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Abstract

Infrared and THz optics has many promising practical applications such as in spectroscopy,

diagnostic, optical metrology, sensing, and many others. Due to limited number of IR radia-

tion sources, the frequency down-conversion processes are widely used for obtaining

infrared radiation. Among them, the most applicable method is a generation of wave with dif-

ference frequency under the three-waves interaction in a medium with quadratic nonlinear

response. Below we propose a new effective tool for three times decreasing frequency of

the incident pulse based on three-waves interaction in a medium with the quadratic suscep-

tibility. At such interaction, a medium’s response inherent cubic non-linearity appears due to

so-called cascading SHG. The frequency down-conversion process possesses two stable

modes. This is shown using multi-scale method. For each of the modes, the analytical solu-

tion is developed in the framework of the long pulse duration approximation without using

the pump energy non-depletion approximation. The computer simulation results confirm

those of analytical analysis. We show that the conversion efficiency of the incidentpump

pulse energy achieves about 70%, if the low frequency wave incident intensity equals

zero, or almost 100%, if the incident intensity of the low frequency wave is non-zero. The

developed theoretical approach may be applied to other processes of the frequency down-

conversion.

1 Introduction

The problem of laser radiation generation in the infrared (IR) and mid-infrared (M-IR) range

of the frequencies remains interesting for many researches. As is well-known, there are several

approaches for getting IR radiation. The first of them is M-IR lasers. A full review, dedicated to

M-IR lasers based on metal doped chalcogenides, can be found in [1]. The laser generates a

radiation with the wavelengths up to 5.1 μm.

Another approach consists in the frequency conversion due to non-linear response of a

medium. The most commonly used process is a difference frequency generation (DFG) in a

medium with quadratic susceptibility. In this case, the wave with difference frequency ω1
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(often called as idler wave) is generated from the waves with frequencies ω3 (pump wave) and

ω2 (signal wave):

o1 ¼ o3 � o2; ðo3 > o2Þ:

The equations, which describe this process, as well as their derivation from the Maxwell’s

equations, can be found in [2], for example. There are also many papers, describing various

methods of M-IR radiation generation, based on DFG process in various nonlinear crystals.

So, a general description of the AgGaGe5Se12 crystal properties as well as M-IR radiation gen-

eration with the carrier frequency, equal difference between the frequencies of two other

waves is presented in [3]. The energy of 5.1μJ at the wavelength λ1 = 5μm was obtained at

interacting pulses with the 50 μJ pump wave energy and 28 μJ energy of the signal wave. The

computer simulations shows the possibility of 25% conversion efficiency. A frequency down-

converter based on using two nonlinear crystals (AgGaS2 and AgGaSe2) is proposed in [4].

The MgO:LiNbO3 crystal is used in [5] to obtain femtosecond pulse tunable in the range 3.2

−4.8μm of frequencies with maximal average power of 1.1mW using nonlinear mixing of the

pulse 170mW, 65fs at a fixed wavelength of 1.58μm (pump) with the pulse 11.5mW, 40fs tun-

able in the near-infrared range of frequencies: 1.05 and 1.18μm. In [6], the DFG in GaAs crys-

tal was realized, and as a result, a tunable source of M-IR CW radiation was obtained with

maximal power of 51 mW on the frequency λ1 = 6543 nm. The input power of the pulses was

40 mW at the frequency λ3 = 2010 nm and at the frequency λ2 = 2900 nm. The experimental

setup containing orientation patterned gallium phosphide crystal is presented in [7]. The

M-IR radiation source with the wavelength tunable in the range 6–9 μm is obtained with maxi-

mal average power of 7.4 mW on the frequency λ1 = 7.5 μm under interaction of the pump

pulse with wavelength 1570 nm and 175 mW of the average power and the signal pulse with

the wavelength belonging to 1953–1965 nm range of the frequencies, and with the average

power 152–235 mW.

Optical parametric oscillator (OPO) may be promising way for the IR radiation generation.

In [8], the conversion efficiency 34% is achieved as the average output power of 7.7 W from

the incident pump power of 23 W. Rotated Image Singly-Resonant Twisted RectAngle OPO

setup is applied to obtain M-IR radiation pulse with the wavelength 6450 nm at using pump

pulse with the wavelength 2 μm. The conversion efficiency of this generation scheme is

achieved up to 13%. The full review of DFG in the non-oxide crystals is presented in [9] along

with many other references to the different works in this area.

Another possible way to obtain the IR radiation is the use of degenerate four wave mixing

(DFWM) in a media with cubic non-linear response. In this case, the relation between fre-

quencies of the interacting waves is the following:

o1 þ o2 ¼ 2o3:

There are various investigations in this direction during last two decades. For example, 1.4 m

fused-silica photonic crystal was used in [10] to obtain the average power 450 mW on the fre-

quency λ1 = 2539 nm, which is about 6% of the incident pump pulse average power. In [11]

the authors obtained the efficiency 0.2% for the conversion of radiation with the wavelength λ3

= 1.064 μm to one with the wavelength λ1 = 3.105μm at the nanosecond pulse propagation in

photonic crystal fiber. In [12], more, than 2% of the incident pump pulse energy at the fre-

quency λ3 = 1.064μm is converted to the idler pulse possessing the wavelength λ1 = 2929 nm in

an endlessly single-mode silica fiber for the picosecond pulse. The problem of the frequency

down-conversion is investigated also theoretically. In [13], the terahertz-wave generation in

silicon membranes is discussed for the pump pulse wavelength λ3 = 4.3 μm. It was predicted
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that the conversion efficiency of the pump energy to the idler wave with wavelength of 32.5

μm (frequency equals 9.8684 THz) is 1.39%. Computer simulation for mid-infrared fiber opti-

cal parametric oscillators based on DFWM is provided in [14]. The authors showed a possibil-

ity of the conversion efficiency being greater than 10%.

Thus, we see that the frequency down-conversion is actual and this conversion requires

increasing its efficiency. Current study is devoted to a special case of DFG, at which the pump

wave has a tripled frequency with respect to the generated wave. Therefore, commonly used

notations for the interacting waves are not convenient in our opinion. That is why we call the

generated wave (we denote its frequency by ω1 = ω) as low frequency wave (LFW) and the

pump wave, whose carrier frequency is ω3 = 3ω, as high frequency wave (HFW), and the signal

wave, whose frequency equals ω2 = 2ω, as intermediate frequency wave (IFW).

The HFW falls on a medium with the quadratic susceptibility and propagates under the

condition of the phase matching between HFW and LFW. This can be achieved in crystals,

which are used for IR wave generation. For example, the computation, based on the results of

paper [15], shows that this condition can be reached for LFW with the wavelength up to 10.2

μm in AgGaS2 crystal. In the same time, phase mismatching between LFW and IFW (as well as

between HFW and IFW) is relatively large. This allows us to realize in a medium, possessing

the quadratic susceptibility, the response inherent the cubic non-linearity due to cascading

process of the waves interaction. In our opinion, the cascading process is very promising tool

for the frequency down-conversion.

We use multi-scale method for deriving the set of modified equations, which approximates

the original problems, and demonstrate a possibility of the frequency down-conversion using

proposed method. We find out an evolution of the intensities along their propagation coordi-

nate and show that there is high-effective mode of the frequency down-conversion: almost

90% of the HFW energy can be converted to the LFW. Our analysis shows also that there are

two modes of the LFW generation (or amplification) in dependence on the waves incident

intensities. Moreover, at certain incident intensity of the IFW, the high-effective mode of the

LFW generation occurs even if the incident LFW intensity equals zero-value.

The paper is organized as follows. We state the mathematical model describing the fre-

quency down-conversion of the fundamental wave (HFW) to a generation of wave (LFW)

with the frequency equal to one third of main frequency in a medium with quadratic nonlinear

response. Then we apply multi-scale method and derive a set of the modified equations in

the framework of big phase mismatching between IFW and other two waves. We investigate

theoretically and on the base of computer simulation two cases: the IFW incident intensity

equals zero or not. In both cases, we demonstrate a possibility achieving high efficient LFW

amplification.

