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Calcium plays an important role in a wide variety of
multicomponent materials, including nonlinear optics,[1] phos-
phors,[1] dielectrics,[2] high-temperature superconductors,[3]

colossal magnetoresistance materials,[4] planar waveguides,[5]

laser windows, and fiber optics.[5] Promising potential appli-
cations of calcium oxide, owing to its wide band gap of
6.8 eV,[6] include alloys with HfO2 for gate-capacitor dielec-
trics in metal-oxide-semiconductor field-effect transistors
(MOSFETs),[5] and alloys with MgO as an epitaxial gate
insulator in GaN-based high-electron-mobility transistors
(HEMTs).[5, 7] Calcium sulfide may have utility as an alloy
with the strong visible-light absorber SnS; the addition of
calcium to SnS to form Sn1¢xCaxS stabilizes the desirable but
unstable cubic (rock-salt) phase of this material.[8]

For many of these applications, especially in electronic
devices, a method to deposit uniform thin films at modest
temperatures is required. Atomic layer deposition (ALD),
a modified form of chemical vapor deposition in which
precursors are delivered in pulses, provides a route to
conformal thin films of metals, metal oxides, and metal
chalcogenides even on nanostructured substrates.[9] During
each pulse cycle, one precursor reacts with the growth surface
until the surface is saturated, and then by-products and
unreacted precursor are removed by purging with inert gas.[9]

This process is repeated alternately, and the self-limiting
character (film growth through surface saturation) allows for
accurate and reproducible control of film thickness with
excellent large-area uniformity and conformality.[9] Other
requirements for an ALD precursor are self-limited reactivity
with the growth surface, high volatility, high thermal stability,
and the formation of only stable and noncorrosive by-
products.[9]

ALD affords a constant film-growth rate within a temper-
ature window; at lower temperatures, the precursor may not
react with the surface or may condense without any surface
reaction, whereas at higher temperatures, the precursor may
decompose. The available ALD window is critically impor-
tant in the selection of precursors for multicomponent thin
films,[10] whereby the temperature range is defined by the
overlap of the individual component ALD windows. There-
fore, a major goal of ALD precursor development is increas-
ing the growth window, and this goal is especially urgent for
calcium because Ca has mostly been alloyed with metal
chalcogenides and metal oxides for functional-materials
applications.

The most widely employed ALD Ca precursor,[4,11]

commercially available trimeric [Ca3(tmhd)6] (tmhd =

2,2,6,6-tetramethylheptane-3,5-dionate),[11a,c,d, 12] has an ALD
window of 325–400 88C for the ALD of CaS with H2S as
a coprecursor.[11a,b] One alternative precursor, [Ca(iPr3Cp)2]
(iPr3Cp = 1,2,4-triisopropylcyclopentadienyl),[13] has a some-
what lower window in the ALD of CaO films with H2O as
a coprecursor (200–300 88C, 1–2 atom% carbon),[5, 11d] but has
not seen widespread adoption.

Several other types of volatile CaII complexes (fluoroalk-
oxides,[14] fluorinated b-diketonates,[15] b-diketiminates,[16] and
aminodiboranates[17]) have been reported, but not employed
in ALD reactions. To complement the currently known Ca
ALD precursors, we chose to explore the amidinate ligand
system. Amidinate ligands have high basicity, and amidinate
complexes have been shown to react readily with proton
sources, such as H2O and H2S, for the ALD of a variety of
transition-metal and lanthanide oxides and sulfides.[18]

Although several CaII amidinate complexes are known
(Scheme 1), none are appropriate for ALD. All of the ligands
contain bulky aryl groups, which typically afford compounds
of very low volatility.

Herein, we report the synthesis of CaII alkyl amidinates
with excellent thermal stability and volatility, and demon-
strate the utility of one of the complexes in the ALD of CaS.
Dimeric bis(N,N’-diisopropylformamidinato)calcium(II) (1;
57% yield; distills at 110–115 88C, 0.2 torr) and dimeric
bis(N,N’-diisopropylacetamidinato)calcium(II) (2 ; 59%
yield; sublimes at 120–125 88C, 0.1 torr) were prepared in the
presence of ammonia[19] by an atom-economical redox
reaction between Ca metal and the free amidines[18a,20]

(Scheme 2). This direct synthesis avoids the involvement of
other metals and reduces the possibility of incorporating trace
metal contaminants into thin films. The mechanism probably
follows that of the reaction of Ca with HN(SiMe3)2 to form
Ca[N(SiMe3)2]2(THF)2.

