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Purpose. To identify an effective method to prevent myopia progression by characterizing the regulation of matrix
metalloproteinase- (MMP-) 2 expression and its secretion from scleral fibroblasts and retinal pigment epithelium (RPE) cells by
miR-29a.Methods.The effects ofmiR-29a on the growth of scleral fibroblasts and RPE cells were assessed using the cell counting kit-
8.The changes inMMP-2mRNA levels in scleral fibroblasts and RPE cells after transfection withmiR-29amimics or inhibitor were
measured by quantitative PCR. Enzyme-linked immunosorbent assays were used to determine the changes in MMP-2 secretion
from scleral fibroblasts and RPE cells after transfection withmiR-29amimics or inhibitor. Results.ThemiR-29amimics or inhibitor
did not significantly alter the growth of scleral fibroblasts or RPE cells at 24, 48, or 72 hours after transfection. MMP-2mRNA levels
were significantly decreased in scleral fibroblasts and RPE cells transfected with the miR-29a mimics. The secretion of MMP-2 by
scleral fibroblasts and RPE cells was significantly decreased in cells transfected with the miR-29a mimics. Conclusions. Suppression
of scleral fibroblast and RPE cell expression and secretion of MMP-2 by miR-29a can be used as a therapeutic target for the
prevention and treatment of myopia.

1. Introduction

Myopia is a major public health problem worldwide and is
also the leading cause of visual impairment [1]. Determina-
tion of the underlying pathogenesis and identification of an
effective method to prevent myopia progression are therefore
of high priority [2].

The sclera undergoes several changes during the devel-
opment and progression of myopia, including scleral thin-
ning and weakening [3]. The structural and biomechanical
changes in the myopic sclera of human eyes have been
well-documented. Besides being thinner than normal, its
glycosaminoglycan and collagen contents are reduced and its
fibril assembly disorganized, rendering it weaker biomechan-
ically [4–6]. The growth and refractive state of the eye can be
manipulated by controlling imposed retinal defocus [7]. The
decrease in the retinal pigment epithelial (RPE) cell density
was associated with a longer axial length [8]. Therefore,

studies of scleral fibroblasts and RPE cells are important for
assessing the occurrence and progress of myopia.

Matrix metalloproteinases (MMPs) comprise a family
of zinc-dependent endopeptidases that degrade extracellular
matrix proteins. More than 20 MMP family members have
been identified in humans [9]. Compared with control eyes,
MMP-2 is increased in the sclera of myopic eyes induced by
form deprivation in chicks [10–12]. Increased scleral MMP-
2 expression in form-deprivation myopia has been shown
in tree shrews at the protein [13] and mRNA levels [14, 15]
and in guinea pigs at the protein level [16]. Modulation of
extracellular matrix turnover by altered changes in the RPE
secretion of MMPs may play an important role in the normal
function and pathology of the retina [17], and because of its
location, the RPE likely plays a role in local scleral growth
regulation [18].

Micro(mi)RNAs constitute a novel class of short, endog-
enous noncoding RNAs in animals and plants [19, 20].
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miRNAs regulate the translation of specific protein-coding
genes by binding to specific regions of the target mRNA,
leading to degradation of the mRNA or inhibition of transla-
tion [20, 21]. Specifically, the miRNA-29 (miR-29) family
consists of an miR-29a/b1 cluster in one chromosome and an
miR-29b2/c cluster in a different chromosome. Three online
programs, miRanda (http://www.microrna.org/microrna/
home.do), TargetScan (http://www.targetscan.org), and
TarBase (http://microrna.gr/tarbase), in combination with
previous reports were used for predictingmiRNAs thatmight
target MMP-2 [22]. miR-29a suppresses the expression and
secretion of MMP-2 in various cancers. 3󸀠-UTR luciferase
reporter assay data imply that miR-29a attenuates the
expression of MMP-2 by targeting the MMP-2 3󸀠-UTR
directly [22]. However, little is known regarding the effects
of miR-29a on the expression and secretion of MMP-2 by
human scleral fibroblasts and RPE cells.