2 Problem statement

An interaction of three optical pulses with carrier frequencies ω, 2ω, 3ω in a medium with qua-

dratic nonlinear response is described by the set of non-linear Schrödinger equations:

@A1

@z
þ iD1

@
2A1

@t2
þ i g12A

�

1
A2e

� iD21kz þ g23A
�

2
A3e

� iðD31k� D21kÞz
� �

¼ 0;

@A2

@z
þ n21

@A2

@t
þ iD2

@
2A2

@t2
þ i g11A

2

1
eiD21kz þ 2g13A

�

1
A3e

� iðD31k� D21kÞz
� �

¼ 0;

@A3

@z
þ n31

@A3

@t
þ iD3

@
2A3

@t2
þ 3ig21A1A2e

iðD31k� D21kÞz ¼ 0; 0 < z � Lz; 0 < t < Lt

ð1Þ
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with the following initial condition and boundary conditions (BCs):

A1ð0; tÞ ¼ A10ðtÞ; A2ð0; tÞ ¼ A20ðtÞ; A3ð0; tÞ ¼ A30ðtÞ; t 2 ½0; Lt�;

A1ðz; 0Þ ¼ A2ðz; 0Þ ¼ A3ðz; 0Þ ¼ A1ðz; LtÞ ¼ A2ðz; LtÞ ¼ A3ðz; LtÞ ¼ 0; z 2 ½0; Lz�:
ð2Þ

Here A1, A2, A3 are the complex amplitudes of the LFW, IFW or HFW, respectively. Coeffi-

cients γjl characterize the nonlinear coupling of the interacting pulses at the corresponding fre-

quencies. For simplicity, we neglect a difference between the coefficients:

gjl ¼ g; j ¼ 1; 2; l ¼ 1; 2; 3:

However, it does not restrict our analysis because all estimations can be provided in more gen-

eral case. Parameter Δ21 k and Δ31 k characterize the phase mismatching between the IFW,

HFW and LFW, respectively. Parameters Dj, j = 1, 2, 3 and νj1, j = 2, 3 are the dimensionless

group-velocity dispersion (GVD) and group-velocity mismatching (GVM), respectively. Vari-

able z is a dimensionless spatial coordinate along which the pulse propagates. Lz characterizes

the pulse propagation distance. Variable t is a dimensionless time coordinate changing

between 0 and Lt.
The dimensionless parameters are expressed through the physical ones in the following

way:

Dj ¼ �
1

2

@
2�k

@ �o2
j �o j

Zn

t2
p

; Aj ¼
�AJ

A0

; j ¼ 1; 2; 3; gjl ¼
2pwð2Þð�o j; �o lÞ

�kA01

n2ð�ojÞ
Zn; j ¼ 1; 2; l ¼ 1; 2; 3;

D21k ¼ D21
�kZn; D31k ¼ D31

�kZn:

ð3Þ

where τp is the incident pulse duration at the low frequency �o; Zn is a normalization length

chosen to be equal 4 mm, wð2Þð�oj; �o lÞÞ is the quadratic susceptibility of a medium at an interac-

tion of waves with the frequencies �oj ; �o l. Parameter �k is a dimensional wave-number of the

LFW. D21
�k and D31

�k are dimensional phase mismatching between the IFW or the HFW and

the LFW, respectively. A0 is a normalization value, which will be precised further. �Aj are the

envelope of the wave packets measured in physical units.

Because in this paper the frequency down-conversion is of interest, then we suppose occur-

ring phase matching between the LFW and HFW:

D31k ¼ 0:

In turn, the large phase mismatching between the LFW and IFW occurs. Under such condi-

tion the multi-scale method is very effective for the frequency conversion process analysis and

we use this method for deriving approximate equations.
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3 Set of modified equations

Under large phase mismatching between LFW and IFW (Δ21 k), the solution of the problem

(1), (2) can be approximated in the following way:

A1 ¼ U þ
1

D21k
gðU�Ve� iD21kz � V�WeiD21kzÞ þ u1

� �
;

A2 ¼ V þ
1

D21k
� gðU2 þ 2U�WÞeiD21kz þ v1

� �
;

A3 ¼W þ
1

D21k
3gUVe� iD21kz þ w1

� �
;

ð4Þ

with accuracy of O((Δ21 k)−2) by using multi-scale method. Here, the functions U, V, W are

governed by the following set of equations:

@U
@z
þ iD1

@
2U
@t2
� i~aðjUj2U þ 3U�2W � 4UjVj2 þ 2UjWj2Þ ¼ 0;

@V
@z
þ n21

@V
@t
þ iD2

@
2V
@t2
þ 2i~að4jUj2 � jWj2ÞV ¼ 0;

@W
@z
þ n31

@W
@t
þ iD3

@
2W
@t2
� 3i~aðU3 þ 2jUj2W þ jVj2WÞ ¼ 0:

ð5Þ

Parameter ~a is expressed through the non-linear coupling coefficient γ and the phase mis-

matching Δ21 k as ~a ¼ g2

D21k
. The functions u1, v1, w1 are the linear equations solutions:

@u1

@z
þ iD1

@
2u1

@t2
¼ 0;

@v1

@z
þ n21

@v1

@t
þ iD2

@
2v1

@t2
¼ 0;

@w1

@z
þ n31

@w1

@t
þ iD3

@
2w1

@t2
¼ 0:

ð6Þ

The derivation of these equations is presented in Appendix A and is made in a manner similar

to [16]. The initial conditions and BCs for the functions introduced above are written as fol-

lows:

Uð0; tÞ ¼ A10ðtÞ; Vð0; tÞ ¼ A20ðtÞ; Wð0; tÞ ¼ A30ðtÞ;

u1ð0; tÞ ¼ gðA�20
ðtÞA30ðtÞ � A�

10
ðtÞA20ðtÞÞ; v1ð0; tÞ ¼ gðA2

10
ðtÞ þ 2A�

10
ðtÞA30ðtÞÞ;

w1ð0; tÞ ¼ � 3gA10ðtÞA20ðtÞ; t 2 ½0; Lt�;

Uðz; 0Þ ¼ Vðz; 0Þ ¼Wðz; 0Þ ¼ Uðz; LtÞ ¼ Vðz; LtÞ ¼Wðz; LtÞ ¼ 0;

u1ðz; 0Þ ¼ v1ðz; 0Þ ¼ w1ðz; 0Þ ¼ u1ðz; LtÞ ¼ v1ðz; LtÞ ¼ w1ðz; LtÞ ¼ 0; z 2 ½0; Lz�:

ð7Þ
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The set of Eq (5) possesses some conservation laws (invariants or integrals of motion):

I1UW ¼

ZLt

0

ðjUj2 þ jWj2Þdt ¼ const;

I1V ¼

ZLt

0

jVj2dt ¼ const;

I3 ¼

ZLt

0

3n21Im
�

V�
@V
@t

� �

þ 2n31Im W� @W
@t

� �

� 6D1j
@U
@t
j
2
� 3D2j

@V
@t
j
2
� 2D3j

@W
@t
j
2
�

� 3~að4ReðU3W�Þ þ jUj4 þ 4jUj2jWj2 � 8jUj2jVj2 þ 2jVj2jWj2Þ
�

dt ¼ const:

ð8Þ

The first two invariants characterize the energy of pulses. The third invariant is Hamiltonian

of the waves interaction. These conservation laws will be used for developing analytical solu-

tion of the problem (5) in the framework of long pulse duration approximation. It should be

stressed that the set of Eq (1) also possesses some conservation laws.

