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Bone marrow (BM) is a highly complex tissue that provides important regulatory signals to
orchestrate hematopoiesis. Resident and transient cells occupy and interact with some
well characterized niches to produce molecular and cellular mechanisms that interfere with
differentiation, migration, survival, and proliferation in this microenvironment. The acute
myeloid leukemia (AML), the most common and severe hematological neoplasm in adults,
arises and develop in the BM. The osteoblastic, vascular, and reticular niches provide
surface co-receptors, soluble factors, cytokines, and chemokines that mediate important
functions on hematopoietic cells and leukemic blasts. There are some evidences of how
AML modify the architecture and function of these three BM niches, but it has been still
unclear how essential thosemodifications are tomaintain AML development. Basic studies
and clinical trials have been suggesting that disturbing specific cells and molecules into the
BM niches might be able to impair leukemia competencies. Either through niche-specific
molecule inhibition alone or in combination with more traditional drugs, the bone marrow
microenvironment is currently considered the potential target for new strategies to treat
AML patients. This review describes the cellular and molecular constitution of the BM
niches under healthy and AML conditions, presenting this anatomical compartment by a
new perspective: as a prospective target for current and next generation therapies.
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INTRODUCTION

The bone marrow (BM) is a soft and viscous tissue within the bone cavities that holds a highly
complex and dynamic microenvironment. The BM microenvironment is formed by heterogeneous
cells populations, blood vessels and a variety of molecules allocated in niches that provide important
regulatory signals to support hematopoiesis, which importantly contribute to the physiological
homeostasis throughout life in several aspects, including blood regeneration and immune system
maintenance (Yin and Li 2006; Medyouf 2017; Shafat, Gnaneswaran, et al., 2017; Méndez-Ferrer
et al., 2020).

The hematopoietic stem cells (HSC) are self-renewing progenitors of the hematopoietic system
that reside and remain in the BM until maturation. HSCs and some of their derived subpopulations
are dynamically exposed to several stimuli that orchestrate survival, self-renewal, quiescence,
migration, and differentiation driving to an adequate hematopoiesis. Considering the
hematopoietic cells, there are two core cell lineages in the BM: the common myeloid progenitor
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line dedicated to megakaryocyte/erythrocyte lineage and to
granulocyte/macrophage lineage; and the common lymphoid
progenitor line that ultimately originates the lymphocytes (B
and T), NK and NKT cell (Passegué et al., 2003; Medyouf 2017;
Shafat, Gnaneswaran, et al., 2017).

Homeostasis is affected on many levels by the correct
hematopoietic system regulation. For example, immune system
cells are associated with neurological functions, endocrine and
cardiovascular regulation, metabolism control and cancer
surveillance (Malcangio 2019; Ahmari, Hayward, and Zubcevic
2020; Vidal and Pacheco 2020; Klein 2021; Kologrivova et al.,
2021). Thus, disturbances in the bone marrowmicroenvironment
may contribute to the development and exacerbation of a range of
diseases.

Genes and pathways related to normal development of HSCs
may be affected by mutations and trigger hematological
oncogenesis with reported changes in the BM
microenvironment organization. However, the interaction of
leukemia stem cells (LSC) and BM niches are still
incompletely described (Passegué et al., 2003; Huntly and
Gilliland 2005; Ugel et al., 2015; Méndez-Ferrer et al., 2020).
What comes first? BM niches disturbance or LSC arising? How
leukemic BM niches might contribute to AML? Such answers
may lead researchers toward a next generation of diagnosis
markers and therapeutic approaches reaching promising
clinical outcomes.

ACUTE MYELOID LEUKEMIA: GENERAL
ASPECTS AND CLINICAL FEATURES

Acute myeloid leukemia (AML) is a clonal malignant
hematopoietic disorder originating from genetic and molecular
changes in normal hematopoietic stem cells. As a result, there is a
production of immature cells that proliferate and accumulate in
the bone marrow (named blasts) (Deschler and Lübbert 2006).
These are non-functional cells that compete with and replace
normal hematopoietic precursors, which classically leads to
cytopenias and leukocytosis (Estey and Döhner 2006). Recent
epidemiological data revealed an incidence of 4.3 cases per
100,000 with median age at diagnosis of 68 years and 24% of
5 years survival in United States (Shallis et al., 2019).

Similarly to most of the tumors, AML emerges from
accumulation of somatic drivers and secondary mutations (Ley
et al., 2013), and diagnosis is currently based on cytogenetic
analysis and next generation sequencing (NGS) (Patel et al.,
2012). Mutated genes related to signaling pathways and
protein kinase activation, such as FLT3, are associated to
aberrant activation and proliferation of leukemic blasts
(DiNardo and Cortes 2016). FLT3 has a special role in
leukemogenesis by collaborating with other mutations,
especially those involving the NPM1 gene. Patients with NPM1
mutation are stratified as favorable prognostic. However the risk
stratification is changed and the clinical course is associated with
early relapses when both mutations coexist (FLT3 and NPM1)
(Martelli et al., 2013; Papaemmanuil et al., 2016). Other
important group of founder mutation are related to genes that

regulate epigenetic DNA methylation and chromatin
modification. DNMT3A mutation, for example, impairs and
blocks HSC differentiation and TET2 mutation impairs
myeloid differentiation (Papaemmanuil et al., 2016). Major
cytogenetic alterations are also described as responsible for
AML development (such as chromosomal translocation, gene
amplification, insertion or deletion) and these marks are also
important for risk classification and treatment strategy (Short,
Rytting, and Cortes 2018; Eisfeld et al., 2020).

AML presents as a heterogeneous disease that typically
implicates bone marrow and peripheral blood (PB), and in
several cases extramedullary tissues (Narayanan and Weinberg
2020). Pancytopenia (decrease in all blood cell lineages,
i.e., anemia, neutropenia, and thrombocytopenia) arises from
BM failure and occupation by leukemic blasts.

The common clinical presentation comprises weakness,
fatigue, recurrent infections and bleeding disorders (bruise,
ecchymosis, epistaxis) (Weinberg et al., 2019). In the leukemic
process, fever occurs through 2 mechanisms: neoplastic fever,
arising from clonal proliferation process, or due to neutropenia
and subsequent recurrent infections. Extramedullary symptoms
comprise hepatosplenomegaly, lymphadenopathy, and bone
lesions (Rose-Inman and Kuehl 2014).

Coagulation disorders (thrombotic or hemorrhagic) are
probably the most severe presentations of AML and can lead
patients to death in about 7% of cases (Franchini et al., 2013). All
types of AML can present with coagulation impairment although
it commonly occurs in acute promyelocytic leukemia (Naymagon
and Mascarenhas 2020). Leukostasis is another clinical
presentation defined as symptomatic hyperleukocytosis, which
is a medical emergency observed in 10–20% of AML patients.
Although leukostasis can manifest itself through pathological
changes in many organs, the main clinical and potentially fatal
symptoms are related to the central nervous system (CNS) and
lungs (Stahl et al., 2020).

Diagnosis is set with the presence of 20% blasts in BM or PB,
except in a few cases where cytogenetic by itself is sufficient to
confirm AML (Arber et al., 2016). Bone marrow aspiration is
assessed for several diagnostic tools: morphological analysis, flow
cytometry (to define subtypes of the disease), cytogenetic (to
search for chromosomal alteration), and NGS (for gene
mutations) (Jongen-Lavrencic et al., 2018).

The success of AML treatment is to bring the disease to
remission (undetectable blats and molecular marks). There is a
well established protocol divided into two stages basically:
induction and consolidation therapy (De Kouchkovsky and
Abdul-Hay 2016). Intensive induction chemotherapy
comprises the first-line treatment and aims at maximum
reduction of the leukemic blast count (<5% in BM). For
patients eligible for intensive chemotherapy, standard
chemotherapy is a combination of Cytarabine for 7 days and
Daunorubicin or Idarubicin for 3 days (7 + 3 protocol), and this
strategy is responsible for disease remission in more than 50% of
patients of all ages since 1970 (Lichtman 2013; Döhner et al.,
2017). An initial evaluation is required to determine treatment
modalities, for example, patients with advanced age are not
candidates for intensive induction chemotherapy. Alternative
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options can also reflect good results in terms of overall survival
and quality of life with hypomethylation-inducers combined with
Venetoclax or Cytarabine low dose as recently published
(DiNardo et al., 2020; Wei et al., 2020). Consolidation therapy
is the second step after induction treatment and aims to improve
remission achieved with initial treatment. Depending on risk
stratification (Datoguia et al., 2018), the patient can be treated
with high-dose chemotherapy or undergo to bone marrow
transplant with curative intent (Shimomura et al., 2021).