Therefore, this study characterized the regulation of
MMP-2 expression in, and secretion from, scleral fibroblasts
and RPE cells by miR-29a.

2. Materials and Methods

2.1. Ethics. Informed consent was provided in accordance
with the Declaration of Helsinki. The study was approved by
the Shanghai Jiao Tong University School of Medicine Ethics
Review Board and the Ethics Committee of Shanghai Ninth
People’s Hospital.

2.2. Cell Culture. Scleral fibroblasts (donated by Wenzhou
Medical University) and ARPE-19 cells were both cultured
in complete medium containing 10% fetal bovine serum
(Invitrogen, Carlsbad, CA, USA) and Dulbecco’s Modified
Essential Medium at 37∘C with 5% CO2. The medium was
changed every 2 days. The cells were passaged using 0.05%
trypsin and 0.02% EDTA (Life Technologies, Gaithersburg,
MD, USA).

2.3.MiRNATransfection. MiR-29a oligonucleotides included
miR-29a mimics (miR-29a precursor molecules that pos-
sess structures similar to that of the intracellular miR-
29a precursor but have been chemically modified and
optimized to enable processing into mature miRNAs by
mimicking the miR-29a natural shearing process) and
an miR-29a inhibitor, all synthesized by Biomics Biotech
(Nantong, China). The sequences of the miR-29a mim-
ics were 5󸀠-UAGCACCAUCUGAAAUCGGUUA-3󸀠 and 5󸀠-
UAACCGAUUUCAGAUGGUGCUA-3󸀠. Transfection was
performed using Lipofectamine� 2000 (Invitrogen), in accor-
dance with the manufacturer’s instructions.

2.4. Detection of miR-29a Expression. Scleral fibroblasts and
RPE cells were grown in six-well plates to 60–70% confluence
before transfection. The cells in each well of a six-well plate
were transfected with 50 nM mimics or 50 nM inhibitor.
Total RNA was extracted from scleral fibroblasts and RPE
cells after 24 hours transfection with the miR-29a mimics or
inhibitor and used for quantitative PCR (qPCR). The PCR

primers for miR-29a were 5󸀠-TAGCACCATCTGAAATCG-
3󸀠 (forward) and 5󸀠-CACACCAGCACTGACTA-3󸀠 (reverse).
Untransfected cells treated with Lipofectamine 2000 were
used as negative controls (NCs).

2.5. Cell Growth Assays. The effects of miR-29a on scleral
fibroblast and RPE cell growth were assessed using a cell
counting kit (CCK8; Dojindo, Kumamoto, Japan). Scleral
fibroblasts and RPE cells were seeded at a final density of
3 × 103/well and cultured in 96-well plates. After treatment
with themiR-29amimics or inhibitor, the CCK8 solutionwas
added to each well on days 0, 1, 2, and 3 of culturing. After the
cells were incubated for another 4 hours at 37∘C according
to the manufacturer’s instructions, the absorbance at 450 nm
was measured using a microplate reader (ELx800; BioTek
Instruments, Winooski, VT, USA). The viable cell number
was directly proportional to the absorbance at 450 nm,
and thus viability was expressed as the absorbance at this
wavelength.