4 Long pulse duration approximation

In this section we derive the analytical solution of the problem (5) neglecting temporal deriva-

tives. In this case, all functions depend only on the longitudinal coordinate z:

U ¼ UðzÞ; V ¼ VðzÞ; W ¼WðzÞ:

Therefore, the problem (5), (7) can be rewritten as follows:

dU
dz
� i~aðjUj2U þ 3U�2W � 4UjVj2 þ 2UjWj2Þ ¼ 0;

dV
dz
þ 2i~að4jUj2 � jWj2ÞV ¼ 0;

dW
dz
� 3i~aðU3 þ 2jUj2W þ jVj2WÞ ¼ 0;

Uð0Þ ¼ A10; Vð0Þ ¼ A20; Wð0Þ ¼ A30:

ð9Þ

The conservation laws (8) transform to the kind:

I1UW ¼ jUj
2
þ jWj2 ¼ 1;

I1V ¼ jVj
2
¼ jA20j

2
;

I3 ¼ � 3~að4ReðU3W�Þ þ jUj4 þ 4jUj2jWj2 � 8jUj2jVj2 þ 2jVj2jWj2Þ ¼ const:

ð10Þ

Let us do some notes about the invariants. We choose value of the first invariant to be equal to

unity. It means that the normalization value A0 in (3) is chosen equal to squared root from

sum of the HFW and LFW maximal intensities. It should be also stressed that the IFW inten-

sity remains unchanged at its propagation (see (10)). Despite this, the IFW intensity influences

significantly the frequency down-conversion process as it will be shown below.
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To solve the Eq (9), let us represent the complex amplitudes in following way:

UðzÞ ¼ a1ðzÞexpðiφ1
ðzÞÞ; VðzÞ ¼ a20expðiφ2

ðzÞÞ; WðzÞ ¼ a3ðzÞexpðiφ3
ðzÞÞ; ð11Þ

where a1, a3, φj, j = 1, 2, 3 are real-valued function and a20 = |A20|. Thus, the problem (9) takes

the form

da1

dz
¼ � 3~aa2

1
a3sinφ;

da3

dz
¼ 3~aa3

1
sinφ;

dφ
dz
� ~a 3

a3
1

a3

� 3a1a3

� �

cosφþ 3a2

1
� 6a2

3
þ 15a2

20

� �

¼ 0;

dφ
2

dz
þ 2i~að4a2

1
� a2

3
Þ ¼ 0;

a1ð0Þ ¼ jA10j; a3ð0Þ ¼ jA30j; φð0Þ ¼ φ
0
; φ

2
ð0Þ ¼ argðA20Þ:

ð12Þ

Here φ = φ3−3φ1 is a phase difference between the HFW and LFW, φ0 is its value in the input

section of a medium. As one can see, φ2 does not influence the LFW amplitude a1, so we do

not take it into account below. On the other hand, the third Eq (12) contains a term with the

IFW amplitude a20 and, therefore, the phase difference φ depends on it also. Consequently, the

IFW intensity influences the LFW intensity.

The invariants (10) are transformed to a form:

I1a1a3
¼ a2

1
þ a2

3
¼ 1;

I1a2
¼ a2

2
¼ a2

20
;

I3 ¼ 3~að� 4a3
1
a3cosφ � a4

1
� 4a2

1
a2

3
þ 8a20

2a2
1
� 2a2

20
a2

3
Þ:

Let us stress that we took into account the invariant I1a2
at writing representation (11). Further

we modify the Hamiltonian by dividing it on 3~a:

~I 3 ¼ � 4a3
1
a3cosφ � a4

1
� 4a2

1
a2

3
þ 8a20

2a2
1
� 2a2

20
a2

3
¼ ~I 30

ð13Þ

Then, using this relation, the phase difference can be expressed through the pulses amplitudes.

Thus, it is possible to integrate the ordinary differential equation with respect to the LFW

intensity.

Firstly, we consider a special case a20 = 0 to identify the main features of the frequency

down-conversion process through cascading second harmonic generation (SHG).

4.1 IFW intensity is absent (a20 = 0)

4.1.1 Analysis. To derive the exact solution of the problem (12), we express cosφ using the

Hamiltonian (13):

cosφ ¼ �
~I 30 þ a4

1
þ 4a2

1
a2

3

4a3
1a3

: ð14Þ

Let us stress that the inequality

jcosφj � 1 ð15Þ
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must be valid for the problem solution. Further, using the expression (14) and the first equa-

tion of the set (12), we write the following equation with respect to the LFW amplitude a1:

da1

dz
¼ &~aa2

1
a3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
ð~I 30 þ a4

1
þ 4a2

1
a2

3
Þ

2

16a6
1a2

3

s

:

Multiplying both parts of the equation by a1 and introducing new notation p1 ¼ a2
1

(corre-

sponding to the LFW intensity), and then substituting the HFW intensity a3 by using the first

invariant: a2
3
¼ 1 � p1, we write the differential equation with respect to the intensity of the

LFW (p1):

dp1

dz
¼ &

15g2

2D21k
ffiffiffiffiffiffiffiffiffiffi
f ðp1Þ

p
;

f ðp1;
~I 30Þ ¼ � p4

1
þ 1:6p3

1
þ ð0:24~I 30 � 0:64Þp2

1
� 0:32~I 30p1 � 0:04~I 2

30
:

ð16Þ

Obviously, the function f(p1) must be non-negative: f(p1)�0. In fact, this inequality and the

inequality (15) are equivalent. To show this, it is necessary to substitute the cosφ in the inequal-

ity (15). Then, multiplying both parts of the obtained inequality by 4a3
1
a3, and substituting a3

using the first invariant, we obtain the inequality, which both parts are non-negative. After

raising both parts to the second power and substituting a2
1

by p1, we obtain the inequality

f(p1)�0.

The Eq (16) can be integrated, and its solution crucially depends on roots of the following

equation

f ðp1;
~I 30Þ ¼ 0 ð17Þ

as well as on the number of its real roots. For convenience, let us denote these roots as

P1j
; j ¼ 1; 2; 3; 4, and we propose that they satisfy the inequality P11

� P12
� P13

� P14
if all

roots are real. In this case, the LFW intensity P1 changes between roots: P11
� p1 � P12

or

P13
� p1 � P14

, respectively. In other cases, the intervals of changing LFW amplitude are var-

ied significantly. We will discuss them below at writing the solution of the problem (12).

First of all, we determine a number of the real roots in dependence on the Hamiltonian’s

value ~I 30, which is defined by incident amplitude distributions of the LFW and HFW. Using

Sturm theorem for a determination of the real roots number [17], we see that this number is

defined by the polynomial:

gð~I 30Þ ¼
~I 2

30
ð~I 2

30
þ 3~I 30 þ 1Þ

(deriving this polynomial is presented in Appendix C). If the inequality

gð~I 30Þ > 0

is satisfied, that takes place for changing the Hamiltonian in the interval

� 1:5þ 0:5
ffiffiffi
5
p

< ~I 30 < 0;

then there are four different real roots of the Eq (17). If there is an opposite inequality:

gð~I 30Þ < 0;
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that corresponds to the Hamiltonian changing in the following interval:

� 1:5 � 0:5
ffiffiffi
5
p

< ~I 30 < � 1:5þ 0:5
ffiffiffi
5
p

;

then there are two different real roots and two complex-value roots.

There are also several special cases if the polynomial gð~I 30Þ is equal to zero. So, for

~I 30 ¼ � 1:5 � 0:5
ffiffiffi
5
p

ð18Þ

there are one two-fold real root 0:5þ 0:1
ffiffiffi
5
p

and two complex roots. If the Hamiltonian is

equal to

~I 30 ¼ � 1:5þ 0:5
ffiffiffi
5
p

; ð19Þ

then there are one two-fold root 0:5 � 0:1
ffiffiffi
5
p

and two other different real roots. At ~I 30 ¼ 0

there are two two-fold real roots: 0 and 0.8. Because the Hamiltonian is defined by the ampli-

tude and the phase difference of the incident pulses then it is convenient to depict in the plane

(|A10|2, φ0) the areas, possessing different types and number of roots of the (17). Such analysis

is shown in Fig 1a.

We see four areas, and one curve, described by the Eq (19) and dividing this plane with

respect to |A10|2 and φ0, and also some points. In the areas 1, 2, 3 there are four real roots of

the Eq (17). Thus, two modes of the frequency down-conversion can occur if the incident

LFW intensity and the phase difference belonging certain areas: the high-effective mode: P13
�

p1 � P14
and the low-effective one P11

� p1 � P12
. If the incident LFW intensity is small, then

its intensity changes in the low-effective mode: Fig 1b, the LFW intensity changes between

blue solid line and red dashed-dotted line. Therefore, the amplification efficiency is low. How-

ever, it is possible the high amplification mode of LFW at special choice of its incident inten-

sity. In this case the LFW intensity changes between the green line with triangles and the

yellow line with squares.

In the area 4 there are only two real roots, and only one mode of the pulses interaction

occurs: the LFW intensity changes between the blue solid line and the yellow line with squares

in Fig 1b. The lowest incident intensity |A10|2 = Pmin for this mode realization is approximately

equal to Pmin = 0.07889 at φ0 = 0. It should be stressed, despite this intensity is computed by

using the modified problem, the computer simulation results demonstrate its validity.