After a period of remission, relapse episodes are frequent with
more drug-resistant leukemic clones leading patients to death due
to disease complications, and only 24% of patients achieve a 5-
year overall survival (Hirabayashi et al., 2021). Unfortunately,
combination of re-induction protocols with target therapies (for
example, tyrosine kinase inhibitors) did not produce any longer
survival in the patients (Daver et al., 2020).

A specific and distinct subtype of AML classified by the World
Health Organization (WHO) and currently referred as APL with
PML-RARA (O’Donnell et al., 2017) is the Ate promyelocytic
leukemia (APL), also named as AML-M3 by the French-
American-British (FAB) classification system (Warrell et al.,
1993; Puccetti and Ruthardt 2004). It is a separate entity
comparing to the others AML by presenting histological and
clinical characteristics such as the morphology of Auer’s rods and
the propensity to exhibit disseminated intravascular coagulation
(Mistry et al., 2003). From a therapeutic point of view, there is
also divergence. While AMLs as a whole are treated with 7 + 3
protocol (cytarabine with daunorubicin/or idarubicin), patients
diagnosed with low-risk APL receive induction treatment with
arsenic trioxide plus all-trans retinoic acid (Burnett et al., 2015),
which leads to disease remission with excellent results in terms of
overall survival (Wang and Chen 2008). Thus, non-APL AMLs
are the main current issue for the scientists.

In recent years, there has been a significant improvement in
different features of AML’s physiology with a focus on BM niches,
and other drugs have been addressed to interfere with niche-
specific cell populations, extracellular matrix components, varied
growth factors, and cell adhesion molecules produced by niche
cells. Researchers intend to impair leukemia development or
progression by interfering in the bone marrow
microenvironment, and ultimately improving the clinical
outcomes (Zhang et al., 2019; Ladikou et al., 2020).

HEALTHY AND LEUKEMIC BONE
MARROW NICHES

Raymond Schofield was the first one to propose the niche concept
for the human hematopoietic system. The niches were described
as areas in which the hematopoietic stem cells not only reside but
may establish associations with other cells to modulate their
behavior (Schofield 1978). Currently, niches are commonly
defined as microenvironments that combine non-
hematopoietic cells and the architecture of the bone marrow
to promote self-renewal and differentiation of HSCs by providing
invaluable and essential factors (Morrison and Spradling 2008;
Szade et al., 2018).

Collectively, the components of the niches orchestrate the
phenomenon of hematopoiesis. Significant progress in bone
marrow imaging technologies has provided a better
understanding of the molecular and cellular complexity of the
bone marrow. However, compartmentalization of this space
remains a challenge due to the anatomical and functional
connectivity and the numerous and simultaneous interactions
between the HSCs and the surrounding cells. Nevertheless, many
publications divide the bone marrow, geographically, into
vascular, endosteal, and reticular niches (Behrmann,
Wellbrock, and Fiedler 2018). Although there are no
anatomical boundaries to physically segregate the most diverse
constituents of the marrow microenvironment, the niches have
specific components that define their role on the homeostasis of
hematopoietic stem cells.

In summary, the endosteal niche, more hypoxic, keeps the
HSCs in a quiescent state, leading to a long-term storage of the
hematopoietic cells and regulating the size of the stem and
progenitor cells pool in the bone. Oppositely, the vascular
niche, more vascularized and rich in oxygen, supports the
progenitors that are actively proliferating and differentiating to
form the various hematopoietic cell lineages. The reticular niche
takes part in the regulation of stem cell factors from surrounding
cells secretion. Additionally, there are other cell groups whose
addressing within the marrow microenvironment still causes
disagreement among scientists, but whose role in the
regulation of hematopoietic cells is worthy of being analyzed
in this review. Considering how complex the crosstalk among
niches and HSC, it is expected how a disturbance of this
regulatory and integrating network can lead to, or at least be
related to hematological diseases such as leukemias (Ghobrial
et al., 2018). Literature provides pieces of evidence about normal
and leukemic bone marrow functional architecture, and the next
paragraphs will elucidate how AMLmodifies and takes advantage
from this altered BM microenvironment.

The Physiological Endosteal Niche
The endosteal niche, also entitled osteoblastic niche, is
characterized by its proximity to the trabecular or cortical
bone (Nilsson, Johnston, and Coverdale 2001; Behrmann,
Wellbrock, and Fiedler 2018). It is well established that this
compartment is filled with mesenchymal stromal cells (MSCs),
osteoprogenitor cells, pre-osteoblasts, mature osteoblasts,
osteocytes, and osteoclasts (Le, Andreeff, and Battula 2018).

The mesenchymal stromal cells, also called mesenchymal stem
cells or bone marrow stromal cells, are multipotent stem cells
capable of renewing themselves and have the ability to
differentiate and to give rise to cells such as marrow adipose
tissue, bone cartilage and occasionally myofibers. In the endosteal
niche, these cells are surrounding pre-osteoblasts and osteoblasts
of the bone-lining cell. However, MSCs have also been described
in the perivascular region, around sinusoidal endothelial cells
(Yusop et al., 2018). MSCs express key hematopoietic factors such
as stem cell factor (SCF) and stromal cell–derived factor 1 (SDF-
1). They are also sources of trophic factors modulating the
immune system and inducing intrinsic stem cells to repair
damaged tissues (Prockop 1997, 1998; Bianco et al., 2013;
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Shafat et al., 2017; Yusop et al., 2018; Waclawiczek et al., 2020;
Rodríguez-Fuentes et al., 2021).

The osteoblastic population derived from mesenchymal
precursors constitutes the main cell group resident in the
endosteum, playing key roles in bone development including
the synthesis and mineralization of the extracellular bone matrix
(Sugiyama and Nagasawa 2012). In addition, osteoblasts are
related to self-renewal and maintenance of HSCs in an
undifferentiated and quiescent stage (Le, Andreeff, and Battula
2018).

The cross-talk between osteoblastic cells and HSCs is mediated
by several pairs of molecules such as soluble cytokines, cytokine
receptors and adhesion molecules (Goulard, Dosquet, and
Bonnet 2018). The duo Notch 1/Jagged 1 constitutes an
important axis in the regulation of hematopoiesis. Several
studies have demonstrated that activation of Notch 1
maintains the immature profile of hematopoietic precursors,
both in vitro and in vivo. The physiological activation of this
signaling occurs through the interaction between the
transmembrane glycoprotein receptor Notch, present on the
membrane surface of hematopoietic precursor cells, and one of
its possible ligands such as Jagged 1, a transmembrane protein
expressed notably by osteoblasts. The cellular response to this
pathway comprehends an increased self-renewal and
concentration of the pool of HSCs (Stier et al., 2002).

The noncanonical Wnt signaling axis represents another
central pathway associated with the long-term maintenance of
quiescent HSCs. Flamingo (Fmi) and Frizzled 8 (Fz8) compose a
group of molecules that mediate the activation of this signaling.
Fmi is a cadherin family molecule, a mediator of homophilic
adhesive interaction between pre-osteoblasts and HSCs. Fz8, in
turn, is a protein of seven transmembrane domains coupled to the
Fmi that regulate intracellular calcium levels. Together, Fmi and
Fz8 impair the nuclear translocation of NFAT, a transcription
factor, preventing the expression of IFNγ, a significant molecule
in the activation of HSCs (Kimura et al., 2006). Conversely, the
canonical Wnt signaling (β-catenin-mediated) is associated with
maturation of progenitors under bone marrow stress conditions,
meanwhile the role of the canonical route on the maintenance of
HSCs is still uncertain. In homeostatic conditions, pre-osteoblasts
express noncanonical Wnt ligands and inhibitors of the canonical
Wnt pathway. In consequence, the interaction between pre-
osteoblasts and HSCs triggers noncanonical Wnt signaling and
contribute to HSC quiescence by downregulation of IFNγ
production and by antagonization of the canonical Wnt route
(Sugimura et al., 2012).