2.6. Total RNA Isolation, Reverse Transcription, and Quan-
titative Polymerase Chain Reaction (qPCR). Total RNA was
extracted from scleral fibroblasts and RPE cells using TRIzol�
reagent (Invitrogen) at 24 and 48 hours after transfection
with miR-29a mimics or inhibitor and then analyzed by
qPCR. The untransfected cells were used as controls. The
extracted total RNA concentration was measured using a
spectrophotometer and NanoDrop� 2000 software (Thermo
Scientific, Waltham, MA, USA), and the purity was assessed
by OD260/280 nm ratios between 1.9 and 2.1. Then, 1,000 ng
quantitated RNA was reverse-transcribed using the Prime-
Script� RT reagent kit (Perfect Real-Time; Takara, Dalian,
China). qPCR was performed in a 10𝜇L total volume con-
taining 5 𝜇L 2x Power SYBRGreen PCRMasterMix (Applied
Biosystems, Foster City, CA, USA), 1𝜇L diluted cDNA, and
150 nM gene-specific primers, supplemented with nuclease-
free water (Invitrogen). The PCR primers used to amplify
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were
5󸀠-TGAACTGAAAGCTCTCCACC-3󸀠 (forward) and 5󸀠-
CTGATGTACCAGTTGGGGAA-3󸀠 (reverse), and those
used to amplify MMP-2 were 5󸀠-GCCAAGTGGTCCGTG-
TGAAGTA-3󸀠 (forward) and 5󸀠-GCCGTACTTGCCATC-
CTTCTCA-3󸀠 (reverse). The amplification efficiency of the
primers was measured using serial dilutions of the cDNA
(1 : 1, 1 : 5, 1 : 25, 1 : 125, 1 : 625, and 1 : 3,125). The samples were
then amplified using the 7500 Real-Time PCRDetection Sys-
tem (Applied Biosystems). After 40 cycles of amplification,
relative mRNA levels were analyzed using the Pfaffl method
[23]. The relative mRNA level was expressed as the fold
change relative to the negative controls after normalization
to GAPDH expression.

2.7. Western Blot Analysis. After RPE cells were incubated
with either themiR-29amimics or inhibitor for 12 hours, total
cellular proteins were harvested for western blot analyses. A
BCA kit (Pierce, Rockford, IL, USA) was used to determine
the protein concentrations. A 40𝜇g protein sample was
then subjected to sodium dodecyl sulfate-polyacrylamide
gel electrophoresis to separate the proteins. Subsequently,
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Figure 1: The efficiency of miR-29a transfection of scleral fibroblasts and retinal pigment epithelial (RPE) cells. Scleral fibroblasts and RPE
cells were grown in six-well plates to 60–70% confluency before transfection. The cells in each well were transfected with 50 nM miR-29a
mimics or 50 nM miR-29a inhibitor. The quantitative PCR results showed that, in scleral fibroblasts (a) and RPE cells (b), miR-29a was
significantly upregulated by transfection of the miR-29a mimics and downregulated by transfection of the miR-29a inhibitor compared with
negative controls (𝑃 < 0.05). Note: the error bars show the standard deviations (𝑛 = 3).The statistical analyses were performed using one-way
ANOVA, ∗𝑃 < 0.05. NC, negative controls.

the proteins were transferred to a 0.22mm polyvinylidene
fluoride membrane (Millipore, Billerica, MA, USA). The
membranes were then blocked with 5% bovine serum albu-
min and incubated with rabbit monoclonal anti-MMP-2 at
a dilution of 1 : 300 (SAB, MD, USA), followed by mouse
anti-𝛽-actin at a dilution of 1 : 5,000 (Sigma-Aldrich, St.
Louis, MO, USA) overnight at 4∘C. After incubation with
DyLight� 680-conjugated secondary antibodies at a dilution
of 1 : 5,000 (Sigma-Aldrich), the protein expression levels
were determined using the Odyssey V 3.0 image scanner (LI-
COR, Lincoln, NE, USA).The intensities of the protein bands
were quantified densitometrically using BandScan software,
ver. 5.0, and the values for each sample were normalized
against 𝛽-actin.

2.8. Enzyme-Linked Immunosorbent Assay (ELISA). The
ELISA kit for MMP-2 detection was purchased from Ray-
Biotech (Atlanta, GA, USA). Scleral fibroblasts and RPE cells
were seeded into six-well plates at a final density of 1 ×
105/well. The cells were separately transfected with 50 nM
miR-29a mimics or 50 nM miR-29a inhibitor. Conditioned
culturemediumwas collected at 48 or 72 hours after transfec-
tion and stored at −80∘C until analysis. ELISAwas performed
according to the manufacturer’s instructions.