Fig 1. Areas of different number of the problem solution (a): areas 1, 2, 3—four real roots, 4—two real roots and two complex roots, points 5 (0.8, ±π)

—two multiple real roots, 6 ð0:5þ 0:1
ffiffiffi
5
p

; 0Þ—one multiple real root and two complex roots. Dependence of the roots on the incident LFW intensity at

zero-value phase difference φ0 = 0 (b): P11
—blue solid line, P12

—red dashed-dotted line, P13
—green line with triangles, P14

—yellow line with squares.

https://doi.org/10.1371/journal.pone.0268228.g001
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Obviously, we want to minimize the incident LFW intensity, at which the high effective

mode of its amplification occurs. To determine this minimal value, one needs to solve the

equation
da1

dz ð0Þ ¼ 0. If an intensity of the incident LFW isn’t equal to zero a1(0)6¼0 (necessary

condition for beginning its amplification), then this equation requires sinφ0 = 0 that resulting

in φ0 = 0 or φ0 = ±π. The second derivative of a1:

d2a1

dz2
¼ ~a2ð18a3

1
a2

3
sin2φ � 9a5

1
sin2φ � 3a2

1
a3cosφ 3

a3
1

a3

� 3a1a3

� �

cosφþ 3a2

1
� 6a2

3
þ 15a2

20

� �

ð20Þ

in the input section of a medium must be greater than zero if the incident LFW intensity is less

than jA10j
2
< 0:5þ 0:1

ffiffiffi
5
p

, which value is achieved at carrying out the equality (18) and corre-

sponds to starting the LFW amplification mode (see Fig 1b). For definiteness, we pay our

attention to the case φ0 = 0 and consider a dependence of the roots P1j
on the incident pulse

intensity |A10|2. Let us note that the zero-value of the Hamiltonian (Fig 1b) corresponds to two

incident LFW intensity |A10| = 0 and 0.8, which are preserved at the waves interaction: p1(z) =

0 or p1(z) = 0.8 and their changing is absent.

If the incident non-zero LFW intensity is less than |A10|2 < Pmin, then there are two modes

of the LFW amplification. However, in this case, the LFW intensity varies in low-effective

mode between the intensities P11
and P12

(Fig 1b). The situation changes dramatically if the

incident LFW intensity achieves the value Pmin. In this case, two roots coincide each other:

P12
¼ P13

¼ 0:5 � 0:1
ffiffiffi
5
p

, and any small increasing of its intensity results in the explosive

growth of the LFW intensity. Therefore, a rigorous mode of the LFW amplification occurs. If

the incident LFW intensity |A10|2 exceeds Pmin, then two roots of the Eq (17) become complex

ones. Therefore, there is only one mode of waves interaction and the LFW intensity p1 changes

between the intensity values P11
and P14

> 0:8. Thus, the amplification of the LFW intensity

becomes very effective. Let’s note that the root P14
achieves a value equal unity at the incident

IFW intensity |A20|2 = 0.2, and then it decreases and coincides with the P11
root at the incident

LFW intensity jA10j
2
¼ 0:5þ 0:1

ffiffiffi
5
p

.

If the parameters of the incident waves intensities correspond to the points 5 and 6 in Fig

1b, then the LFW intensity remains unchanged and equals 0.8 or 0:5þ 0:1
ffiffiffi
5
p

, respectively.

Another remark refers to the possibility of achieving high-effective amplification of the LFW

by introducing phase difference φ of the interacting waves at certain sections of a medium if

even the incident LFW intensity is small. But such discussion is far from aim of this paper.

In the end of this section, we give the formulas describing LFW intensity evolution and also

some computer simulation results confirming analytical results. Many of them contain the

elliptical functions: an elliptical cosine cn(z, k) and elliptical sine sn(z, k), but the elliptical func-

tion dn(z, k) does not appear in those formulas.

Case: P12, P13—complex roots (� 1:5 � 0:5
ffiffiffi
5
p

< ~I 30 < � 1:5þ 0:5
ffiffiffi
5
p

).

Let us denote r = Re(P12), s = Im(P12) and introduce new notations:

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðP14 � rÞ2 þ s2

q

; d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðP11 � rÞ2 þ s2

q

;

k ¼
ffiffiffiffiffi
cd
p

; k ¼
k2 þ ðr � P11ÞðP14 � rÞ � s2

2k2
:
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Then the LFW intensity evolution is described by formula

p1ðzÞ ¼
ðcP11 � dP14Þcnð7:5~akz; kÞ þ ðcP11 þ dP14Þ

ðc � dÞcnð7:5~akz; kÞ þ ðcþ dÞ
: ð21Þ

Case of four real roots: 0< P11 < P12 < P13 < P14 < 1 (� 1:5þ 0:5
ffiffiffi
5
p

< ~I 30 < 0).

If the incident LFW intensity is enough high, then its intensity p1 belongs to an interval

(P13, P14) (high-effective mode occurs) at its propagation in a medium and the intensity evolu-

tion is described by the following formula:

p1ðzÞ ¼
ðP14 � P13ÞP12sn2ð3:75~a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP14 � P12ÞðP13 � P11Þ

p
z; kÞ � ðP14 � P12ÞP13

ðP14 � P13Þsn2ð3:75~a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP14 � P12ÞðP13 � P11Þ

p
z; kÞ � ðP14 � P12Þ

;

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP14 � P13ÞðP12 � P11Þ

ðP14 � P12ÞðP13 � P11Þ

s

:

ð22Þ

In opposite case, the LFW intensity p1(z) amplification varies in low-effective mode and its

intensity changes between values P11 and P12 in accordance with the formula:

p1ðzÞ ¼
ðP12 � P11ÞP14sn2ð3:75~a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP14 � P12ÞðP13 � P11Þ

p
z; kÞ þ ðP14 � P12ÞP11

ðP12 � P11Þsn2ð3:75~a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP14 � P12ÞðP13 � P11Þ

p
z; kÞ þ ðP14 � P12Þ

;

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP14 � P13ÞðP12 � P11Þ

ðP14 � P12ÞðP13 � P11Þ

s

:

ð23Þ

Special case of multiple roots 0< P11 < P12 = P13 < P14 < 1 (~I 30 ¼ � 1:5þ 0:5
ffiffiffi
5
p

).

In this case, the LFW intensity p1 evolution on z−coordinate occurs in the following way:

zðp1Þ ¼
1

7:5~a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP14 � P13ÞðP13 � P11Þ

p ln
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP13 � P11ÞðP14 � p1Þ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP14 � P13Þðp1 � P11Þ

p
Þ

2

jp1 � P13jðP14 � P11Þ
: ð24Þ

It should be stressed that under writing of the formula (24) we neglect the terms possessing

order O((Δ21 k)−2) (and lower). However, if the waves interaction mode corresponds to a case

of the multiple roots then an influence of small terms increases many times. As a result, the

solution of the original problem may be periodical one with large period while the solution of

a set of the modified equation is aperiodic.

For instance, if the pump pulse intensity p1(z) starts to change from its value P11 or P14,

then the LFW intensity reaches intensity P13 at z-coordinate tending to infinity in accordance

with the formula (24). In contrast, the computer simulation results demonstrate periodic or

quasi-periodic mode of the LFW intensity evolution. However, at tending |A10|2 to Pmin, the

period of oscillations for LFW intensity grows (though remains bounded). As we can see from

analysis made above, the LFW intensity oscillation period is defined by the Hamiltonian,

whose value, in turn, is defined by the intensities of the incident waves and the phase difference

between them.

4.1.2 Computer simulation results. Below we present computer simulation results,

which confirms the derived formulas. The conversion efficiency is defined as ratio between the
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LFW intensity and the sum of intensities for the incident LFW and HFW:

ZðzÞ ¼
jA1ðzÞj

2

jA1ð0Þj
2
þ jA3ð0Þj

2
:

We apply this formula even if the incident IFW intensity is not non-zero.

As example, Fig 2a–2d illustrate the low-efficient amplification of LFW and the high-effi-

cient one that occurring in dependence on the incident LFW intensity. The pulses interaction

distance equals 5 dimensionless units corresponding to the crystal length of 2 cm in our

notations.

If the incident LFW intensity is equal to |A10|2 = 0.05, then the maximal LFW intensity

achieves relatively low value (0.12). A period of the intensity oscillations equals 6 dimension-

less units. The first maximum of the LFW intensity achieves in the section z = 3. We see that

the solution of the modified problem perfectly approximate the original problem solution.