Arai et al. (2004) revealed Tie2/Angiopoietin-1 signaling as
another important pathway implicated in the quiescence of HSCs.
Tie2 is a tyrosine-kinase receptor expressed in the HSC
population, more precisely the long-term repopulating HSCs
(LTR-HSCs). In contrast, angiopoietin-1 is a glycoprotein
secreted by osteoblasts. Apparently, Ang-1 binding is
succeeded by phosphorylation of Tie2, resulting in activation
of the phosphatidylinositol 3-kinase (PI3-K)/Akt signaling
pathway, which promotes the maintenance of the self-renewal
capacity and protection against bone marrow stresses.
Furthermore, the Tie2/Ang-1 axis has been shown to be

critical for positive regulation of β1-integrin, which allows the
maintenance of HSCs in a primitive phenotypic state by adhering
to stromal cells (Arai et al., 2004).

Osteoblasts are known to secrete various proteins for the
composition of the extracellular matrix (ECM), including
collagen (COL) and fibronectin (FN), the main components of
ECM of BM microenvironment (Hackney et al., 2002). Ang-1
promotes FN- and COL-mediated cell adhesion of Tie2+ HSCs to
ECM, and increased levels of Ang-1 stimulate an elevation in the
adhesion of HSCs to the bone surface in vivo, which may be
related to cell survival (Arai et al., 2004).

Upregulation of β1-integrin is also involved in the modulation
of HSCs quiescence via the THPO/MPL (thrombopoietin/
thrombopoietin receptor) pathway. MPL is the product of the
transcription and translation of the c-MPL gene (Vigon et al.,
1992). THPO, in turn, was identified as a primary cytokine, a
regulator of megakaryocyte development and platelet production
(Kaushansky 1995). However, recent studies have demonstrated
the role of these molecules associated with self-renewal and
quiescence of HSCs in adult BM. Evidence suggests that MPL+

HSCs adhere to THPO-producing osteoblastic cells and THPO-
or MPL-knockout mice show a decrease in the number of HSCs
(Kimura et al., 1998). Experiments involving a neutralizing anti-
MPL provoked a reduction in the proportion of quiescent HSCs
and HSCs-niche interactions. Furthermore, an increase in the
number of HSCs in G0 state was observed by exogenous THPO
infusion in vivo. Altogether, these observations suggest that
THPO/MPL signaling regulates quiescent HSCs and HSC-
niche interactions on the endosteal surface and contribute to
the hematopoiesis process (Yoshihara et al., 2007).

A study by Susan K. Nilsson et al. provided significant
evidence that osteopontin (Opn) is an essential component in
the regulation of HSCs. Osteopontin is a phosphorylated
glycoprotein that has multiple domains (Chen et al., 1993).
The binding of this molecule to its distinct receptors explains
the most diverse cellular functions that osteopontin may
modulate (Denhardt and Guo 1993). In the context of
hematopoiesis, this protein is expressed at high levels by
endosteal osteoblasts. Similar to the Tie2/Ang-1 and THPO/
MPL axes, Opn-HSCs interaction occurs via β1-integrin.
Experiments involving Opn-knockout mice reported a
significant increase in HSCs cycling, suggesting that, under
normal conditions of osteopontin expression, this molecule
acts as a negative regulator of stem cell pool size, actively
maintaining the quiescence of these cells by inhibiting the
entry of HSCs into the cell cycle and, consequently, blocking
cell proliferation (Nilsson et al., 2005; Stier et al., 2005).

A conflicting signaling mechanism is observed on the
N-cadherin pathway. N-cadherin is characterized as a cell-cell
adhesion molecule dependent on the presence of calcium íons,
enabling homophilic interactions between neighboring cells
(Song et al., 2002). Studies are suggesting that N-cadherin acts
in the regulation of HSCs quiescence. According to the
observations of these groups, the HSCs N-cadherin is
anchored to the N-cadherin expressed in osteoblasts, and
silencing of N-cadherin results in loss of HSCs long-term
engraftment (Hosokawa et al., 2010). On the other hand,
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another evidence indicates that N-cadherin-mediated HSCs-
osteoblasts interactions are dispensable for the maintenance of
hematopoietic cells in the endosteal surface (Kiel et al., 2009;
Greenbaum et al., 2012). Experiments with deletion of encoding
N-cadherin from HSCs revealed no change in the behavior of
stem cells (Kiel, Radice, and Morrison 2007). Similar results were
obtained with the deletion of N-cadherin expressed by
osteolineage cells, revealing that the loss of interaction through
this pathway did not have a significant effect on the status of the
HSCs cycle. Consistent with these studies, it has been increasingly
proposed that redundant pathways involving other cadherins
such as E-cadherin, C-cadherin, and R-cadherin may compensate
the loss of N-cadherin, enabling the maintenance of HSCs
quiescent phenotype in the endosteum (Greenbaum et al., 2012).

Osteoclasts are also important cells on the endosteal surface.
They are involved in the reabsorption of the mineralized bone
matrix, but their role in the regulation of HSCs is controversial.
There is evidence that osteoclasts, through secretion of proteolytic
enzymes such as cathepsin K, promote the degradation of the
endosteal niche components like stromal cell-derived factor 1

(SDF-1), stem cell factor (SCF), and osteopontin, leading to the
mobilization of hematopoietic progenitor cells (Kollet et al.,
2006). In contrast, one study elucidate the role of osteoclasts
in the mobilization of hematopoietic progenitors by ablation of
osteoclasts under administration of zoledronate in mice. Results
revealed higher mobilization of hematopoietic cells confirming
that osteoclasts are not required for the mobilization of HSC-
derived progenitors (Winkler et al., 2010). But it is still clear that
further studies are needed to clarify in detail the role of osteoclasts
in hematopoiesis.

The Leukemic Endosteal Niche in Acute
Myeloid Leukemia
The leukemic endosteal niche is marked by the loss of fine balance
between bone formation and resorption, which may be associated
with oncogenic events (Figure 1). A critical pathway in bone
remodeling is RANK/RANKL. The receptor activator of nuclear
factor kappa-B ligand (RANKL) is a membrane protein found on
the surface of stromal and osteoblast cells, but which is also

FIGURE 1 |Cellular andmolecular components of bonemarrow endosteal niche in both healthy and leukemic scenarios. The illustration contrasts the activities and
components of the endosteal niche under physiological conditions and during the course of acute myeloid leukemia. In a normal scenario, signaling pathways such as
MPL/THPO, Jagged 1/Notch 1, and Ang-1/Tie-2 promote the maintenance of hematopoietic cells in a primitive profile and their capacity for self-renewal. Osteopontin,
via β1-integrin, acts as a negative regulator of stem cell pool size by blocking cell proliferation. N-cadherin constitutes a cell adhesion mechanism between HSCs
and osteoblasts. In contrast, the role of the canonical Wnt signaling on the maintenance of HSCs is still debated. Collagen and fibronectin constitute the main
components of the extracellular matrix of the bone marrow microenvironment. Mesenchymal stromal cells give rise to osteoblasts and adipocytes. In the AML scenario,
leukemic stem cells secrete a variety of molecules such as BMP, DKK1, CCL3 that, together, lead to inhibition of adipogenic differentiation of MSCs, promotion of the
osteogenic lineage, impairment of osteoblast functioning and an environment rich in immature osteoblasts. In addition, the RANK/RANKL signaling pathway leads to
osteoclastogenesis and increased osteoclast survival.
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expressed by blasts of AML patients. The receptor activator of
nuclear factor kappa-B (RANK) is a transmembrane protein
found on the surface of osteoclasts. Activation of this axis
leads to osteoclastogenesis and increases the survival of
osteoclasts (Schmiedel, Grosse-Hovest, and Salih 2013).

Battula et al. revealed that AML cells support leukemogenesis
through switching from adipogenic to osteogenesis
differentiation of MSCs by a bone morphogenetic protein
(BMP)-dependent mechanism. Leukemic cells release BMP
that activates Smad 1/5 signaling on MSCs to drive osteoblast
lineage differentiation (Battula et al., 2017). Several studies have
also reported that the leukemic endosteal niche is marked by
osteoprogenitor cells and immature osteoblasts, delaying the
maturation process of these cells and promoting deficient bone
mineralization. Early-stage osteoblasts markers such as osterix,
RUNX2, and Col1a1 are expressed in mesenchymal cells of AML
patients. On the other hand, markers of mature osteoblasts such
as osteocalcin are not found in AML-MSCs (Battula et al., 2017;
Le et al., 2018). Frisch et al. brought a possible explanation for this
phenomenon. The chemokine CCL3, also known as macrophage
inflammatory protein 1α (MIP1α), secreted by AML cells appears
to inhibit osteoblast function decreasing osteocalcin levels in the
blood in murine AML model of AML patients (Frisch et al.,
2012).