[19] 1 and 2 are the first nitrogen-only
coordinated CaII complexes that satisfy the ALD require-
ments of high volatility and thermal stability. For example,
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although homoleptic b-diketiminate CaII complexes are
appreciably volatile, they decompose at about 180 88C and
are therefore not suitable for ALD.[16]

Single-crystal X-ray analysis[27] (Figure 1; see also
Tables S1–S3 in the Supporting Information) showed that,
in the solid state, 1 is a homoleptic dimer in which each Ca
center is coordinated by one terminal bidentate amidinate
and two bridging amidinates. One of the bridging ligands
(N(5) and N(6)) coordinates to both Ca centers in a symmetric
fashion (m-h2 :h2). The other bridging ligand (N(7) and N(8))
coordinates in an asymmetric fashion (m-h2 :h1). Therefore,
formally the coordination number at Ca(1) is six, whereas the
coordination number at Ca(2) is only five, as found in one
previously reported CaII amidinate.[21a] Interestingly, the sixth
(vacant) coordination site of Ca(2) appears to be filled by an

agostic interaction with C(24): The
Ca···H distances of 2.80 and 2.84 è
fall at the long end of the range
typically described as agostic.[26] The
Ca¢N bond lengths (see Table S2)
are consistent with those found in
other CaII amidinates. The terminal
Ca–N distances of 2.323(3)–2.375-
(3) è fall at the short end of the
range reported for terminal amidi-
nates, 2.306(5)–2.525(3) è,[24] with
most distances in the range 2.36–
2.44 è.[21a,24, 25] The Ca(2)–N distan-
ces (2.324(3), 2.325(3) è) are shorter
than the Ca(1)–N distances (2.347(3),
2.374(3) è), as should be expected
from the lower coordination number
of Ca(2). The bridging Ca–N distan-
ces (2.400(3)–2.633(3) è) are slightly
shorter than those found in the only
previously reported bridging amidi-
nate (2.445(3)–2.650(3) è).[21a] The
Ca(1)–N(8) distance of 2.407(4) è
reflects the h1 nature of this nitrogen
atom, and the Ca(2)–N(8) distance of
3.545(4) è is nonbonding. Although
extreme disorder and weak diffrac-
tion thwarted the refinement of sev-
eral data sets for 2, the connectivity
of 2 does appear to be the same as
found in 1. 1H and 13C NMR spec-
troscopy clearly showed that 1 and 2
maintain dimeric structures in solu-
tion (see Figures S1 and S2 in the
Supporting Information).

Thermogravimetric analysis
(TGA) was used to investigate the
volatility and thermal stability of
1 and 2. Under a linear temperature
ramp, quantitative, single-step weight
loss was observed in the temperature
range 150–275 88C for 1 and 175–
290 88C for 2 (Figure 2a). Therefore,
both 1 and 2 can vaporize without

decomposition (i.e., 1 and 2 are thermally stable) in those
temperature ranges on the time scale of the TGA experiment.
With a larger sample and faster heating rate, the weight-loss
window was elevated as expected, and quantitative, single-
step weight loss occurred in the range of 300–400 88C (Fig-
ure 2a). The excellent thermal stability of both complexes to
at least 350 88C meets an important requirement for ALD,
namely, thermal stability during mass transport to the
substrate surface at film-growth temperatures.

Evaporation rates for 1, 2, and [Ca3(tmhd)6], obtained
from isothermal TGA experiments (Figure 2b; see also
Figure S5), show that the evaporation rates (i.e., volatilities)
follow the order 1> 2> [Ca3(tmhd)6]. Notably, the evapora-
tion rate of 1 was approximately 37 times higher than that of
[Ca3(tmhd)6] at 225 88C, at which temperature both compounds

Scheme 1. Previously reported synthetic routes to CaII amidinates, prepared by a,b) protonolysis
and carbodiimide insertion,[21] c) phenyl cyanide insertion,[22, 23] d) salt metathesis,[24] and e) redox
transmetalation.[25] Cy = cyclohexyl, Ar =Aryl, DME= 1,2-dimethoxyethane.
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are liquid (m.p. of 1: 110–116 88C; m.p. of [Ca3(tmhd)6]: 220–
223 88C). The slopes of the logarithms of evaporation rate
versus inverse temperature in Figure 2b indicate that the
enthalpy of vaporization is lower for 1 and 2 than for
[Ca3(tmhd)6].

In initial tests of the reactivity of the new compounds, CaS
films were deposited by ALD by using the vapor of 1 or 2 and
H2S. For both compounds, the precursor was maintained at
140 88C. At this temperature, 1 (m.p.: 110–116 88C) is a liquid,
from which it evaporates at a high and consistent rate
(Figure 2b). This rate of evaporation from the liquid surface is
consistently reproducible, because its surface area is fixed by
its container. In contrast, 2 is a solid (m.p.: 170–174 88C) at the
evaporator temperature; therefore, its vaporization rate is
lower and is determined by its surface area, which changes
with time as the material evaporates, and thus is less
reproducible.