At the incident LFW intensity |A10|2 = 0.07 (Fig 2b), which is a little lower than Pmin, the

maximal LFW intensity is quite low (approximately 0.18). However, this intensity is achieved

in the bigger section (z = 4.5) of a medium in comparison with the previous case (Fig 2a).

Fig 2. Computer simulation results obtained on the base of both the original problem (black solid lines) and the modified problem (red dashed-dotted

lines) computed for the parameters: γ = 4, Δ21 k = 80, |A20|2 = 0, φ0 = 0 and |A10|2 = 0.05 (a), 0.07 (b), 0.08 (c), 0.1 (d).

https://doi.org/10.1371/journal.pone.0268228.g002
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If the LFW incident intensity |A10|2 is greater than the critical one Pmin, then the maximal

LFW intensity growths sufficiently in accordance with the results of the theoretical analysis.

Such case (|A10|2 = 0.08) is depicted in Fig 2c. The maximal LFW intensity achieves practically

unity (0.972) at the pulses propagation distance z = 11. It should be emphasized that a differ-

ence between the intensities’ evolution in Fig 2c is caused by a proximity of the incident LFW

intensity to the critical one (Pmin). In this case, it is necessary take into account the next terms

in a series on Δ21 k. Partly, it can be caused by presence of the IFW which is not took into

account in the modified equations.

In contrast to previous two Figs., the LFW intensity evolution is described by complicated

function and the inflexion point occurring approximately at the intensity being equal to

jA1ðzÞj
2
¼ 0:5 � 0:1

ffiffiffi
5
p

exists. At this intensity value, the switching between the low-efficiency

amplification mode and high those occurs. Due to reasons, mentioned above, the multi-scale

method approximates worse (Fig 2c) than in other cases: the maximal intensity computed

using the modified problem is achieved in the section z = 12.2 and equals 0.968. So, from the

physical point of view, the solution of the original problem gives even preferable results (lower

distance and bigger intensity) than the solution of the modified problem. Nevertheless, the

simplified equations predict the maximal LFW intensity and the modes switching.

If the LFW incident intensity is increased until |A10|2 = 0.1 (Fig 2d), then the simplified

equations approximate again perfectly the pulses interaction because its value sufficiently far

from the critical intensity Pmin. As we can see in Fig 2d, there is not a saturation of the fre-

quency conversion efficiency with increasing propagation distance. The saturation of the

frequency conversion occurs, for example, for the second harmonic generation analyzed in

the framework of the long pulse duration and plane wave approximation. This process was

described in the well-known paper [18]. The saturation may appear also if the frequency con-

version is analyzed in the framework of the pump non-depletion approximation. We do not

use this approximation. We derived an explicit solution of the modified equations in the

framework of the long pulse duration and plane wave approximation. As follows from (12),

the phase difference depends on ratio of the intensities of the interacting waves. Therefore,

changing of the phase difference can lead to inverse energy transfer: from the LFW to HFW.

This is a reason of the LFW intensity evolution depicted in Fig 2d.

4.2 General case: a20 6¼ 0

4.2.1 Analysis. After previous analysis of the particular case, we briefly describe the gen-

eral case. By expressing cosφ through the Hamiltonian:

cosφ ¼
2a2

20
ð4a2

1
� a2

3
Þ � ~I 30 � a4

1
� 4a2

1
a2

3

4a2
1
a2

3

and then providing similar algebra, one can obtain the differential equation with respect to

intensity p1 of the LFW:

dp1

dz
¼ &

15g2

2D21k
ffiffiffiffiffiffiffiffiffiffi
f ðp1Þ

p
;

f ðp1Þ ¼ � p4
1
þ ð0:64þ 0:48BÞp3

1
þ ð0:24A � 0:16B2Þp2

1
� 0:16ABp1 � 0:04A2;

A ¼ ~I30 þ 2a2
20
; B ¼ 2 � 5a2

20
:

ð25Þ

For simplicity, we introduce new parameters A and B. To demonstrate an influence of the

incident IFW intensity on the LFW amplification, we compute the zeros of the polynomial
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f(p1) = 0 (see (25)) occurring for the incident LFW intensity belonging to 0� |A10|2� 0.1 in

dependence of |A10|2 and |A20|2. We choose these LFW intensity values because the critical

intensity Pmin for the mode switching for LFW amplification is less than 0.1 and we want to

follow changing the critical intensity Pmin with increasing the incident IFW intensity, which

belongs to an interval 0� |A20|2� 0.5.

In Fig 3 the dependence of the maximal LFW intensity on incident intensities of LFW and

IFW is depicted on the plane (|A10|2, |A20|2) at the chosen phase difference φ0 of the incident

pulses being equal to 0 or π to get a positive value of the second order derivative from the LFW

amplitude:
@2a1

@z2 > 0.

Let us remind that to obtain the maximal LFW intensity amplification at zero-value inci-

dent IFW intensity, the phase difference φ0 must be chosen equal zero if the LFW incident

intensity belongs to interval 0 < jA10j
2
< 0:5þ 0:1

ffiffiffi
5
p

. However, at non-zero-value incident

IFW intensity, in accordance with the differential Eq (20) (the second order derivative must be

positive), the LFW incident intensity interval decreases with growing IFW incident intensity

|A20|2 and the phase difference φ0 must be equal to π if the IFW intensity satisfies the inequal-

ity: |A20|2� 0.4.

It should be stressed that at the incident IFW intensity |A20|2 = 0.4 it is possible to achieve

large LFW intensity for very low (even zero) its incident one. In this case, the LFW intensity is

governed by the formula, which does not meet in the previous section. Let us discuss in detail

this important case. The roots of the polynomial (25) are computed from the equation:

� p3

1
ð25p1 � 16Þ ¼ 0:

Fig 3. Dependence of the LFW maximal intensity on the incident LFW intensity and the incident IFW intensity. The boundary between high-

effective mode and low-effective mode is depicted with red solid line.

https://doi.org/10.1371/journal.pone.0268228.g003
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There are a three-fold root equal zero and one non-zero-value root 0.64. It means that the

LFW generation does not start from its zero-value intensity. However, if the incident intensity

of LFW is non-zero then its intensity in a medium changes in accordance with the formula:

p1ðzÞ ¼
16

ð24~az � z1Þ
2
þ 25

;

z1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 � 25jA10j

2

jA10j
2

s

:

ð26Þ

Thus, the LFW intensity p1(z), changing as reverse quadratic function, has one maximum

and the required distance for its achievement tends to infinity if |A10|!0. We note that this

conclusion can not be applied directly to the original problem due to the same reasons as the

formula (24) discussed above. Nevertheless, the formulas (26) shows that with decreasing LFW

incident intensity, the required crystal length grows.

Let us analyze Fig 3, in which the boundary between low-effective amplification mode and

high-effective amplification mode is depicted by red line and this line is governed by the solu-

tion of the equation:

140625A5 � 52500A4B2 þ 641250A4B � 275625A4 � 1850A3B4 � 178200A3B3

þ1177350A3B2 � 530550A3B � 677475A3 � 276A2B6 � 4308A2B5 � 165060A2B4

þ897210A2B3 � 174690A2B2 � 1088208A2B � 381024A2 þ 529AB8 � 3864AB7

þ1530AB6 � 36786AB5 þ 242325AB4 þ 24912AB3 � 425952AB2 � 311040AB

� 62208Aþ 1058B9 � 8211B8 þ 14830B7 þ 11520B6 � 22080B5 � 20736B4 � 4608B3 ¼ 0;

where the parameters A and B were introduced in the formula (25). It is easy to see that the val-

ues A ¼ � 1:5þ 0:5
ffiffiffi
5
p

; B ¼ 2, which corresponds to the incident intensities |A10|2 = Pmin

and |A20|2 = 0, satisfy this equation. If the IFW incident intensity |A20|2 increases then the

intensity Pmin, corresponding to switching between modes of the LFW amplification,

decreases. On the other hand, the maximal amplification of the LFW decreases relatively slow.

If the IFW incident intensity is equal to |A20|2 = 0.4, then the critical intensity for switching of

LFW mode amplification is equal to zero: Pmin = 0. Further, if the IFW incident intensity is

greater than 0.4 dimensionless units (|A20|2 > 0.4), then the critical intensity Pmin increases. It

is not suitable for our aim, therefore, |A20|2 should be chosen less or equal to 0.4. In fact, all the

solutions from the previous section are also valid for the case under consideration with substi-

tution zeros of the polynomial from (16) to the zeros of the polynomial from (25).

