predicting cartilage outcomes.

In terms of gait metrics, the prior study with the porcine model showed that maximum

pressure, impulse, and maximum force of hind limbs correlate with cartilage outcomes [15].

An additional study, employing neural networks, leveraged features such as ground reaction

force to classify OA patients by pain and radiographic findings [30]. In the current study, we

combined these two approaches to better understand the potential for machine learning to

predict cartilage outcomes based on gait metrics. GEE analysis indicated a negative relation-

ship between maximum pressure placed on the hind legs and cartilage damage outcomes.

Notably, maximum pressure placed on the surgical leg had a greater effect size than maximum

pressure placed on the contralateral leg. Furthermore, the ratio between surgical leg pressures

and contralateral leg pressures also indicated a negative relationship with cartilage outcomes—

suggesting that greater offloading of the surgical leg onto the contralateral leg was associated

with better cartilage outcomes, though elevated pressure on either hind leg was still unfavor-

able. Of the three SVM models, which made use of gait metrics, all three applied a negative

coefficient to maximum pressure of the hind contralateral leg (i.e., higher pressure is more pre-

dictive of bad cartilage), and all but the combined synovial fluid+gait model applied a negative

coefficient to maximum pressure of the hind surgical leg. The positive coefficient for maxi-

mum pressure of the hind surgical leg in the synovial fluid+gait model is most likely an anom-

alous finding, considering consistency across the other models. But lack of insight into

singular discordant coefficients, such as this, remains a drawback of machine learning

algorithms.

Despite this differing coefficient, the synovial fluid+gait SVM model had the best perfor-

mance in the greatest number of performance statistics, including AUROC, AUPRC, recall,

and NPV. The second most successful SVM training model, the model which used only vari-

ables deemed significant in GEE analysis, had the top performance in all other categories

where the synovial fluid+gait model was not the best. It should be noted that the two best per-

formance statistics in every model always included NPV or specificity (or both)—suggesting

that every model is best at predicting poor (rather than good) cartilage outcomes. This finding

is bolstered by robust prediction of true negatives as seen in the training confusion matrices

(S3 Appendix). This robust prediction of bad cartilage outcomes, relative to model prediction

of good cartilage outcomes, is likely due to the greater prevalence of damaged cartilage in the

dataset. As for the performance on the training set, specificity was the highest performance sta-

tistic across all models when applied to the testing set. Combined with high NPVs, this means

that not only are predictions of poor outcomes often correct, but also that they are unlikely to

go undetected. In terms of implications, the fact that these models excel at predicting bad out-

comes is suggestive of their practicality, seeing as that identifying subjects most at risk of dete-

riorating cartilage would be more clinically useful than predicting which subjects’ cartilage will

not deteriorate. Shortcomings in predicting good outcomes suggest that these SVM models

would best serve as supplementary rule in tests following a more sensitive rule out test. This

would play to the models’ strengths in that their specificities give them a better likelihood of

correctly predicting bad cartilage outcomes once good outcomes have been included through

first pass with a separate, highly sensitive test.

It should be noted that these models were built to detect a cutoff between cartilage damage

scores of 8 and 9. A gaussian mixture model was employed to optimize this cutoff by soft clus-

tering cartilage scores into two different gaussian distributions. Manually adjusting the cutoff
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used in this analysis resulted in a slight decrease in the AUROC but maintained much of the

predictive value that these models offer. A decrease in classification performance is expected

when de-optimizing the discrepancies between the groups being classified/predicted.

This study has multiple limitations. Firstly, pigs are quadrupeds while humans are bipeds,

so precise patterns in gait and distribution of weight differ between the two species, and exact

values noted in this study are unlikely to be generalized to humans. Nevertheless, across spe-

cies certain features are thought to be conserved, such as relative gait adjustments to loading in

the setting of pain or decreased joint stability. As a benefit, the porcine model allows for longi-

tudinal assessment of synovial fluid and formal assessment of osteoarthritic cartilage at a time

point that is identical for all subjects. The animal model also allows for controlling study vari-

ables that are not possible in human studies. But for sake of medical translation, future work

will need to scale the findings from the porcine model to that of the human. In addition, the

preclinical model utilized adolescent minipigs which were selected for this study because ACL