In fact, blocking the terminal differentiation of MSCs into
mature osteoblasts seems to contribute to AML progression.
Another interesting mechanism is the secretion of DKK1-
containing exosomes by AML blast cells (DKK is a negative
regulator of osteogenesis and normal hematopoiesis). And the
pharmacological inhibition of DKK1 in AML murine model
increased mice survival by impairing the progression of the
disease. The inhibition of exosome release targeting Rab27a is
also able to damage AML progression in vivo (Kumar et al., 2018).
Together, these studies show how intricate and diverse the
apparatus of AML is to manage the endosteal niche to create a
proficuous environment for malignant cells.

In addition to the loss of fine control of endosteal
physiology, various studies indicated that MSC can interfere
with hematologic malignancies via inhibiting the proliferation
of tumor cells. The most commonly accepted mechanism is
that MSCs induce tumor cell cycle arrest (Fathi et al., 2019;
Fathi et al., 2019). Li et al. (2018) showed that Umbilical Cord-
MSCs (UC-MSCs) inhibited the proliferation of HL-60 and
THP-1 (AML cell lines) by a mechanism dependent on
cytokines release (Li et al., 2018; Fathi et al., 2019).
Furthermore, in vitro studies have shown that bone marrow
MSCs can support leukemia progenitor cell survival and
provide resistance to cytotoxic therapies (Azadniv et al.,
2020). It is reasonable to hypothesize that the MSC
population could be associated with minimal residual
disease maintenance with low rate of proliferation but high
resistance to chemotherapy-induced apoptosis, and AML
clone evolution would have important advantages to avoid
MSC differentiation. More studies with stratification of sample
patients (for instance undifferentiated AML, promyelocytic
AML) are necessary to understand not only the clinical and
prognostic relevance of the leukemia-endosteal niche

relationship, but also to offer new perspectives of
coadjuvant treatments and molecular markers.

The Physiological Vascular Niche
Whereas the osteoblastic niche offers a microenvironment for the
maintenance of non-differentiated conditions of stem cells, the
vascular niche, according to the literature, acts on their
maturation. First of all, the architecture of the vascular niche
provides a microenvironment with a higher concentration of
oxygen and endocrine growth factors, which, in comparison to
the endosteal, stimulates a distinct cellular behaviour. As a result,
HSCs assume a proliferative and differentiating profile, which
allows the proper generation and release of the hematopoietic
populations to the peripheral circulation (Kopp et al., 2005).

The vascular niche (Figure 2), composed primarily of
sinusoidal endothelial cells, pericytes, and unmyelinated
Schwann cells (glial cells of the peripheral nervous system
involving small axons of autonomous post-ganglion neurons),
is located in a more centralized area of the bone marrow and can
be characterized as an intertwined vessels with vascular
arrangements subdivided into sinusoidal and arteriolar
endothelium. Stromal cells and extracellular matrix work as
surrounding support components (Nombela-Arrieta et al.,
2013). This dense vascular network is responsible for the
renewal of nutrients, oxygenation of the medullary tissue, and
regulation of the entry and exit of cells, such as late plasma cells
coming to BM to occupy specific locations and the newly
differentiated granulocytes. Blood vessels, in general, are made
up of different cell types. The inner layer of the vessel is composed
of endothelial cells (ECs), which are covered by perivascular cells
called pericytes. These are incorporated into the subendothelial
basement membrane and connect the ECs to smooth muscle cells
that cover large vessels such as arteries and veins (Sivaraj and
Adams 2016). However, bone marrow vascularization, in
particular, is mainly formed by a sinusoidal endothelium
composed of a single layer of ECs (Tavassoli 1981). This non-
stratified endothelial arrangement allows blood cells to pass
through a sinusoidal wall easily, supporting transendothelial
migration of hematopoietic cells from the medullary tissue
into the bloodstream. Thus, the role of the vascular niche
includes not only the regulation of HSCs differentiation and
proliferation but also the immediate release of the progeny of
these cells into the bloodstream (Wright et al., 2001; Kopp et al.,
2005).

More specifically, the bone marrow vascularization is
configured in a special way: the arteries align longitudinally to
the perimeter of the diaphysis of long bones, branching into small
arterioles to infiltrate the bone marrow and, finally, forming a
network capillary, which is divided into two capillary subtypes,
called H and L, which can be distinguished according to their
structure, function and surface marker (Kusumbe, Ramasamy,
and Adams 2014; Kusumbe et al., 2016; Sivaraj and Adams 2016).
In the capillary network, blood flows through type H capillaries,
located in the metaphysis, which are connected to the mentioned
small arterioles and, later, it flows towards the more permeable
type L sinusoidal capillaries, located in the transition between the
metaphase and the diaphysis (Kusumbe, Ramasamy, and Adams
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2014; Ramasamy et al., 2014). These capillaries can be
differentiated by the molecules that are expressed on their
surface and by the cells that surround them. Type H
capillaries, surrounded by osteoprogenitors, express high levels
of CD31 and endomucin. On the other hand, type L capillaries,
surrounded by leptin receptor (LEPR)+ and CXCL12-abundant
reticular (CAR) cells, exhibit low levels of CD31 and endomucin
on their surface. Thus, these capillaries form a dense and overly
branched sinusoidal network within the medullary cavity,
responsible for regulating the HSCs compartment (Sugiyama
et al., 2006; Ding et al., 2012). Finally, at the exit of the bone
marrow, the capillaries drain into a wide central vein that passes
through a massive, calcified bone matrix towards the periphery
(Kusumbe et al., 2016).

The deficiency of direct arterial supply contributes to a more
hypoxic diaphysis, while the metaphysis, marked by the presence
of capillaries, is configured as a better oxygenated region. In
consequence, this vascular configuration contributes to the
formation of metabolically distinct microenvironments, playing
different roles in the regulation of hematopoietic cells. Hypoxia is
known to act as an essential regulator of HSCs dormancy
(Eliasson and Jönsson 2010; Takubo et al., 2010). Low oxygen
levels can affect cellular energy metabolism, redirecting it from
oxidative phosphorylation to cytoplasmic glycolysis (Semenza 2007).

Hematopoietic cells residing in the endosteal niche have a
predominance of glycolysis as energy metabolism, a less efficient
process to obtain ATP molecules compared to oxidative
phosphorylation prevalent in HSCs residing in the vascular niche.
As a consequence, HSCs are induced to assume a dormant state for
energy saving (Zhang and Sadek 2014). Another effect of this energy
redirection is the lower intracellular production of reactive oxygen
species (ROS). The maintenance of HSCs in a quiescent state
depends on the careful management of ROS levels. Excessive
levels of these substances can lead to damage to the genetic
material and its products, which is associated with the
development of leukemias, marked by genomic instability
(Sallmyr, Fan, and Rassool 2008).

Similar to the endosteal niche, the vascular one also has
molecules and signaling pathways that are essential for
maintaining the architecture of the microenvironment and
regulating HSCs behavior. The platelet endothelial cell
adhesion molecule (PECAM-1), for example, also known as
cluster of differentiation 31 (CD31) is a transmembrane
glycoprotein that forms a significant part of the intercellular
junctions of the endothelium and stabilizes the endothelial cell
monolayer. This protein belongs to the immunoglobulin family
and its properties suggest that it is involved in leukocyte
transmigration, angiogenesis, and integrin activation

FIGURE 2 |Cellular andmolecular components of bone marrow vascular niche in both healthy and leukemic scenarios. The illustration compares the functioning of
the vascular niche under a normal context and during leukemogenesis. In a physiological scenario, HSCs acquire a proliferative profile and differentiated phenotype.
PECAM-1 stabilizes the endothelial layer. EMCN, in turn, is a potential molecule related to angiogenesis. Another pathway associated with vessel morphogenesis is the
VEGF/VEGFR. E-selectin acts as a promoter of HSCs proliferation. In the AML scenario, there are important axes that mediate the anchorage of leukemic stem cells
(LSCs) to endothelial cells such as E-selectin/CD44 and VCAM-1/VLA-4. Signaling pathways such as VEGF/VEGFR and Notch/Dll4, in turn, are related to tumor
angiogenesis. GM-CSF is a molecule with mitotic properties on LSCs, secreted by VEGF-stimulated endothelial cells. Cytokines, especially IL-1 beta and TNF-alpha,
secreted by LSCs promote the attachment of these cells to the endothelium.
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(Hashimoto et al., 2012; Kim et al., 2013; Lertkiatmongkol et al.,
2016).