4.2.2 Computer simulation results. First of all, we discuss the computer simulation

results provided at enough large incident intensity of the IFW |A20|2 = 0.4, at which the strong

LFW amplification can be achieved even at its very low incident intensity (Fig 4). In this case,

the crystal length, required for achieving the high efficiency of the frequency conversion, cru-

cially depends on the LFW incident intensity and this length is much greater in comparison

with the case of the zero-value IFW incident intensity. Fig 4a–4c, depicted for |A10|2 equal

0.01;0.001;0.0, respectively, confirms the theoretical results. In this case, practically 70% of the

HFW energy converts to the LFW energy. However, the required distance is a little larger than

in the previous paragraph.

One may notice that the solid line, which depict the LFW intensity evolution, looks thick in

Fig 4. The reason is the fast oscillations of the LFW intensity, caused by the non-zero IFW inci-

dent intensity. They also exist at |A20| = 0, but in the case under consideration they are much

stronger.
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With decreasing incident LFW intensity (Fig 4b), the required crystal length increases two

times (z = 31). However, the maximal intensity becomes a little bit large. In practice, one can

even choose A10 = 0 (Fig 4c), but we see that the required crystal length becomes too much

long (z = 70), and maybe it is inconvenient for practice.

We must notice that generally speaking, the multi-scale method approximate worse the

original solution if the incident IFW intensity is non-zero: |A20|2 6¼ 0. As a rule, the difference

in maximal intensity or the required distance of its achievement predicted by using this

approximation and computed on the base of the original problem may appear, as it is shown

in Fig 4d. However, there are some cases, when two solutions do not coincide at all. Such case

is presented in Fig 4e. We see that while the LFW intensity computed using the modified prob-

lem increases, the solution of the original problem decreases. Nevertheless, there are some

ways to improve the multi-scale approximation in this case.

First of all, one may use additional terms corresponding to other scales (O(Δ21 k−2) and

lower). To prove this, we essentially increase the phase mismatching Δ21 k until value 500. As

follows from Fig 4f, both intensities grow without large oscillations in contrast to the previous

case (Fig 4e). However, maximal intensities and coordinates of their achievement differ signifi-

cantly. Thus, the solution developed using multi-scale method must contain additional scales

at certain values of the problem parameters.

5 Frequency down-conversion under accounting for the dispersion

of non-linear coupling coefficient

Let us briefly discuss the frequency down-conversion under accounting for different values of

second-order susceptibilities because the components of the χ(2) tensor depend on are different

as well-known. Our aim is a demonstration of effective applying multi-scale method in this

Fig 4. Computer simulation results of the original problem (black solid lines) and the modified problem (red dashed-dotted lines) at γ = 4, Δ21 k = 80

(a- e), 500 (f), φ0 = 0 and (|A10|2, |A20|2 = (0.01, 0.4) (a), (0.001, 0.4) (b), (0, 0.4) (c), (0.02, 0.3) (d), (0.1, 0.5) (e,f).

https://doi.org/10.1371/journal.pone.0268228.g004
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case also. In the long pulse duration approximation, the original problem (1) can be re-written

as [19]:

dA1

dz
þ i g1A

�

1
A2e

� iD21kz þ g2A
�

2
A3e

iD21kz
� �

¼ 0;

dA2

dz
þ i g1A

2

1
eiD21kz þ 2g2A

�

1
A3e

iD21kz
� �

¼ 0;

dA3

dz
þ 3ig2A1A2e

� iD21kz ¼ 0;

ð27Þ

For brevity, below, we will call γ1 as SHG coefficient and γ2 as DFG coefficient.

After applying the multi-scale method, we obtain the following set of modified equations:

dU
dz
� ið

g2
1

D21k
jUj2U þ 3

g1g2

D21k
U�2W þ 2

g2
2

D21k
UjWj2Þ ¼ 0;

dW
dz
� 3ið

g1g2

D21k
U3 þ 2

g2
2

D21k
jUj2WÞ ¼ 0;

ð28Þ

Energy’s invariant IUW has the same view as above, but the Hamiltonian is written as:

I3 ¼ � 3 4
g1g2

D21k
ReðU3W�Þ þ

g2
1

D21k
jUj4 þ 4

g2
2

D21k
jUj2jWj2

� �

¼ const:

Then, we use the representation (11) to obtain the following set of equations:

da1

dz
¼ � 3

g1g2

D21k
a2

1
a3sinφ;

da3

dz
¼ 3

g1g2

D21k
a3

1
sinφ;

dφ
dz
� 3

g1g2

D21k
a3

1

a3

� 3a1a3

� �

cosφþ 6
g2

2

D21k
� 3

g2
1

D21k

� �

a2

1
� 6

g2
2

D21k
a2

3

� �

¼ 0;

a1ð0Þ ¼ jA10j; a3ð0Þ ¼ jA30j; φð0Þ ¼ φ
0
:

ð29Þ

In new variables, the Hamiltonian takes the form:

I3 ¼ 3 � 4
g1g2

D21k
a3

1
a3cosφ �

g2
1

D21k
a4

1
� 4

g2g2

D21k
a2

1
a2

3

� �

;

which is divided on 3g2
2
=D21k to write the modified Hamiltonian:

~I 3 ¼ � 4qa3

1
a3cosφ � q2a4

1
� 4a2

1
a2

3
¼ ~I 30:

Here, the parameter q is ratio between SHG and DFG coefficients: q = γ1/γ2.

Using this invariant and energy’s invariant I1UW, we derive the equation with respect to

LFW intensity p1:

dp1

dz
¼ &

3g1g2

4D21k
ffiffiffiffiffiffiffiffiffiffi
f ðp1Þ

p
;

f ðp1;
~I 30; qÞ ¼ � ðq2 þ 4Þ

2p4
1
þ ð8q2 þ 32Þp3

1
þ ð16 � 2ðq2 � 4Þ~I 30 � 0:64Þp2

1
� 8~I 30p1 �

~I 2
30
:

The analysis of this equation shows that the critical value of the LFW intensity Pmin decreases
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if the SHG coefficient prevails over DFG coefficient as illustrate Fig 5. The border between the

low-effective mode and high-effective mode is shown in this Fig. by the following equation:

I2

30
þ I30q

2 þ 2I30 þ 1 ¼ 0:

Without detail theoretical analysis, let us present only the computer simulation results

depicted in Fig 6). Comparison of Fig 6a with Fig 2a demonstrates that the maximal intensity

Fig 5. Dependence of the LFW maximal intensity on the incident LFW intensity and the ratio between the SHG coefficient and DFG coefficient.

The boundary between high-effective mode and low-effective mode is depicted by red solid line

https://doi.org/10.1371/journal.pone.0268228.g005

Fig 6. Computer simulation results obtained by using the original problem (black solid lines) and the modified problem (red dashed-dotted lines)

computed for the parameters γ1 = 4, Δ21 k = 80, |A20|2 = 0, φ0 = 0 and (γ2, |A10|2) = (2, 0.05) (a), 0:02; 4

3

� �
(b).

https://doi.org/10.1371/journal.pone.0268228.g006
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of the LFW increases dramatically if the parameter q is changed from unity until two. In the

last case, the LFW maximal intensity achieves a value 0.73, which is six times greater than at

q = 1.

We emphasize that it is possible even to decrease the incident LFW intensity if q equals 3

(|A20|2 = 0.02, Fig 6b). However, in this case, some disadvantages appear. Firstly, the conver-

sion efficiency (45%) is smaller than in previous cases. Secondly, the required distance for its

achieving grows until z = 60.

Thus, the dispersion of the quadratic susceptibility may improve a process of the frequency

down-conversion.

6 Conclusion

We showed the possibility of high efficient frequency down-conversion (3ω, 2ω! ω) based

on cascading process of the three-waves interaction in a medium with quadratic non-linear

response. The phase matching occurs between the HFW and LFW. The IFW propagates under

large phase mismatching between this wave and other waves.

Using multi-scale method, we derived a set of the modified equations, which qualitatively

and quantitatively describe the LFW amplification. Based on these equations, we analyzed var-

ious modes of the waves interaction and showed that the interaction possesses a property of

bistability: there are high- and low-efficiency modes of the LFW amplification.

