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Abstract: Rice husk ash (RHA) is a significant pollutant produced by agricultural sectors that cause
a malignant outcome to the environment. To encourage the re-use of RHA, this work used multi
expression programming (MEP) to construct an empirical model for forecasting the compressive
nature of concrete made with RHA (CRHA) as a cement substitute. Thus, the compressive strength of
CRHA was developed comprising of 192 findings from the broad and trustworthy database obtained
from literature review. The most significant characteristics, namely the specimen’s age, the percentage
of RHA, the amount of cement, superplasticizer, aggregates, and the amount of water, were used
as input for the modeling of CRHA. External validation, sensitivity analysis, statistical checks, and
Shapley Additive Explanations (SHAP) analysis were used to evaluate the models’ performance. It
was discovered that the most significant factors impacting the compressive strength of CRHA are
the age of the concrete sample (AS), the amount of cement (C) and the amount of aggregate (A). The
findings of this study have the potential to increase the re-use of RHA in the production of green
concrete, hence promoting environmental protection and financial gain.

Keywords: rice husk ash; machine learning; waste material; external validation; compressive strength

1. Introduction

Different researchers have suggested different methods to lessen the malignant impacts
of the construction industry on the atmosphere. Some researchers suggested replacing
the natural coarse aggregate in concrete with recycled concrete aggregate, oil palm shell
aggregate, lightweight aggregate, rubber, and so on, while others suggested replacing
natural sand with sugarcane bagasse ash, rice husk ash (RHA), eggshell ash, and other
different types of industrial and agricultural wastes [1–4]. However, it is observed to
be more beneficial if cement is replaced with concrete, as cement is the main culprit in
concrete which affects the environment. The partial replacement of cement with natural
pozzolanic materials, industrial wastes, and agricultural wastes has been a point of interest
for different researchers for the last couple of decades [5,6]. One of the common agricultural
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wastes is RHA, which is highly pozzolanic and contains a high amount of silica content.
RHA is a byproduct of the cultivation of rice. RHA is formed as a result of heating husks
in processing industries in order to process rice paddy. Rice is one of the world’s most
important food crops and is consumed in vast amounts by the global population. As of
2020/2021, it is estimated that 497.7 million tons of rice are produced globally. Therefore,
RHA is prevalent in agricultural nations that produce millions of metric tons of rice annually.
As it includes roughly 85–90% amorphous silica, RHA may be effectively recycled as a
pozzolanic material as opposed to being discarded publicly. The use of RHA in concrete
has been researched by different scientists [7–9]. The research on RHA is mostly conducted
in Agricultural countries as shown in Figure 1. The gathered data is up to April 2022 as
illustrated in Figure 1. The number of publications from India is more than twice that
of any other country on RHA. Most of the research performed on RHA is published in
high-impact Journals as shown in Figure 2. RHA is mainly utilized as a partial replacement
of cement (as Supplementary Cementitious Material) and provides better properties than
normal concrete (concrete without RHA). RHA can be used for many other purposes as
shown in Figure 3, but they are out of the scope of this study. Concrete made with RHA
(CRHA) is reported to be more durable and posseses higher mechanical properties when
compared with normal concrete [9–11]. In addition, the use of RHA in concrete provides
sustainability to the construction industry in two ways. First, it reduces the amount of
cement (C) used, and second, it helps in the disposal of waste RHA. Furthermore, concrete
made with RHA is more economical as some percentage of cement (the most expensive
material in concrete) is being replaced with waste material. The behavior of RHA concrete
is anomalous due to numerous factors, i.e., concrete mix design, amount of RHA used, and
physical properties of concrete ingredients [12–15]. Therefore, the use of RHA requires
prior experimental testing to be used in mega projects. However, the presence of reliable,
trustworthy models and formulas to relate the compressive strength of RHA concrete with
its ingredients may provide ease to construction engineers to use RHA concrete in their
projects. The wide use of RHA concrete may help in reducing the carbon footprint of the
construction industry. The use of modern computing techniques like artificial intelligence
algorithms (AIA) can be used to achieve this objective.
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The use of AIA is rising in every field [16–23]. AIA has distinctive features like pattern
recognition and object recognition, which can be used to solve various engineering prob-
lems [24–30]. However, AIA is generally termed as black-box algorithms (BBA), because it
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does not give an insight into the problem being solved [31,32]. AIA ignores any knowledge
or physical occurrences related to the subject at hand. The majority of ANN approaches
lag in the development of an advanced mathematical formulation for estimating output
based on input factors [33–35]. A correlation between input and output is referred to as
an ANN-based model, and the relationship seems to be either nonlinear or based on a
pre-defined structure [36–38]. To address these challenges, numerous evolutionary algo-
rithms (EA) are being used to simulate concrete features, including genetic programming,
convolutional neural networks (NN), and the model tree algorithm [19,39–41]. The ad-
vantage of EA is that they enable the production of realistic algebraic expressions, as well
as a high degree of generality and prediction capabilities [1,3–6]. A few recent research
have attempted to simulate the characteristics of waste foundry sand concrete using AIA.
Different EA was used to create decision tree structures for the purpose of estimating the
mechanical characteristics of waste foundry sand concrete [42]. Numerous influencing
factors, a robust correlation coefficient, and minor arithmetical errors were obtained for the
constructed models. Nevertheless, parametric research was not possible due to the linear
character of decision trees, which reduces their effectiveness when applied to unknown
data. Similarly, in a recent study, a genetic programming approach was used to estimate the
compressive strength of waste foundry sand concrete [43]. To assess the suggested models’
dependability, parametric, and error, sensitivity analyses were conducted. However, the
gene expression programming (GEP) approach has drawbacks in that it was powerless
to contain a few differing datasets into the model construction process, hence limiting its
application range [44]. To improve the performance of the models, the differing datapoints
required to be eliminated from the set processes. Additionally, genetic algorithms (GA)
program uses a solitary chromosome, and are useful when the relationship between the
targeted and predicted is reasonably basic.