Whether in the organogenesis of bone marrow or in the
homeostatic response to several stimuli, angiogenesis is a
physiological process co-regulated by osteoblasts and performs
an important function in the vascular niche (Schipani et al.,
2013).

It is a process that consists of the formation of new vessels that
grow from existing vessels through branched morphogenesis, which
is a fundamental event for many physiological and pathological
processes, such as embryonic development, wound healing, tumor
growth, andmetastasis (Carmeliet 2005). Several highly orchestrated
stages are involved in angiogenesis. First, there is the degradation of
the cell matrix by endothelial cells mediated by the release of
metalloproteinases, followed by the migration, proliferation, and
alignment of these cells. Therefore, the lumen is established and,
finally, the anastomosis of the newly formed vessel with adjacent
vascular structures occurs (Conway, Collen, and Carmeliet 2001).
These phases are regulated by a variety of soluble growth factors as
well as cellular interactions.

One of the main regulators of angiogenic responses is the
vascular endothelial growth factor (VEGF), a signal protein that
acts through the VEGF receptor 2 (VEGFR2) and activates
endothelial cells by signaling cascades that allow subsequent
branching of the vessel (Leung et al., 1989). The downstream
intracellular signaling triggers p42/44 MAPK and PI3K/Akt,
which promotes the migration, proliferation, survival and
differentiation of ECs (Gerber et al., 1998; Kobayashi et al., 2010).
Ang-1, a ligand also derived from pericytes, inhibits the apoptosis of
ECs, thereby promoting the regulation of HSCs (Dimmeler and
Zeiher 2000). Another molecule with a potential role in angiogenesis
is endomucin-1 (EMCN). Experiments involving the modulation of
the levels of this glycoprotein, present in the venous and capillary
endothelium, showed that EMCN knockdown reduces the
migration and proliferation of endothelial cells associated with
the suppression of tube formation as well as a reduction in the
levels of phospho-VEGFR2, phospho-ERK1/2, and phospho-p38-
MAPK, suggesting suppression of the signaling pathway by VEGF.
On the other hand, overexpression of EMCN had a positive impact
on vessel morphogenesis (Park-Windhol et al., 2017).

The characterization of the vascular microenvironment as a
proliferative niche for HSCs is consistent with studies that
indicate E-selectin, an adhesion molecule expressed exclusively
by endothelial cells, as a promoter of the proliferation of HSCs.
Experiments involving administration of an E-selectin antagonist
or observation of E-selectin knockout mice reported
improvement in the dormant state of HSCs as well as
potentiation of the self-renewal capacity, strengthening the
idea that E-selectin plays a central role in the proliferation of
hematopoietic cells (Winkler et al., 2012).

The Leukemic Vascular Niche in Acute
Myeloid Leukemia
Studies have shown that the vascular microenvironment is
consistently altered in the evolution of acute myeloid leukemia
(Figure 2). Also, it seems that blast cells have the ability to create

conditions that favor their proliferation and survival, whichmay have
important implications for the pathophysiology of leukemia (Wang
andZhong 2018). In fact there is a cross-talk between endothelial cells
and leukemic cells through autocrine and paracrine stimuli (Cogle
et al., 2014). Stucki et al. demonstrated a synergy of adhesive receptors
and cytokines, mainly IL-1 beta and TNF-alpha, secreted by blast
cells, to produce the attachment of AML blast cells to the
endothelium (Stucki et al., 2001). Important axes that mediate the
anchorage of leukemic stem cells (LSCs) to endothelial cells most
documented in the literature are CD44/E-selectin and VLA-4/
VCAM-1 (Cavenagh et al., 1993). As previously mentioned,
E-selectin is an adhesive molecule highly expressed by endothelial
cells that can bind to CD44, a glycoprotein widely expressed on the
membrane surface of LSCs. The vascular cell adhesion protein 1
(VCAM-1), a member of the immunoglobulin superfamily, is an
endothelial ligand for very late antigen-4 (VLA-4), belonging to the
β1 subfamily of integrins, expressed by leukemic cells. Together, these
adhesive interactions can enable the migration of LSCs through the
vascular wall and result in the establishment of disease outside the
bone marrow. Some promising studies have revealed that the
antagonization of E-selectin and VCAM-1 increases myeloblast
mobilization and chemosensitivity, compromising their refuge in
the protective niche and, consequently, their survival (Cavenagh et al.,
1993; Barbier et al., 2020).

Another key component that is deregulated in this leukemic
microenvironment is angiogenesis. It is well established that,
although angiogenesis is considered a physiological
phenomenon, it is an essential factor for the viability and
development of solid tumors (Falcon et al., 2016). Because of
this, the angiogenic phenomenon was initially underestimated in
liquid tumors such as AML, which does not have a compact
structure. Nevertheless, the formation of vessels is, in fact, crucial
for, not only the progression of AML but also for its establishment
in extra medullary sites. A parameter for the evaluation of
vascularization in leukemic patients is the microvascular
density of the bone marrow (MVD). Clinical data revealed
that the bone marrow biopsy of AML patients compared to
healthy donors has an increased number of sinusoidal blood
vessels (Padró et al., 2000). Thus, the degree of MVD might be
used as a prognostic marker, making it possible to identify the risk
of recurrence and estimate the overall survival of AML patients
(Kuzu et al., 2004). Important signaling pathways such as VEGF/
VEGFR and Notch/Dll4 (Delta-like ligand 4) are implicated in
tumor angiogenesis. Zhang et al. (2013) revealed that untreated
AML patients had higher levels of VEGF, VEGFR2, Notch1, and
Delta-like ligand 4 (Dll4) compared to healthy donors. Another
observation was that the activation of Notch/Dll4 pathway is
associated with a poor prognosis. Also, an in vitro experiment
pointed to a rise in LSC-mediated endothelial cell proliferation
that was related to activation of Notch/Dll4 signaling, which led
to an increase in metalloproteinase levels, enhancing endothelial
cells mobilization and formation of new blood vessels (Zhang
et al., 2013). The impact of the interaction between LSCs and
endothelial cells on proliferation is mutual. Fiedler et al. showed
through a culture of endothelial cells in the presence of the pro-
angiogenic factor VEGF led to a dose-dependent increase in
granulocyte-macrophage colony-stimulating (GM-CSF),
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secreted by endothelial cells and known as a mitogen for AML
cells (Fiedler et al., 1997).

The Physiological Reticular Niche
Although it is frequently described as containing only two niches
(endosteal and vascular), the literature also elucidates the
emerging role of a third microenvironment in the bone
marrow: the reticular niche. However, there is little
documented information about this one. This environment is
associated with themaintenance of HSCs in a proliferative profile,
similar to the vascular, but in an undifferentiated state, analogous
to the endosteal, configuring itself as a transitional niche
(Figure 3). Mesenchymal stromal cells, which include
CXCL12-abundant reticular (CAR) cells and Nestin-expressing
cells, seem to make up the predominant cell group set in this
microenvironment (Nagasawa et al., 2011). These cells constitute
the dominant stromal cells in the medullary cavity and are located
adjacent to the sinusoidal endothelial cells (Weiss 1976; Sugiyama
et al., 2006). A study that investigated the location of HSCs and
potential cell niches in association with these cells revealed that
most HSCs are in contact with CAR cells, responsible for the
production of the most essential hematopoietic cytokines such as
CXCL12 and SCF (Sugiyama et al., 2006). Not only HSCs, but
precursors of B lymphocytes, plasma cells, plasmacytoid dendritic
cells, and NK cells also establish interactions with the
components of the reticular niche, suggesting that CAR cells

may also function as a niche for immune cells (Tokoyoda et al.,
2004; Kohara et al., 2007; Noda et al., 2011). Nestin-expressing
cells, in turn, are associated geographically with adrenergic nerve
fibers and are known to express genes related to the maintenance
of HSCs. Depletion of Nestin+ MSCs was related to a significant
reduction in HSCs pool in the bone marrow and homing of
HSPCs (Méndez-Ferrer et al., 2020).