We considered two cases: the incident IFW is present or absent. In both cases, the high

intensity of LFW can be achieved if certain conditions are valid. If the IFW incident intensity

equals zero, then the incident LFW intensity must be greater than crucial value to achieve a

large amplification of this wave. In opposite case, the crucial incident intensity of the LFW

may be decreased and at certain incident intensity of the IFW, the LFW amplification occurs

even for the incident LFW zero-value intensity. However, the incident IFW large intensity

causes the fast oscillations of the LFW intensity.

Based on provided analysis, one can propose two stages amplification scheme. In the first

crystal, there is a generation of the LFW (wave with the half-frequency) under the phase

matching between IFW and LFW. It occurs until the LFW intensity achieves a value being

equal or greater than Pmin. Then the LFW and HFW fall into the second crystal under the

condition of both the phase matching between HFW and LFW and big phase mismatching

between HFW and IFW. In this crystal, the high-efficient amplification of the LFW occurs.

Because we did not take into account the group-velocity mismatching and the group-veloc-

ity dispersion, our results can be used for the pulses with long duration (such as picosecond,

nanosecond, microsecond or even CW). Using of the pulses with short duration must be

accompanied satisfying well-known conditions on the crystal length, non-linear length, and

lengths characterizing group velocities mismatching and the second order dispersion of the

pulse.

Our computer simulation results showed that the HFW energy can be practically fully con-

verted to the LFW energy under certain condition for the incident LFW intensity which satis-

fies the equality: |A10|2 > Pmin, or that is about 70% if the incident LFW intensity is equal to

zero and the incident IFW intensity is equal to certain value. Both these conversion efficiency

values are greater than the corresponding values obtained previously (34%, [8]). There are also

other possibilities for high-efficient frequency down-conversion if the incident intensities of

both waves are non-zero.

Briefly we discuss the possible set of the parameters for a realization of results, obtained

in this paper. For example, at using AgGaS2 crystal, and for a sum of the incident intensities
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0.12 GW/cm2, the required crystal length equals about 3 cm if the incident LFW intensity is

remarkable (i.e bigger than Pmin equaling 9 MW/cm2, approximately) or 8–18 cm if this

intensity is close to zero. We stress that the crystal length decreases in accordance with the

linear law at growing incident intensities of the pulses. If the incident intensity of the pump

pulse increases four times then the required distances decrease to 0.7 cm and 4–9 cm,

respectively.

Thus, our approach may be useful for obtaining high-efficient generation of the IR radia-

tion and even THz radiation.

Appendix A: Derivation of modified equations

Here we derive the equation set (9) which describes an appearance of the induced cubic non-

linear response at big phase mismatching between IFW and LFW: |Δ21 k|>> 1. In this case,

the process of wave interaction possesses various space scales: in particular, a small scale,

defined by big phase mismatching |Δ21 k|, and a long space scale defined by the dispersion

lengths of the interacting pulses. Let us introduce a small parameter m ¼ 1

D21k
(for simplicity, we

suppose that the phase mismatching has a positive sign) and introduce various scales along z
coordinate: small scale equal to the inverse phase mismatching length: x ¼ z

m
, and big longitu-

dinal scales zl = μl z, l = 0, 1, 2. . .. Therefore, the complex amplitudes are expanded in a power

series of μ:

A1 ¼ U þ mU1 þ m
2U2 þ :::;

A2 ¼ V þ mV1 þ m
2V2 þ :::;

A3 ¼W þ mW1 þ m
2W2 þ ::::

ð30Þ

Obviously, the functions in (30) depend on all the variables (t, ξ, zl|l� 0).

Using the chain rule, we write differential operators in terms of new variables:

Lj ¼
@

@z
þ nj1

@

@t
þ iDj

@
2

@t2
¼
@x

@z
@

@x
þ
X1

l¼0

@zl
@z

@

@zl
þ iDj

@
2

@t2
¼

1

m

@

@x

þ
X1

l¼0

ml @

@zl
þ iDj

@
2

@t2
¼

1

m

@

@x
þ L0

j þ m
@

@z1

þ m2 @

@z2

þ :::; j ¼ 1; 2; 3:

ð31Þ

Here, operator Lj is defined as

Lð0Þj ¼
@

@z0

þ nj1
@

@t
þ iDj

@
2

@t2
:
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Then, we substitute the expansion (30) into the equation set (1), and write all terms with an

order, which is greater than μ2:

1

m

@U
@x
þ Lð0Þ1 U þ m

@U
@z1

þ
@U1

@x
þ mLð0Þ1 U1 þ m

@U2

@x
þ

þ igðU�Ve� ix þ V�Weix þ mððU�V1 þ U�
1
VÞe� ix þ ðV�W1 þ V�

1
WÞeixÞÞ þ Oðm2Þ ¼ 0;

1

m

@V
@x
þ Lð0Þ2 V þ m

@V
@z1

þ
@V1

@x
þ mLð0Þ1 V1 þ m

@V2

@x
þ

þ igðU2eix þ 2U�Weix þ mð2UU1eix þ ðU�W1 þ U�
1
WÞeixÞÞ þ Oðm2Þ ¼ 0;

1

m

@W
@x
þ Lð0Þ3 W þ m

@W
@z1

þ
@W1

@x
þ mLð0Þ1 W1 þ m

@W2

@x
þ

þ 3igðUVe� ix þ mðUV1 þ U1VÞe� ixÞ þ Oðm2Þ ¼ 0:

ð32Þ

Grouping the terms with respect to power of μ we obtain the equations:

@U
@x
¼
@V
@x
¼
@W
@x
¼ 0;

corresponding to 1

m
power of the expansion. Consequently, the functions U, V and W do not

depend on fast changing coordinate ξ. Therefore, these functions do not change at the small

scale.

For the next order O(1) of power μ, we obtain the following set of equations:

Lð0Þ1 U þ
@U1

@x
þ igðU�Ve� ix þ V�WeixÞ ¼ 0;

Lð0Þ2 V þ
@V1

@x
þ igðU2eix þ 2U�WeixÞ ¼ 0;

Lð0Þ3 W þ
@W1

@x
þ 3igUVe� ix ¼ 0:

ð33Þ

So, since the first terms in these equations do not depend on ξ, meanwhile other terms do

depend on this variable, we can separate equations into two parts. The first of them is written

as

Lð0Þ1 U ¼ Lð0Þ2 V ¼ Lð0Þ3 W ¼ 0: ð34Þ

The functions U1, V1, W1 can be found from the second one by integrating (33) with respect to

ξ:

U1 ¼ gðU�Ve� ix � V�WeixÞ þ u1ðt; z0; z1:::Þ;

V1 ¼ gð� U2eix � 2U�WeixÞ þ v1ðt; z0; z1:::Þ;

W1 ¼ 3gUVe� ix þ w1ðt; z0; z1:::Þ:

ð35Þ

Here u1, v1, w1 are the function of integration: they do not depend on ξ. The equations, which

they are governed by, are derived further.
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At the order O(μ), the equations are the following:

@U2

@x
þ Lð0Þ1 U1 þ

@U
@z1

þ igððU�V1 þ U�
1
VÞe� ix þ ðV�W1 þ V�

1
WÞeixÞ ¼ 0;

@V2

@x
þ Lð0Þ2 V1 þ

@V
@z1

þ igð2UU1e
ix þ ðU�W1 þ U�

1
WÞeixÞ ¼ 0;

@W2

@x
þ Lð0Þ3 W1 þ

@W
@z1

þ 3igðUV1 þ U1VÞe
� ix ¼ 0:

Using the representation (35) this set transforms into the form:

@U2

@x
þ gðLð0Þ1 ðU�VÞe� ix � Lð0Þ1 ðV�WÞeixÞ þ ig2ðU�v1e

� ix � V2W�e� 2ix þ u�
1
Ve� ix þ V�w1e

ix

þ v�
1
WeixÞ ¼ �

@U
@z1

þ ig2ð� jUj2U � 3U�2W þ 4UjVj2 � 2UjWj2Þ
� �

� Lð0Þ1 u1;

@V2

@x
� gðLð0Þ2 ðU2Þeix þ 2Lð0Þ2 ðU�WÞeixÞ þ ig2ð� 2UV�We2ix þ 2Uu1e

ix þ 2UV�Weix

þ 2u�
1
Weix þ 2U�weixÞ ¼ �

@V
@z1

þ 2ig2ð4jUj � jWj2ÞV
� �

� Lð0Þ2 v1;