2.9. Statistical Analyses. The experimental results were
expressed as means ± standard derivation. All experiments
were performed in triplicate unless specified otherwise. The
data from the experimental groupswere comparedwith those
from the controls. Statistical analyses were performed using

the one-way analysis of variance (ANOVA) or paired 𝑡-tests
using GraphPad Prism ver. 6.01. A value of 𝑃 < 0.05 was
considered to indicate a significant difference.

3. Results

3.1. Expression of miR-29a in Scleral Fibroblasts and Reti-
nal Pigment Epithelial (RPE) Cells after Transfection. The
cells were collected 24 hours after transfection of scleral
fibroblasts or RPE cells with miR-29a mimics or inhibitor.
The qPCR analyses showed that the miR-29a levels were
significantly upregulated in scleral fibroblasts and RPE cells
after transfection with the miR-29a mimics (𝑃 < 0.05;
Figure 1). In contrast, the levels of miR-29a were significantly
downregulated by transfection with the miR-29a inhibitor
(𝑃 < 0.05; Figure 1).

3.2.The Effects of miR-29a on the Growth of Scleral Fibroblasts
and RPE Cells. To assess the effects of miR-29a on the cell
growth of scleral fibroblasts and RPE cells, the miR-29a
mimics or inhibitors were transfected into scleral fibroblasts
and RPE cells, and growth was assessed relative to that of the
negative control (NC) using the CCK8 kit. miR-29a mimics
or inhibitor did not significantly affect the growth of scleral
fibroblasts or RPE cells at 24, 48, or 72 hours after transfection
compared with the NC (𝑃 > 0.05; Figure 2).

3.3. Changes in MMP-2 mRNA Levels in Scleral Fibroblasts
and RPE Cells after Transfection with miR-29a Mimics or
Inhibitor. To characterize the possible relationships between
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Figure 2:The effects of miR-29a on the viability and growth of scleral fibroblasts and retinal pigment epithelial (RPE) cells. Scleral fibroblasts
and RPE cells were seeded at a final density of 3 × 103/well and cultured in 96-well plates. The cells in each well were transfected with 50 nM
miR-29a mimics or 50 nM inhibitor. The miR-29a mimics or inhibitor had no significant effect on the growth of scleral fibroblasts (a) or RPE
cells (b) at 24, 48, or 72 hours after transfection compared with the negative controls (𝑃 > 0.05). Note: the error bars show the standard
deviations (𝑛 = 3). The statistical analyses were performed using one-way ANOVA. NC, negative control.
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Figure 3: Changes in matrix metalloproteinase- (MMP-) 2 mRNA levels in scleral fibroblasts and retinal pigment epithelial (RPE) cells after
transfection with miR-29a mimics or inhibitor. Scleral fibroblasts and RPE cells were grown in six-well plates to 60–70% confluency before
transfection. The cells in each well of a six-well plate were transfected with 50 nM mimics or 50 nM inhibitor. Quantitative PCR analyses
showed that transfection of themiR-29amimics decreasedMMP2 expression in scleral fibroblasts (a) (𝑃 < 0.05) and RPE cells (b) (𝑃 < 0.01),
while the inhibitor increased MMP-2 expression in scleral fibroblasts (a) (𝑃 < 0.05) and RPE cells (b) (𝑃 < 0.01) 24 hours after transfection
compared with negative controls. Note: the error bars show the standard deviations (𝑛 = 3). The statistical analyses were performed using
one-way ANOVA. ∗𝑃 < 0.05, ∗∗𝑃 < 0.01. NC, negative control.

the expression of MMP-2 and miR-29a, miR-29a mimics or
inhibitors were transfected into scleral fibroblasts and RPE
cells. qPCR analyses showed that MMP-2 mRNA levels were
significantly decreased in scleral fibroblasts (𝑃 < 0.05) and
RPE cells (𝑃 < 0.01) transfected with the miR-29a mimics,
and MMP-2 mRNA levels were significantly increased in
scleral fibroblasts (𝑃 < 0.05) and RPE cells (𝑃 < 0.01)
transfected with the miR-29a inhibitor (Figure 3).