To overcome the drawbacks of AIA, an enhanced modeling approach known as multi-
expression programming (MEP) was utilized to predict the mechanical characteristics, i.e.,
compressive strength of CRHA based on the most influential factors. MEP is unique in
that it can encode many expressions in one computer program [45,46]. To guarantee that
the models are effectively trained, a big database was compiled from the literature and
subdivided into three sets: training, validation, and testing. The effectiveness of the models
is assessed by using statistical error analysis, external validation, and various statistical
analyses to ensure that the models are generalizable and reliable. The article is arranged
as follows: a description of the MEP algorithm, a database of experimental findings, a
modeling approach, results and discussion, external validation, sensitivity analysis, and
lastly, a brief discussion of the conclusion and significant discoveries.

2. Multi-Expression Programming (MEP)

The goal of a machine learning model is to produce a mathematical expression for
output prediction that is accurate and practicable based on a collection of independent
parameters. Koza (1992) suggested the GEP as an evolution of the GA based on Darwin’s
selection concept [47]. It is important to note that the main difference between the two
techniques is that in GEP, fixed-length binary strings are replaced with non-linear parse
trees. Several other types of EAs have been proposed in recent years, with linearity being a
key one. Individuals (chromosomes) can be modeled as variable-length entities in the case
of MEP [48]. MEP simulation output may be characterized as a linear string of instructions
consisting of variables or mathematical operations (functions). Figure 4 illustrates the
procedures involved in implementing MEP [48]. The process of MEP starts with the
initialization of functions and expressions. After that, the chromosomes population is
increased randomly based on the binary selection of the connection functions as shown
in Figure 4b. When the chromosomes population reach a certain point, off-springs are
produced and evaluated with the help of the evaluation function. The process is terminated
when the required fitness value is achieved. The MEP method evolves by creating a
random chromosomal population, selecting two parents via a binary tournament, and
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recombination with a set cross-over frequency, the generation of two offspring through
recombination of the selected parents, mutation of the offspring, and replacement of the
population’s worst individuals with the best are some of the steps followed in MEP. The
process is cyclical and repeats itself until convergence is attained.Materials 2022, 15, x FOR PEER REVIEW 6 of 23 
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Most of the research over the last decade has been on the application of artificial
neural network (ANN) and GEP approaches to model the characteristics of green concrete.
However, MEP has several benefits over comparable algorithms. Typically, a large database
is used to represent concrete characteristics. In GEP, just a cross-over genetic operator is
used, resulting in the generation of a large population of parse trees, increasing simulation
time and requiring a considerable amount of memory [47,49,50]. Additionally, because
GEP’s non-linear structure functions like gene expression patterns, the algorithm has a
hard time proposing a simple mathematical representation for the required attribute. The
integration of linear variants enables MEP to discriminate between an individual’s genotype