@W2

@x
þ 3gLð0Þ3 ðUVÞe� ix þ 3ig2ðUv1e

� ix þ U�V2 � e� 2ix þ u1V1e
� ixÞ ¼

�
@W
@z1

� 3ig2ðU3 þ 2jUj2W þ jVj2WÞ
� �

� Lð0Þ1 w1:

As before, we can state that the right-hand sides of the equations are equal to zero because they

do not depend on ξ in contrast to the left-hand sides of the equations. Thus, we write the equa-

tions

@U
@z1

þ ig2ð� jUj2U � 3U�2W þ 4UjVj2 � 2UjWj2Þ ¼ � Lð0Þ1 u1;

@V
@z1

þ 2ig2ð4jUj2 � jWj2ÞV ¼ Lð0Þ2 v1;

@W
@z1

� 3ig2ðU3 þ 2jUj2W þ jVj2W ¼ Lð0Þ3 w1:

Here, we separate terms, which contain u1, v1, w1. Since in the representation (30) they belong

to order O(μ), meanwhile, U, V, W belong to order O(1), then we can once again separate the

obtained equation into two parts:

@U
@z1

þ ig2ð� jUj2U � 3U�2W þ 4UjVj2 � 2UjWj2Þ ¼ 0;

@V
@z1

þ 2ig2ð4jUj2 � jWj2ÞV ¼ 0;

@W
@z1

� 3ig2ðU3 þ 2jUj2W þ jVj2WÞ ¼ 0:

ð36Þ
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Consequently, the equations

Lð0Þ1 u1 ¼ 0;

Lð0Þ2 v1 ¼ 0;

Lð0Þ3 w1 ¼ 0

ð37Þ

are valid.

After returning to original variables

(x ¼ D21kz; z0 ¼ z; z1 ¼ z=D21k; @

@z ¼ D21k @

@x
þ @

@z0
þ 1

D21k
@

@z1
þ OððD21kÞ

� 2
Þ), we obtain the

sets of Eq (5) and (6). In turn, the expansion series (30) transforms into the form (4).

Appendix B: Alternative approach to derivation of modified

equations

The derivation of the modified equations, presented in the Appendix A, is quite complicated,

or, maybe even hard for understanding their major features. In order to illustrate the essence

of cascading processes, we give another (more simple) derivation of the modified equations,

for example, in the case |A20|2 = 0. This approach leads to the same results as at using multi-

scale method if the IFW is not of interest for us.

So, let us represent the complex amplitude A2 as a series:

A2 ¼ ðA
ð0Þ

2 þ Að1Þ2 þ Að2Þ2 þ :::ÞeiD21kz;

where each of the terms corresponds to 1/(Δ21 k)−m. Substituting this series into the second

equation of the system (1) (we still suppose that Δ31 k = 0), we obtain the following equation in

the first order of the approximation:

@Að0Þ2

@z
þ n21

@Að0Þ2

@t
þ iD2

@Að0Þ2

@
2t2
þ iD21kA

ð0Þ

2 þ igðA2

1
þ 2A�

1
A3Þ ¼ 0;

which can be re-written as:

Að0Þ2 þ
g

D21k
ðA2

1
þ 2A�

1
A3Þ �

i
D21k

@
2Að0Þ2

@z
þ

n21

D21k
@Að0Þ2

@t
þ i

D2

D21k
@Að0Þ2

@t2
¼ 0:

One can see that the last two terms contain both complex amplitude Að0Þ2 and (Δ21 k)−1. There-

fore, they are much smaller than other terms. Therefore, they can be neglected. As follows, we

obtain the following relation:

Að0Þ2 ¼ �
g

D21k
ðA2

1
þ 2A�

1
A3Þ: ð38Þ

Here we can see the phase grating corresponding to the IFW. Its weak generation is caused

by the large phase mismatching Δ21 k. Nevertheless, it plays essential role because other two

waves are scattering on this phase grating.
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Then substituting representation (38) into the first equation and the third Eq (1), we write

the equations:

@A1

@z
þ iD1

@
2A1

@t2
þ i

g2

D21k
ð� jA1j

2U � 3A�2
1
A3 � 2A1jA3j

2
¼ 0;

@A3

@z
þ n31

@A3

@t
þ iD3

@
2A3

@t2
� 3i

g2

D21k
ðA3

1
þ 2jA1j

2A3Þ þ iD31kA3 ¼ 0;

which coincides fully with (5), if we suppose V� 0 (this, in turn, follows from |A20|2 = 0).

Appendix C: Computation of the real roots number of the equation

f(p1) = 0

Here we illustrate a computation of the real zeros’ number of the polynomial (17). For this aim

we use Sturm theorem. So, first of all, we write so-called Sturm sequence, which is written in

the following view:

f0ðp1Þ ¼ � f ðp1Þ ¼ p4
1
� 1:6p3

1
� ð0:24~I 30 � 0:64Þp2

1
þ 0:32~I 30p1 þ 0:04~I 2

30
;

f1ðp1Þ ¼ � f
0

ðp1Þ ¼ 4p3
1
� 4:8p2

1
� ð0:24~I 30 � 1:28Þp1 þ 0:32~I 30;

f2ðp1Þ ¼ ð0:12~I 30 þ 0:16Þp2
1
þ ð� 0:192~I 30 � 0:64Þp1 � 0:04~I 2

30
� 0:032~I 30;

f3ðp1Þ ¼
� 192~I 3

30
� 1216~I 2

30
� 512~I 30

225~I 2
30
þ 600~I 30 þ 400

p1 þ
� 192~I 3

30
� 128~I 2

30

225~I 2
30
þ 600~I 30 þ 400

;

f4ðp1Þ ¼
9~I 6

30
þ 51~I 5

30
þ 97~I 4

30
þ 72~I 3

30
þ 16~I 2

30

225~I 4
30
þ 2850~I 3

30 þ 10225~I 2
30
þ 7600~I 30 þ 1600

in the case under consideration. This sequence is obtained on the base of the Euclid’s algo-

rithm for polynomials division: functions fj, j = 2, 3, 4 are division residues of fj−2 on fj−1, and

then multiplied on -1. As the Sturm theorem states, the number of real roots of f(p1) = 0 in the

interval [a,b] equals the difference

nðaÞ � nðbÞ;

if f(a)6¼0 and f(b)6¼0, where n(x) is the number of sign changes in the Sturm sequence fj at the

point x (zeros do not count).

We have to answer two questions. Firstly, how many real roots of the equation f(p1) = 0

exist in the interval [0, 1] because the LFW intensity is bounded between 0 and 1 due to nor-

malization introduced by us. Secondly, how many real roots of the equation f(p1) = 0 exist

because this defines the formula describing the intensities evolution. Based on the Sturm theo-

rem conditions, first we must consider two special cases: f(0) = 0 and f(1) = 0. In the first case,

~I30 ¼ 0 and there are two two-fold roots 0 and 0.8. In the second case, ~I 30 ¼ � 1 and there are

two complex roots and two real roots 0.2 and 1.

Now we analyze the case f(0)6¼0, f(1)6¼0 corresponding to ~I 30 6¼ 0; ~I 30 6¼ 1. Therefore, the

Sturm theorem can be applied. In Table 1 we present values of the functions fj(p1), j = 0..5 for

the arguments 0 and 1, and show their coefficients at highest degree of the polynomial (−1)j

fj(p1), j = 0..4 because these coefficients define the signs of the functions fj at tending p1 to ±1.

For definiteness, we denote them as sgn(fj(±1)), j = 0..4, respectively, and n(±1) means a

short notation of limn(x) at tending of x to ±1.

Thus, we are able to compute the function n(x) at chosen argument. Obviously, these values

depend on the Hamiltonian ~I 30 and they are shown in Table 2.
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Let us remind that the Sturm theorem can not be implemented at ~I 30 ¼ 0 and ~I 30 ¼ � 1.

Therefore, these values are absent in Table 2 and they are discussed above separately. We

notice that there are other values of the third invariant ~I 30, at which fj, j = 1..5 can change their

signs for p1 = 0, 1 or ±1. However, there are only a few values of the Hamiltonian among

which the function n(x) changes its values. These values are presented in Table in Table 2.

All real roots of the equation f(p1) = 0 belong to the interval [0, 1] because n(−1)−n(0) = 0

and n(+1)−n(1) = 0 for all ~I 30. A number of the real roots belonging to the interval [0, 1] for

different ~I 30 is already described in the main part of the paper.
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