CAR cells are mesenchymal progenitors with the potential to
differentiate into adipocytes and osteoblasts for their ability to
express adipogenic and osteogenic genes such as PPARγ, runx2,
and osterix (Osx). In addition, these cells preserve the
proliferation of HSCs and lymphoid progenitors. An
experiment involving selective ablation of CAR cells by the
administration of diphtheria toxin in an in vivo model
revealed that the conditioned deletion of these cells results in
a decrease in the number, size, and dormancy potentiation of
HSCs, as well as an increased expression of genes related to
differentiation in a myeloid lineage (Omatsu et al., 2010).
Another effect described was the general reduction in CXCL12
and SCF levels. Although other cell groups also produce these
cytokines, the study revealed that CAR cells are primarily
responsible for supplying these molecules. The potential for
differentiation in adipogenic and osteogenic lines was also
compromised, as well as for proliferation of erythroid and
B cell progenitors, dependent on the support provided by the
adipo-osteogenic progenitors (Omatsu et al., 2010). Together,

FIGURE 3 | Cellular and molecular components of bone marrow reticular niche in both healthy and leukemic scenarios. The illustration shows the reticular niche
which is characterized by being a transitional niche between the endosteal and the vascular ones, responsible for the survival, homing and maintenance of HSCs and
other hematopoietic progenitors in a proliferative, but undifferentiated profile. Under physiological conditions, the most important pathways are CXCL-12/CXCR-4 and
SCF/c-Kit. In the AML scenario, the CXCL-12/CXCR-4 signaling plays a role in the trafficking and infiltration of leukemic cells into the protective niches of the bone
marrow.
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these observations reflect the impact of CAR cells in promoting
bone marrow homeostasis.

Consistently with the other described niches, the reticular
niche also has important molecule pairs that make possible the
maintenance of HSCs in a proliferative, but undifferentiated state.
The CXCL12/CXCR4 axis is an example. CXCL12, also known as
a factor derived from stromal cells (SDF-1), is a chemokine with
chemotactic properties, whose physiological receptor is CXC-
chemokine 4 (CXCR4), also known as cluster of differentiation
184 (CD184), a protein with a structure formed by seven
transmembrane domains coupled to a heterotrimeric G
protein (Baggiolini et al., 1997). The signaling provided by this
axis results not only in homing of HSCs, but also promotes the
development of the immune system cells such as B lymphocytes
(Tokoyoda et al., 2004; Nagasawa 2006). Another important axis
of the reticular niche is the SCF/c-Kit axis. Stem cell factor (SCF)
is a cytokine that can be soluble or transmembrane. Its c-kit
receptor, also known as the cluster of differentiation 117
(CD117), is a tyrosine kinase receptor expressed on the
surface of HSCs and hematopoietic progenitors. The binding
of SCF to its respective receptor causes c-kit to homodimerize and
autophosphorylate in tyrosine residues, triggering a signaling
cascade, being able to activate pathways such as RAS/ERK,
PI3-kinase, and JAK/STAT (Rönnstrand 2004). The secretion
of SCF has similar effects to CXCL-12 such as increased survival,
homing, and maintenance of HSCs and other hematopoietic
progenitors (Kent et al., 2008).

The Leukemic Reticular Niche
Among the various soluble factors secreted by microenvironment
cells that regulate AML cells, the chemokine CXCL12 is one of the
most important. Mesenchymal stromal cells, in particular CAR cells,
along with having a notable capacity to differentiate into other cell
groups, secrete high levels of CXCL12, making them an interesting
and potential therapeutic target in the AML scenario (Figure 3). In
physiological conditions, this chemokine is involved in the induction
and regulation of trafficking in leukocytes by chemotaxis. However,
the interaction of CXCL12 with its CXCR4 receptor appears to be
implicated as a critical mediator of the association between stromal
and leukemic cells (Peled and Tavor 2013). A study by Möhle et al.
showed that leukemic CD34+ blasts from AML patients have
considerable amounts of functionally active CXCR4 on their
surface what may play a role in regulating the trafficking of
malignant cells (Möhle et al., 1998). Moreover, it appears that the
CXCL12/CXCR4 axis constitutes a critical signaling pathway for the
infiltration of leukemic cells into the protective niches of the bone
marrow which, under normal conditions, are restricted to
hematopoietic cells (Wang and Zhong 2018). Therefore, it is
essential to understand the factors that lead to expression of the
CXCL12 receptor by leukemic blasts. It is well established that the
mutation in the FTL3 gene promotes the activation of CXCR4
signaling in AML cells (Zeng et al., 2009). Another factor that
induces the expression of this receptor is the stress induced by
chemotherapy. A study by Spoo et al. showed that low expression of
CXCR4 in cells of AML patients correlated with a longer relapse-free
and longer overall survival compared to patients with intermediate
and high levels. Thus, the expression of CXCR4 might be related to

the migratory and adhesive behaviour of leukemic cells among the
three BM niches, and could be considered as a prognostic predictor
for AML patients (Spoo et al., 2007).

OTHER CELLS INVOLVED IN HEALTHY
AND LEUKEMIC BONE MARROW.

There are also non-permanent resident cells on the bone marrow
microenvironment that migrate and interact with the niches in
healthy conditions or during pathological processes such as
tumors. They are also reported in and associated with some
aspects of physiopathology or immune response to AML.

Natural Killer Cells
Natural killer cells (NK) are a type of cytotoxic lymphocytes that
exhibit an innate and adaptive immune response against tumor
cells, including leukemic cells. The bone marrow is the main site
of generation and maturation of NK cells in adulthood. NK cells
are formed from NK cell progenitors (NKPs) that originate from
Common Lymphoid Progenitors (CLPs) based on their
interactions with stromal cells, cytokines, growth factors, and
other soluble molecules that form a microenvironment
characterized by presence of SCF, FLT3L, and IL-7 (Vacca
et al., 2011; Di Vito, Mikulak, and Mavilio 2019).

Many strategies used by AML cells to escape the immune
system response have been identified, amongst them, the increased
expression of inhibitory molecules on the membrane and the
secretion of immunosuppressive cytokines, thus creating an
immunosuppressive microenvironment that avoids recognition
mediated by NK cells, triggering tumor immune escape (Barrett
and Le Blanc 2010; Baragaño Raneros et al., 2019).

This tumor immunosuppressive microenvironment results in
decreased activity of NK cells by several mechanisms including
the defective NK maturation, lysis inhibition by immune
checkpoints (PD-1, TIM3, and TIGIT expressed on the cell
surface of NK cells, recognize their ligands, which are expressed
on the cell surface of AML cells, and as a consequence, activating
pathways involved inNK cell regulation are inhibited, promoting NK
cell anergy) and modulation of the NK receptor repertoire (NK
functions are exhaustively regulated by the balance between activating
and inhibitory receptors, however, during AML development the
repertoire of NK cells is modified, reducing the level of expression of
activating receptors and increasing that of inhibitory receptors)
(Chiossone et al., 2017; Baragaño Raneros et al., 2019).

The literature does not make it clear whether NK inhabit the BM
and interact with the niches, but possibly the NK migration and
interactions are not restricted to one specific site. The ability to
perform immune surveillance is conditioned by the expression of a
repertoire of inhibitory/activator receptors, chemokine receptors and
adhesion molecules that work together to drive NK migration. In a
multiple myeloma study, authors demonstrated that CXCR3-and
CXCR4 are important receptors to guarantee NK infiltration into
bone marrow, and the absence of this signaling is sufficient to
decreaseNK infiltrating cells. These data are important to sustain the
hypothesis of the presence of NK in endosteal, vascular and reticular
niches since all of them offer such chemoattractant signals, but also

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 76469810

Pimenta et al. Bone Marrow Niches in AML

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


to suggest that any disturbance in the BM microenvironment
promoted by AML scenario is able to difficult NK immune
surveillance (Raulet, Vance, and McMahon 2001; Morris and Ley
2004; Ponzetta et al., 2015).