injuries are most common in adolescent patients [1], and this injury places the patient at risk

for posttraumatic osteoarthritis [2]. Translating these findings to adults and to the pathogene-

sis of idiopathic osteoarthritis should be done with caution. Secondly, the ACL injuries were

induced with surgical precision. This contrasts with the reality of human injuries which feature

a tremendous amount of variation. Creating different degrees of injury would add diversity to

the cartilage outcomes and be a good next step for observing the effects of ACL injury on gait

and the joint environment post-surgery. Thirdly, the analyses in this study made use of data

from 4-, 12-, 26-, and 52-weeks, with the last timepoint also serving as the time of cartilage

assessment. This means that predictions were mostly based on timepoints leading up to har-

vest and that concurrent synovial fluid and gait data were also included in the machine learn-

ing algorithms and GEE analysis. This was done to give the predictive analysis as much data as

possible to work with; the aim was to see how well prediction could get with a dataset that was

dominated by earlier timepoints. In addition, GEE analysis and SVM models had occasional

mismatches in their evaluation of different synovial fluid and gait features. This isn’t so much

a study limitation as it is a caveat that no single statistical approach comprehensively captures

the contributions of features to cartilage health, and it reinforces the value of applying a diverse

mathematical approach to characterizing complex biological systems. A notable difference

between regression methods (like GEE) and SVMs is that SVMs do not control for variables

when evaluating their contribution to the model. Thus, assessing the contribution of any given

variable in an SVM has a considerable qualitative component. Additionally, this study featured

a moderate imbalance in the number of subjects with good and bad cartilage—which serves as

a possible explanation for why the models are better able to predict poor cartilage outcomes.

Lastly, this study did not have a true control group for ACL injury. It is important to note that,

prior to surgical intervention, subjects had synovial fluid samples drawn and had their gait

metrics assessed. These pre-insult data are incorporated into the current study and can be seen

in Fig 3 as “Pre-op.” Regardless, including a group that did not undergo surgery (and presum-

ably developed less cartilage damage) would broaden the scope of this study by contributing to

the diversity of cartilage outcomes.

It is critical to note that the biomarkers in this study came largely from timepoints prior to

final cartilage collection, a feature that distinguishes this analysis from previous endeavors and

literature. While previous studies have individually associated either gait metrics or synovial

fluid markers with OA progression, this study collected both types of data from subjects and

leveraged them not only for regression-based GEE analysis but also for functional predictive

models of OA outcomes. Unique to this study, radiographic scores or pain scales were not

substituted for outcomes; rather, we directly visualized the articular cartilage. Nevertheless,

imaging has shown promise in the classification and prediction of knee joint disease, so
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incorporating radiographic or MR data might serve as a promising next step [31–34]. This

study is also notable for its use of SVMs in contrast to prior efforts which have solely used

regression models or artificial neural networks. SVMs tend to outperform regressions in set-

tings of low-dimensionality or match regressions in performance while using fewer variables

[35]. Models that make use of deep learning, such as artificial neural networks, tend to have

even more predictive power, but they provide little to no information about the utility of vari-

ables involved. Therefore, given the relatively small-to-intermediate number of variables consid-

ered and the modest prioritization of prediction over variable explanation, the current study

employed SVMs—a current rarity in the field of OA prediction. Lastly, subjects in this study

were randomly assigned to their treatment groups with stratifications for age and sex. Almost

all OA outcome studies are case-controls or prospective cohorts, which require tight statistical

monitoring for confounding—something that the structure of our study circumvents.

In conclusion, this study showed that synovial fluid and gait features early on after injury

have the potential to predict later cartilage outcomes following traumatic injury to the ACL.

More specifically, this preclinical analysis suggests that increased pressure on the injured leg

combined with synovial fluid devoid of IL-2, IL-4, MMP-2, and MMP-12 is a possible indica-

tor that cartilage is more at risk of becoming pathologic. If this finding is replicated in human

patients, it has strong clinical implications for identifying at-risk individuals earlier on in their

disease course so that care and rehabilitation can be more targeted and preventative. The util-

ity of these features also implies their role in the pathogenesis of OA and justifies future studies

to characterize their direct mechanisms of impact.
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