3.4. Changes in MMP-2 Protein Levels in Scleral Fibroblasts
and RPE Cells after Transfection with miR-29a Mimics or
Inhibitor. Western blotting was performed to measure the
possible changes in intracellular MMP-2 protein expression.
The results showed that the miR-29a mimics decreased
MMP-2 expression, while the miR-29a inhibitor increased
MMP-2 protein expression in both scleral fibroblasts andRPE
cells (Figure 4).
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Figure 4: Changes inmatrixmetalloproteinase- (MMP-) 2 protein levels in scleral fibroblasts (a) and retinal pigment epithelial (RPE) cells (b)
after transfection with miR-29a mimics or inhibitor.The scleral fibroblasts and RPE cells were grown in six-well plates to 60–70% confluence
before transfection. The cells in each well were transfected with 50 nM mimics or 50 nM inhibitor. Western blots showed that the miR-29a
mimics decreased MMP2 expression, and the inhibitor increased MMP-2 expression in both scleral fibroblasts and RPE cells 24 hours after
transfection. NC, negative control.
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Figure 5: Changes in matrix metalloproteinase- (MMP-) 2 secretion from scleral fibroblasts and retinal pigment epithelial (RPE) cells after
transfection with miR-29a mimics or inhibitor.The protein secreted from scleral fibroblasts and RPE cells was analyzed using enzyme-linked
immunosorbent assays (ELISAs). The secretion of MMP-2 by scleral fibroblasts after 48 hours was decreased in cells transfected with the
miR-29a mimics compared with negative controls (𝑃 < 0.05). The secretion of MMP-2 by scleral fibroblasts after 72 hours was significantly
increased in cells transfected with the miR-29a inhibitor compared with negative controls (𝑃 < 0.01). The secretion of MMP-2 was higher 72
hours after transfection than 48 hours after transfection in both themiR-29amimics group (𝑃 < 0.05) andmiR-29a inhibitor group (𝑃 < 0.01).
(a) The secretion of MMP-2 by RPE cells was significantly decreased after 48 (𝑃 < 0.01) and 72 (𝑃 < 0.05) hours in cells transfected with
the miR-29a mimics compared with negative controls. The secretion of MMP-2 by RPE cells after 48 hours was significantly increased in
cells transfected with the miR-29a inhibitor compared with negative controls (𝑃 < 0.05). The secretion of MMP-2 was higher 72 hours after
transfection than 48 hours after transfection in both the miR-29a mimics group (𝑃 < 0.01) andmiR-29a inhibitor group (𝑃 < 0.05) (b). Note:
the error bars show the standard deviations (𝑛 = 3). The statistical analyses were performed using one-way ANOVA for groups at same time
point and paired t-tests for between-group analyses at different time points. ∗𝑃 < 0.05, ∗∗𝑃 < 0.01. NC, negative control; h, hour.

3.5. Detection of MMP-2 Secretion by Scleral Fibroblasts and
RPE Cells after Transfection with the miR-29a Mimics or
Inhibitor Using ELISA. ELISA showed that the secretion of
MMP-2 by scleral fibroblasts 48 hours after transfection
with the miR-29a mimics was decreased significantly (𝑃 <
0.05). The secretion of MMP-2 by scleral fibroblasts 72 hours
after transfection with the miR-29a inhibitor was increased
significantly (𝑃 < 0.01). The secretion of MMP-2 was higher
72 hours after transfection than 48 hours after transfection
in both the miR-29a mimics group (𝑃 < 0.05) and miR-29a
inhibitor group (𝑃 < 0.01) (Figure 5(a)). The secretion of
MMP-2 by RPE cells with miR-29a mimics was decreased 48

(𝑃 < 0.01) and 72 (𝑃 < 0.05) hours after transfection. The
secretion of MMP-2 by RPE cells 48 hours after transfection
with the miR-29a inhibitor was increased significantly (𝑃 <
0.05). The secretion of MMP-2 was higher 72 hours after
transfection than 48 hours after transfection in both themiR-
29a mimics group (𝑃 < 0.01) and miR-29a inhibitor group
(𝑃 < 0.05) (Figure 5(b)).