The ALD of CaS by using the vapor of 1 with H2S
as a coreactant produced pure CaS films within the
temperature range of 150–280 88C (Figure 3). The
thickness of the CaS from 1 was constant over the
whole length of the gas flow in the reactor (30 cm).
Thus, the surface reactions of 1 were saturated over the
whole substrate surface. In contrast, the films from 2
became thinner toward the end of the gas-flow path.
Thus, the lower vapor pressure of 2 was not high
enough to saturate its surface reactions near the end of
its gas-flow path. The following discussion therefore
focuses on ALD with 1.

At temperatures below 150 88C (Figure 3a), the
thickness increased owing to incomplete removal of
the ligands or physical adsorption of the precursor. At
temperatures over 280 88C, the thickness increased
owing to decomposition of the precursor. Carbon
was also detected in these higher-temperature films,
which is another indication that the ALD window lies
below 280 88C. Thus, the deposition operates as an ideal
ALD process in the temperature range from 150 to
280 88C.

The observed ALD window covers a significantly
lower and wider temperature range as compared to
that with [Ca3(tmhd)6] (325–400 88C)[11a,b] and [Ca-
(tmhd)2(tetraen)] (300–350 88C).[11b] This dramatic

Scheme 2. Synthesis of CaII amidinates by a redox reaction between Ca metal
and an amidine. a) Plausible redox reaction mechanisms for Ca and the
amidine. b) Synthesis of 1 and 2.

Figure 1. Solid-state structure of 1 with the thermal ellipsoids set at
the 30% probability level; hydrogen atoms and the minor positions
(15%) of the disordered bridging ligands are omitted for clarity.
Selected distances [ç]: Ca(1)–N(1) 2.347(3), Ca(1)–N(5) 2.633(3),
Ca(1)–N(7) 2.619(3), Ca(1)–N(8) 2.407(4), Ca(2)–C(24) 3.102(6).[27]

Figure 2. Thermogravimetric analysis. a) TGA curves (ramp from room
temperature to 550 88C) of 1 (solid line: 9.6 mg, 10 88C min¢1; dash-dot-
dotted line: 80.2 mg, 20 88C min¢1) and 2 (dash-dotted line: 9.6 mg,
10 88Cmin¢1; dotted line: 80.6 mg, 20 88C min¢1). b) Plot of evaporation
rate (mgmin¢1 cm¢2, log scale) versus temperature (Kelvin, reciprocal
scale) for 1 (squares, solid line), 2 (circles, dash-dotted line), and
[Ca3(tmhd)6] (triangles, dash-dot-dotted line).
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improvement to the ALD window should enrich the ALD
study of alloys of CaS with other metal chalcogenides or
oxides because the ALD of metal sulfides and oxides has
often been performed below 300 88C.[11d] The growth rate in the
ALD window (Figure 3a) was found to be 0.87 ècycle¢1,
which is significantly higher than that reported for [Ca3-
(tmhd)6] (0.50 ècycle¢1).[11a,b] In X-ray photoelectron spec-
troscopy (XPS) experiments for the CaS films grown in the
ALD window, carbon was not detected (see Figure S6).
However, in the CaS films grown at temperatures outside the
ALD window (130, 296, 312 88C), carbon was detected (see
Figure S6). Figure 3 b shows the SEM image of a typical
columnar and highly crystalline CaS film grown at 212 88C. The
XRD pattern of this film (Figure 3c) shows only the (111) and
(222) reflections of cubic CaS, thus indicating preferential
orientation during film growth.[11d] The electron diffraction
pattern of a CaS film from TEM experiments also indicates
that the deposited film has the cubic (rock-salt) structure
(Figure 3d; see also Figure S8).

In summary, volatile and thermally stable homoleptic,
dimeric CaII amidinates were synthesized in one step through
a redox reaction between calcium metal and amidines without
any involvement of potential trace metal contaminants. This
synthetic procedure may be applicable to Sr or Ba precursors
because reactions of Sr and Br with HN(SiMe3)2 form
Sr[N(SiMe3)2]2(THF)2 or Ba[N(SiMe3)2]2(THF)2 in the pres-
ence of ammonia;[19] we are currently exploring this possibil-
ity. Precursor 1 is a thermally stable liquid at its evaporation
temperature, thus ensuring the rapid, stable, and reproducible
delivery of vapor. The observed ALD window for CaS with
1 and H2S is approximately twice as wide and begins 150 88C
lower than the window reported for commercially available
and widely employed [Ca3(tmhd)6]. Through improved vol-

atility and lower reaction temperatures, compounds 1 and 2
provide the opportunity for increased usage of Ca in ALD,
especially for the synthesis of multicomponent materials.
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