and phenotype. Moreover, up to a certain point, the amount of genes on chromosomes
improves the likelihood of GEP success. The model’s usefulness in the construction industry
is limited by overfitting, which manifests itself in the predicted strength qualities in the
construction industry. In fact, MEP is particularly useful when the objective expression
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is uncertain, as in material engineering problems where a small change in a concrete
mix parameter might have a huge impact on the strength [48]. Due to the linearity of
chromosomes and the encoding of numerous solutions in one chromosome in MEP, the
software may search for a larger space for the output prediction. Due to the evident benefits
of MEP over other EAs, accurate models in the field of civil engineering may be developed.
It has been used in several research to forecast different soil properties using physical
properties of soil as input parameter [34], to predict the elasticity of concrete by using
mix design ratios, and to create predicting modeling for concrete columns confined with
thermoplastic fiber reinforced polymer [51]. The present work used the MEP approach to
develop models to predict the parameters of CRHA. Further validation of the model is
made by applying various statistical checks to the model. The availability of trustworthy
models will encourage the use of CRHA in the building sector since it circumvents the time-
consuming testing process necessary for such an unconventional construction material. This
would help to waste reduction, sustainable building, and natural resource conservation.
Additionally, the provided modeling technique will pave the way for correctly modeling
comparable complicated engineering processes.

3. Data Collection

To build a computational equation that properly predicted the compressive strength
of CRHA, a database of 192 data points from the published research was employed (Ta-
ble S1) [52–58]. The CRHA is composed of the same components: OPC, RHA, aggregates
(A), water (W), and superplasticizer (SP). All mixtures obtained from the literature utilized
the same type of cement with identical age of concrete (AS). The correlation matrix for the
inputs and compressive strength (CS) of CRHA is shown in Table 1.

Table 1. Coefficient of correlation (R) for explanatory variables.

AS *
(Day)

C *
(kg/m3)

RHA *
(kg/m3)

W *
(kg/m3)

SP *
(kg/m3)

A *
(kg/m3)

CS
(MPa)

AS (day) 1.00
C30 (kg/m3) −0.11 1.00

RHA (kg/m3) −0.03 −0.22 1.00
W (kg/m3) 0.01 0.08 0.14 1.00
SP (kg/m3) 0.00 0.25 −0.02 0.27 1.00
A (kg/m3) −0.06 −0.24 −0.14 −0.55 −0.21 1.00
CS (MPa) 0.49 0.37 −0.02 −0.24 0.30 0.15 1.00

* AS = age of concrete sample, C30 = cement with 30% replacement, W = water, SP = superplasticizer, A = aggregate.

The compressive strength of cubic specimens was converted to the compressive
strength of cylinders using a conversion ratio of 0.8 [59]. The purpose of this research
was to determine the compressive strength of various CRHA mixtures using MEP. As
input parameters, variables such as the amount of cement (C), the amount of water (W),
amount of RHA, age of concrete (AS), amount of aggregate (A), and dosage of SP were
collected from the literature. Figure 5 depicts histograms for all variables utilized in this
investigation. Additionally, Table 2 has a statistical description of the gathered data. The
mean and median for all AS values were obtained to be 34.57 and 28, respectively. While
the value of skewness is positive for all the variables except for water and fine aggregate.
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Table 2. Statistical description of variables.