Myeloid-Derived Suppressor Cells
Myeloid-Derived Suppressor Cells (MDSC) are a heterogeneous
population of myeloid cells in the early stages of development with
an immunosuppressive profile that negatively regulates immune
responses and collaborates to tumor development. The literature
describes three MDSC subpopulations: the neutrophilic (PMN-
MDSC), the monocytic (M-MDSC), and the immature (i-MDSC)
(Talmadge andGabrilovich 2013; Solito et al., 2014; Bronte et al., 2016;
Wei et al., 2016; Ibáñez-Vea et al., 2018). These three rare populations
can be present in bone marrow, peripheral blood, lymph nodes,
spleen, and tumors. However, an altered hematopoietic differentiation
pathway leads to an exacerbated production, expansion, and
accumulation of these cells as a consequence of pathological
conditions such as chronic inflammation, infections, stress, and
cancer (Solito et al., 2014; Damuzzo et al., 2015; Bronte et al.,
2016; Heine et al., 2017).

In general, MDSC population can suppress specific antitumor
adaptive immune responses, increase the growth of already
established tumors through citokines secretion (such as IL-10,
TGF-β, IL-6, and IL-1β), and provide a spark for the onset of
oncogenesis in the inflammatory microenvironment (Kusmartsev
and Gabrilovich 2006; Wahl et al., 2006; Gabrilovich and Nagaraj
2009; Ugel et al., 2015; Yaseen et al., 2020; Weber et al., 2021).

Clinical studies have already shown that MDSC is accumulated in
the peripheral blood and BM of AML patients comparing to healthy
donors (Pyzer et al., 2017). Furthermore, the AML scenario promotes
the expansion of the immunosuppressive population of MDSC in the
BM (Taghiloo and Asgarian-Omran 2021) and there is a relevant
positive correlation between increased MDSC population and poorer
prognosis of patients. In fact, the detection of minimal residual disease
is directly associatedwith the presence ofMDSC population (Sun et al.,
2015).

Although MDSC are not reported occupying a specific site of
BM, they are potentially distributed through the three niches
following and responding to the blasts presence, and offering
back pro-leukemic support.

M1 and M2 Macrophages
There are resident and monocyte-derived macrophages in the BM,
however there is no consensus concerning the specifically niche
localization. They have been described to have the ability to adapt
to the environment and play roles in maintaining homeostasis and
responding to inflammation and infection. Under normal conditions,
macrophages have the main function of responding to pathogens and
modulating the adaptive immune response through the processing and
presentation of antigens. More specifically, M1 macrophages
(classically activated), are known to promote Th1 responses, secrete
high levels of pro-inflammatory cytokines such as IL-1-beta, TNF-
alpha, IL-12, IL-18, and IL-23, they are important in defense against
bacterial infections, in addition to presenting high production of
reactive oxygen and nitrogen species and causing tissue damage.
On the other hand, M2 macrophages (alternatively activated) are

described as immunoregulatory and promotors of tissue
remodeling. They secrete large amounts of IL-10 and low levels of
IL-12 and also secrete CCL17, CCL22, and CCL24 (Gentek et al., 2014;
Varol et al., 2015; Wynn and Vannella 2016; Kaur et al., 2017; Kloc
et al., 2019; Seyfried et al., 2020).

In cancers, monocytes are recruited by neoplastic and altered
stromal cells and differentiate to tumor-associated macrophages
(TAM). TAM is activated by an abnormal malignant
microenvironment which contributes to tumor progression
through promoting genetic instability, nurturing cancer stem cells,
supporting metastasis, and regulating adaptive immunity. Depending
on the factors offered by the microenvironment, TAM can acquire an
M1 (anti-tumorigenic) or M2 (pro-tumorigenic) phenotype. It has
been described that TAM preferentially acquires an M2 phenotype,
which favors tumor growth, promotes cell survival, proliferation,
dissemination, and metastasis (Mantovani et al., 1992; Mantovani
et al., 2002; Solinas et al., 2009; Galdiero et al., 2013; Galdiero et al.,
2013; Haas and Obenauf 2019; Li et al., 2020).

In leukemia, these cells are currently leukemia-associated
macrophages (LAM) (Li et al., 2020). Although the mechanisms
are not yet elucidated, Al-Matary et al. (2016) suggest that the LAM
protect the AML cells from apoptosis induced by chemotherapy
treatment with cytarabine (Al-Matary et al., 2016; Li et al., 2020).
Moreover, Yang et al. (2018) observed that bone marrow LAM
differentiated with M1 characteristics, while splenic LAM evolved
mostly with M2 in AML models (Yang et al., 2018; Li et al., 2020).

Adipocytes
In the bone marrow, adipocytes constitute a cell group derived from
MSC. Although many authors describe these cells close to the
endosteal surface, these cells can occupy the entire interior of the
medullary cavity, covering up to 70% of the bone marrow in human
adults. Nevertheless, the number of these cells may vary according to
nutritional conditions and cytotoxic stress. Further studies are needed
to confirm the precise location of these cells in the bone marrow and
their behavior under physiological and also AML context (Rosen
et al., 2009; Reagan and Rosen 2016; Méndez-Ferrer et al., 2020).

In contrast to the idea of being a trivial stock of fat, adipocytes
act as regulators of medullary homeostasis by the secretion of
molecules such as adipokines (Horowitz et al., 2017). Although it
has been described in the literature that chemotherapy can induce
adipogenesis with consequences for the bioavailability of drugs in
the medullary cavity, the role of adipocytes in leukemogenesis
remains controversial (Sheng et al., 2016). Some studies have
been done to elucidate the importance of adipocytes to AML
development. The research line of Boyd’s group revealed that
myelo-erythropoiesis is interrupted in acute myeloid leukemia by
the disruption of the adipogenesis (Boyd et al., 2017). In the same
way, Battula et al. (2017) showed interruption of the differentiation
of mesenchymal cells in the adipogenic lineage in the AML (Battula
et al., 2017). Alternatively, Shafat’s studies provide evidences in the
opposite direction: adipocytes support AML blasts in vitro and in
vivo by transference of fatty acids to the malignant cells, interfering
with metabolism and increasing survival and proliferation. The
study also showed that co-culture of adipocytes with leukemic
blasts increases the fatty acid-binding protein-4 (FABP4)
messenger RNA levels. Interestingly, FABP4 blockage reversed
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the protection of AML cells mediated by adipocytes (Shafat et al.,
2017). Accordingly, Tabe and colleagues raised evidence that the
AML cells-adipocytes interactions reduces apoptosis of the
monocytic cells by increasing fatty acid β-oxidation (FAO) and
expression of genes such as PPARγ, FABP4, CD36, and BCL2.
Consequently, the pharmacological inhibition of β-oxidation of fatty
acids led to the apoptosis of AML cells. Such observation suggests
that the disruption of the oxidation of these energetic molecules can
act as a therapeutic strategy in controlling AML progress (Tabe et al.,
2017). The association between FAO and leukemic cells was also
investigated by Lee et al. (2015), who identified avocatin B, a FAO
inhibitor, as a compound with cytotoxic activity in AML cells (Lee
et al., 2015). An even more recent study compared adipogenic
potential of MSCs derived from healthy donors or AML patients.
AML-MSCs presented improved ability to support the survival of
leukemia progenitor cells through a mechanism dependent on
decreased expression of SOX9 (Azadniv et al., 2020). Taken
together, literature give to BM resident adipocytes an important
role in normal and AML scenario, what confirm them as interesting
cellular targets for new therapies.

Sympathetic Neural Cells
Although sympathetic neural cells are poorly described in the
literature compared to other cells in the bone marrow
microenvironment, these cells act on the regulation of the HSCs
compartment and, indirectly, is implicated in the AML modulation.
A study by Spiegel et al. (2007) revealed that CD34+ cells express beta-2
adrenergic and dopamine receptors and their mobility and
proliferation can be regulated by adrenaline and noradrenaline
(Spiegel et al., 2007). Additionally, unmyelinated Schwann cells
seem to express molecules that activate the latent form of TGF-β,
which is produced by a diversity of cells, impacting the maintenance
and repopulation capacity of HSCs. Consequently, autonomic nerve
denervation leads to glial cell death, inducing rapid loss of HSCs
(Yamazaki et al., 2011). In myeloproliferative neoplasms, the Schwann
cells and Nestin+ MSCs are reduced due to neural damage of the bone
marrow mediated by IL-1β, produced by malignant cells, which
resulted in an expansion of deffective mesenchymal stem and
progenitor cells. Pharmacological treatment with β3-adrenergic
agonists reduced Nestin+ MSCs loss and disrupted
myeloproliferative neoplasm evolution (Arranz et al., 2014). Thus,
sympathetic neural cells clearly work regulating MSCs response, but
there is no robust evidence to confirm consequences for AML
development.