4. Discussion

Previous studies have shown that expression ofmiR-29 family
members is downregulated in a wide range of cancers and
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that their upregulation suppresses tumor metastasis [24].
Numerous studies have also shown that miR-29s suppresses
the expression and secretion of MMP-2 [22, 25–31]. Lu et al.
showed that miR-29a mimics decreased MMP-2 expression
in humanoral squamous cell carcinoma cell line SCC-25 cells,
whereas miR-29a inhibitors increased MMP-2 expression in
SCC-9 [22]. Targeting MMP-2 by miR-29b is a mechanism
whereby American ginseng hexane extract suppresses the
migration of colon cancer cells [31]. Moreover, Wang et al.
showed thatmiR-29c inhibited expression of a luciferase gene
construct containing the 3󸀠-UTR ofMMP-2mRNA andmiR-
29c downregulated the expression of MMP-2 at the protein
level in lung cancer cell line 95D [29].

In studies of ocular diseases, Cai et al. reported that, dur-
ing choroidal neovascularization, activation of NF𝜅B inhibits
the expression of miR-29 family members. This process
might have contributed to angiogenesis by upregulating the
MMP-2 protein levels in RPE cells [32]. Moreover, Xie et
al. reported that the miR-29a rs157907A/G polymorphism
was associated with a decreased risk of high myopia in the
Chinese population [33].

The results of the present study showed that miR-29a
downregulated MMP-2 expression in scleral fibroblasts and
RPE cells.These results were consistent with previous reports
[22, 26, 32] on the effects of miR-29s on the expression of
MMPs. miR-29a had little effect on the growth of scleral
fibroblasts and RPE cells. Numerous studies on myopia have
emphasized changes in MMP-2 expression in the sclera [10–
16, 34]. Jones et al. reported that eye growth induced by
retinal-image degradation involved increases in the activities
of multiple scleral proteinases that could modify the biome-
chanical properties of scleral structural components and
contribute to tissue remodeling and growth [10]. Jones et al.
reported that MMP-2 played important roles in remodeling
the extracellular matrix of the sclera and in the development
andprogression ofmyopia [10, 13].Using immunohistochem-
ical analysis, Yang et al. demonstrated that the expression
of collagen I was significantly lower and the expression of
MMP-2 was significantly higher in the posterior sclera in
the defocused eyes compared with the contralateral eyes [16].
Rada et al. reported that TIMP-2 expression was significantly
decreased in the posterior sclera of form-deprived eyes [12].

In this study, we examined only the regulation of MMP-2
expression in and secretion from scleral fibroblasts and RPE
cells by miR-29a in vitro and did not use animal models to
investigate the function of miR-29a in vivo. It is necessary
to observe the interference effect of miR-29a on eyeball
development andmyopia in animalmodels.The expression of
TIMP-2 in and its secretion from scleral fibroblasts and RPE
cells were as important as MMP-2 and will be investigated in
a future study. Collagen I and IV on the sclera was related
to myopia [15, 16]. In a future study, we will determine the
expression of collagen I and IV in form-deprived eye sclera
and detect the changes in collagen I and IV with miR-29a in
vivo.

In conclusion, the suppression of MMP-2 expression and
its secretion in scleral fibroblasts and RPE cells stimulated by
miR-29amay provide amolecular basis for understanding the
mechanisms underlying myopia progression.
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