Description of Variables AS (Day) C (kg/m3) RHA
(kg/m3) W (kg/m3) SP (kg/m3) A

(kg/m3) CS (MPa)

Mean 34.57 409.02 62.33 193.54 3.34 1621.51 48.14
Median 28.00 400.00 57.00 203.00 1.85 1725.00 45.95
Mode 28.00 400.00 0.00 203.00 0.00 1725.00 47.00

Standard Deviation 33.52 105.47 41.55 31.93 3.52 267.77 17.54
Sample Variance 1123.61 11,124.88 1726.77 1019.71 12.37 71,702.44 307.70

Skewness 0.75 1.55 0.44 −0.42 0.69 −0.74 0.83
Range 89.00 534.00 171.00 118.00 11.25 930.00 88.10

Minimum 1.00 249.00 0.00 120.00 0.00 1040.00 16.00
Maximum 90.00 783.00 171.00 238.00 11.25 1970.00 104.10

Sum 6638.00 78,531.00 11,967.10 37,158.91 640.35 311,330.00 9243.10
Count 192.00 192.00 192.00 192.00 192.00 192.00 192.00

4. Model Development

One of the objectives of this study is to develop a new formulation for the compressive
strength of CRHA using the MEP model. The essential parameters recommended in the
literature were used as input variables. Therefore, formulation of the compressive strength
(CS) of CRHA was assumed using Equation (1) as follows:

CS = f(AS, OPC, A, SP, W, RHA) (1)

In order to develop a strong and generic model, a large number of MEP fitting pa-
rameters must be defined before modeling begins. The relevant variables are chosen in
accordance with prior suggestions and a trial-and-error method. The number of programs
that will develop in a population is determined by the size of the population. It would be
more complex and precise to run a model with a huge population size, and it may take a
long time for the model to converge. The method was begun by assuming a total of ten
subpopulations. Table 3 summarizes the parameters used in the study. All these values
are calculated after running several trials on different combinations as shown in Table 4. It
should be noted that several parameters (like code length, connecting functions) can further
increase the accuracy of the developed model, but they increase the computation time
as well as the complexity of the model. Hence, they were kept at an optimum level. For
simplicity in the final formulations, the function set includes the fundamental mathematical
operations of multiplication, square root, natural log, subtraction, division, and addition.
The number of generations indicates the amount of accuracy that the algorithm should
reach before being terminated. Similarly, the rate of mutation and cross-over indicates the
likelihood that the progeny will experience similar genetic processes. The incidence of
cross-over varies between 50% and 95%. Numerous combinations of these parameters were
tested on the data, and the optimal combination was chosen as shown in Table 4. The final
parameters selected are shown in Table 3. One of the challenges with AI-based modeling is
data overfitting. A model works admirably on the original data, but drastically degrades on
the unseen data. To circumvent this issue, it has been proposed to test the trained model on
an unknown or testing dataset. As a result, the whole database was randomly partitioned
into training, validation, and testing sets. While modeling, the training and validation data
were processed. The validated model is next evaluated on a third dataset, i.e., one that
was not utilized to construct the model. It was assured that the distribution was uniform
across all datasets. The resulting models outperformed the baseline models on all three
datasets. MPX v1.0, a commercially available computer tool, was used to implement the
MEP algorithm [44–46].
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Table 3. MEP parameter used in making a model.

Parameters MEP

Num of subpopulation 20
Subpopulation size 1000

Code length 50
Crossover probability 0.9

Crossover type Uniform
Mutation probability 0.001

Tournament size 2
Operators 0.5
Variables 0.5

Number of generations 1000
Function set +, −, ×, /
Terminal set Problem input

Replication number 10
Error measure Mean squared error
Problem type Regression

Simplified Yes
Random seed 0

Number of runs 10
Number of threads 1

Table 4. MEP optimal combination.