THE EXTRAMEDULLARY ACUTE MYELOID
LEUKEMIA MICROENVIRONMENT

Extramedullary acute myeloid leukemia (eAML) is defined as a
tumor infiltration composed of myeloid blasts outside bonemarrow,
what includes both hematopoietic (spleen, liver) and non-
hematopoietic tissues (skin, gums, and central nervous system)
(Comings et al., 1965; Byrd et al., 1995; Shallis et al., 2019).
eAML may occur simultaneously with or before bone marrow
presentation, and also during relapses (with and without prior
allogeneic stem cell transplant) (Solh et al., 2016). Around

0.8–2% of AML cases will develop extramedullary manifestation
(Movassaghian et al., 2015; Goyal et al., 2017). Most cases are related
to de novo AML but can also appear in acute blastic transformation
of myelodysplastic syndrome, myelodysplastic/myeloproliferative
neoplasms or myeloproliferative disorders (Traweek et al., 1993).
Clinical presentation in the skin or gums is often concomitant to
bone marrow involvement with isolated sites in lymph nodes,
intestine, mediastinum and orbit (Neiman et al., 1981). The three
most common sites of presentation are connective/soft tissues
(31.3%), skin/breast (12.3%), and digestive system (10.3%) (Goyal
et al., 2017). The prognostic impact of extramedullary disease in
AML is widely discussed in literature and some authors defend that
extramedullary disease brings an independent prognostic effect,
others describe as inferior outcomes (Shimizu et al., 2013).

The tissue architecture of eAML lesions is simpler comparing
to the bone marrow niches already described in this review. The
leukemic infiltrate is histologically characterized by
hyperleukocytosis with a monotone accumulation of
myeloblasts/monoblasts that interact closely with stromal cells
(Goyal et al., 2017; Shallis et al., 2021).

There is extent information regarding howmesenchymal stromal
cells regulate AML inside bone marrow, what includes cytokine/
chemokine secretion, microRNA-containing exosomes release and
cell-cell contact by gap junctions, for example (Barrera-Ramirez et al.,
2017; Forte et al., 2020; Kouzi et al., 2020). Because their presence in a
variety of non-hematopoietic tissues in the body, they potentially
would exert an additional role in extramedullary infiltration (Carter
et al., 2016), but such mechanisms was not explored in the literature.

Although it has been reported an angiogenic process during
eAML lesions constitution (Piccaluga et al., 2018), it remains
unclear if AML blast cells establish some functional crosstalk with
endothelial cells similarly to the phenomena observed in vascular
niches in the bone marrow.

Chemotaxis and cellular adhesion seems to be critical for the
extramedullary infiltration. Notwithstanding the equivalent expression
of CD56 in leukemic cells from patients with or without eAML, some
evidences support that CD56, a glycoprotein responsible for cell-cell
adhesion, could promote the attachment of leukemic blasts to adipose,
skeletalmuscle, gastrointestinal, testicular, and brain tissue. In addition,
although there was not confirmed evidence of a cause-effect
relationship, it is clarified that overexpression of CD11b (β2-
integrin member macrophage-1 antigen) in myelomonocytic and
monocytic blasts positively correlates to eAML episodes (Ganzel
et al., 2016; Shallis et al., 2021). Further contribution have been
provided by studies involving skin eAML biopsies from pediatric
patients that presented overexpression of CXCR4 and CXCR7,
which are bone marrow specific homing chemokine receptors and
whose connection with skin CXCL12 may result in the evolution of
skin eAML (Faaij et al., 2010).

A fibrotic pattern with collagen deposition is also reported in
the eAML sites (Cunningham et al., 2019). In other cancer models
and tissues, fibrosis is associated to the frequency and activation
of MDSC and M2 macrophages (Hammerich and Tacke 2015;
Tang et al., 2019). A study by Hui Sun and colleagues showed that
MDSC levels positively correlated with extramedullary
infiltration in de novo AML patients (Sun et al., 2015). If
eAML present similar mechanisms, the axis MDSC-M2 should
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be considered in participating on the extramedullary infiltration.
Nonetheless, the role of M2 macrophages has not yet been
elucidated in the context of eAML.

The current effort to investigate AML niches as targets for
therapy certainly will naturally include extramedullary lesions in
the focus of the researches, and relevant discoveries may give to
eAML additional prognostic value.

PERSPECTIVES FOR ACUTE MYELOID
LEUKEMIA THERAPIES TARGETING BONE
MARROW NICHES.
The poor outcomes achieved by the current AML therapies are
constantly encouraging researchers to propose new and better
strategies to mitigate the leukemia development and evolution.
The increased understanding about BM niches and about how
these microenvironments cross-talk and regulate AML has
allowed the discovery of potential novel approaches.
Interestingly, part of these studies is testing well known drugs
which act on common pathways and receptors shared by niches
and blasts. Other groups of trials are targeting some niche-specific
molecules. Table 1 summarizes some of the main ongoing clinical
trials related to BM-associated molecules described in this review.

Membrane receptors such as VEGFR, PDGFR, c-Kit, and CXCR4
are important targets in these studies not only due to their relevance in
the maintenance of BM homeostasis and niches dynamics, but also
because there are several inhibitors and antagonist already tested in
other models and patients. Most of them presented successful results
in solid or other hematological neoplasms, and the current
understanding about vascular and endosteal contributed to the
interesting in investigating them on AML.

Other groups of niches-related molecules have been also
explored. The blockage of ligands, such as angiopoietin and
CXCL12, or the inactivation of adhesion molecules, such as

E-Selectin, have been tested with neutralizing peptides or
antagonist small molecules. New combination protocols with
traditional chemotherapy plus niche-related drugs are also
common attempts observed in the ongoing trials.

The hypothesis of all these protocols is the same: disturbing
the AML bone marrow organization by interfering with niche-
related mechanisms and damaging proliferation, differentiation,
or resistance to apoptosis. Besides additional basic studies,
hematologists wait for further phase-3 clinical trials to finally
confirm the efficacy of this tendency for new protocols.
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TABLE 1 | Studies registered on ClinicalTrials.gov investigating bone marrow niches-related molecular targets in AML.

ClinicalTrials.gov Identifier Stage Intervention Condition or disease Age (Years)

ENDOSTEAL NICHE

NCT04460963 Phase 1 Adrenomedullin inhibition AML 18 +
NCT00827138 Phase 1 New inhibitor of BCR-ABL, Flt3, Tie2 and other kinases CML, AML 18 +
NCT01555268 Phase 1 Neutralizing peptibodie agains Angiopoietin 1/2 AML 18 +

VASCULAR NICHE

NCT00542971 Phase 1/2 Co-treatment with VEGFR-kinase inhibitor MDS, AML 15–60
NCT00071006 Phase 2 VEGFR-, PDGFR- and BCR-ABL-kinase inhibitor MDS, AML 18 +
NCT00015951 Phase 2 Co-treatment with monoclonal antibody against VEGFR Leukemias 18–120
NCT04518345 Phase 1/2 Novel specific kinase-inhibitor against ALX receptors AML 18 +
NCT03616470 Phase 3 Specific E-selectin antagonist AML 18–75

RETICULAR NICHE

NCT00989261 Phase 2 FLT3 inhibitor AML 18–85
NCT02634827 Phase 2 Pan kinase-inhibitor AML 60 +
NCT02984995 Phase 2 FLT3-inhibitor AML 20 +
NCT00045942 Phase 1/2 PKC-inhibitor MDS, AML 18 +
NCT01445080 Phase 1/2 VEGFR-, PDGFR-kinase inhibitor AML, solid tumor 2–21
NCT02954653 Phase 1 Monoclonal antibody against CXCR4 AML 18 +
NCT01546038 Phase 2 Sonic Hedgehog-inhibitor MDS, AML 18 +

CML, Chronic Myeloid Leukemia; MDS, Myelodisplastic Syndrome.
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