Trial No. No. of
Subpopulation

Subpopulation
Size

Code
Length

No. of
Generation

Functions
Used R2 RMSE MAE RRSE Time

(Min)

MP1 10 200 20 200 +, −, ×, / 0.9275 71.1 48.03 0.2693 0–2
MP2 20 20 +, −, ×, / 0.9448 62.17 41.82 0.2355
MP3 50 25 +, −, ×, / 0.9454 61.94 45.67 0.2346
MP4 70 25 +, −, ×, / 0.9233 74.09 47.03 0.2806
MP5 100 35 +, −, ×, / 0.9221 74.33 46.89 0.2815
MP6 20 400 35 +, −, ×, / 0.9156 88.17 60.35 0.334
MP7 600 35 +, −, ×, / 0.9496 59.68 41.9 0.226
MP10 40 400 +, −, ×, / 0.9614 53.41 38.12 0.2023 15
MP11 40 600 +, −, ×, / 0.9376 66.01 42.78 0.25 25
MP12 1000 50 +, −, ×, / 0.9298 70.13 43.56 0.2656
MP13 50 1000 +, −, ×, / 0.9362 66.97 45.06 0.2536 45

4.1. Shapley Additive Explanations (SHAP)

Even though numerous ML research on concrete structures have attained great accu-
racy in their predictions, the applicability of the ML models receives little consideration.
Numerous research assesses the feature relevance for tree-based models single decision pro-
cess, heuristic techniques, or model-agnostic methods [47,48]. However, these approaches
are frequently impractical and skewed for EML models, particularly those with a signifi-
cant bias. In this study, SHAP is utilized to demonstrate the interpretation of every input
parameter. SHAP is expressed as the mean marginal contribution to a feature value over all
conceivable coalitions, in accordance with the collaborative game theory. In particular, the
SHAP value of a data is the mean prediction rate of samples having the characteristic minus
the mean prediction value of samples lacking the feature. To enhance the interpretability
of a machine learning (ML) model, its output is stated as the linear sum of its input data
multiplied by their respective SHAP values.

To check the performance criteria, Root mean square error (RMSE), coefficient of
correlation (R), mean absolute error (MAE), coefficient of regression (R2), relative root mean
square error (RRMSE), relative squared error (RE), and performance index ρ (Equations
(2)–(8), respectively) have been used in this study.

RMSE =

√
∑n

i=1(xi − yi)
2

n
(2)
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R =
∑n

i=1(xi − xi)(yi − yi)√
∑n

i=1(xi − xi)
2 ∑n

i=1(yi − yi)
2

(3)

MAE =
∑n

i=1|xi − yi|
n

(4)

R2 = 1−
∑n

i=1
(
xj − yj

)2

∑n
i=1
(
xj − y

) (5)

RRMSE =
1
|e|

√
∑n

i=1(xi − yi)
2

n
(6)

RE =
∑n

i=1(xi − yi)
2

∑n
i=1(x− xi)

2 (7)

ρ =
RRMSE

1 + R
(8)

OBJ =
(

nL − nT
n

)
ρL + 2

(nT
n

)
ρT (9)

where, xi and yi are the ith experimental and predicted output values, respectively; and
denote the experimental and expected output values, respectively; and n denotes the
complete number of observations. Lower values of RMSE, MAE, and higher values of
R, and R2, as well as the pre-selected significance value, i.e., alpha (usually 0.05) from F
and t-tests, indicate that the predictive model performs well and has a better accuracy.
Additionally, it implies that the experimental and anticipated values are highly connected.
Additionally, it is worth noting that a R value larger than 0.8, an R2 value nearer to 1, an
RMSE value nearer to or equal to zero, and ρ value (0 to infinity) approaching zero all
contribute to improved model calibration. Unlike the RMSE, MAE is a positive evolution
metric when the original data is relatively smooth [60]. On the other hand, the normalized
mean square error (NSE) runs between 0 and 1.0 (1 inclusive), with 1 regarded as the
best number. Additionally, a significant issue linked with AI systems is overfitting, which
occurs because of extensive training and results in higher mistakes in the testing set. As
demonstrated in Equation (9), the objective function (OBF) is assessed and decreased prior
to selecting the best predictive mode [61]. The OBF is used to evaluate the trained model’s
performance by including changes in the error function (RRMSE) and correlation coefficient
(R). A low OBF value aids in overcoming the issue of overfitting.

4.2. Cross-Validation Using 10 K-Fold Method

Generally, cross-validation procedure is applied using 10 k-fold to decrease the random
sampling-related distortion of training and residual set of inputs. According to the findings
of Kohavi, the ten-fold validation test yields a dependable variance and the ideal computing
time (Kohavi, 1995). This study employed a stratified 10 k-fold cross-validation method
to evaluate the performance of a model that categorizes a given number of data samples
into 10 subgroups. In each of 10 rounds of model development and validation, a separate
data subset is used for testing while the remaining data subsets are used to train the model.
As seen in Figure 6, the test subset is used to validate model precision. The algorithm’s
precision is then reported as the average precision gained by the 10 models during ten
rounds of validation.
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5. Results and Discussion
5.1. MEP Analysis of CRHA

Appendix A contains the optimized MEP code for compressive strength prediction
of CRHA utilizing specified input variables. The compressive strength of CRHA for the
training dataset is displayed in Figure 7 along with the slope. The optimal location of the
regression line is 45◦, with a slope equal to 1, but it must be closer to 1 for good association.
As shown in Figure 7, the proposed model accurately predicts the compressive strength
of CRHA (R for the entire dataset is 0.97). Additionally, the RMSE, MAE, and the NSE for
estimating the training dataset of compressive strength of CRHA are 3.98, 0.6, and 0.77,
respectively. The near proximity of the points to the ideal fit and the inclusion of most
points within the acceptable confidence interval demonstrates the suggested MEP model’s
validity. As previously stated, R values greater than 0.8 [45] and NSE values near unity
indicate that the suggested models for the compaction parameters function effectively.
Figure 8 shows the compressive strength of CRHA for validation and testing set. For
simplicity, both sets are combined in the Figure 8.
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The created MEP model’s adaptability was further measured by calculating the error
distribution between the experimental and predicted values in both datasets (training
and validation sets). The error pattern for the training and validation sets is depicted
in Figures 9 and 10 for both sets. The deeper red color indicates the greater error levels.
The model’s error value is small, indicating that it successfully simulates the compressive
strength of CRHA. The whole database is displayed with the absolute error in each data
point to see the model’s maximum error percentage, as shown in Figure 10. As can be
observed, the model and predicted outputs are quite near, with an average error of 2 MPa
and a peak error of less than 6 MPa for the compressive strength of CRHA. Additionally,
the frequency of occurrence of maximal error is rather low. It has been discovered that
around 80% of CRHA results estimated compressive strengths have an inaccuracy of less
than 4 MPa.
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5.2. Performance Evaluation of MEP Model

According to Iqbal et al. [43], the database-to-input ratio should be at least three for
good models and preferably greater than five for perfect models. The ratio is substantially
greater in this research, at 32. Table 5 exhibit the statistical parameters for the validation
and training sets for the MEP model. These results demonstrate that the models have been
trained efficiently and that there is a strong correlation between expected and experimental
output with low error levels. The MAE, RMSE, and RE values for the training set of the
MEP model are 3.067, 3.843, and 0.047, respectively, while the values for the validation
phase are 2.317, 3.406, and 0.048. The statistical measurements are nearly the same for the
validation and training sets, demonstrating a greater capability for generalization and the
ability to predict trustworthy outcomes for previously unknown data. As seen in Table 5,
the ρ of the MEP projected model approaches zero (zero for ideal model). The OBF values
of 0.04 adequately solved the issue of data overfitting.

Table 5. Statistical indictors for training and validation set.

Indicators Training Validation

R2 0.976419 0.971378
R 0.988139 0.985585

RMSE 3.843116 3.406354
MAE 3.067433 2.317413

RRMSE 0.079188 0.072075
RE 0.047253 0.048581
ρ 0.03983 0.0363

OBF 0.04

5.3. External Validation

External validation of the MEP model was also examined, owing to its substantially
improved efficiency, which is shown in Table 6. As per literature, at least one regression
slope line (k or k′) going through the origin must approach one [62]. The performance
indices must have values less than 0.1. For the situation of optimal moisture content, the
requirement of additional external validation, namely, Rm > 0.5, is met [63–65]. Additionally,
the squared correlation coefficient (R′2o) between the estimated and experimental datasets,
as well as the correlation coefficient (R2

o) between the experimental and estimated values,
must approach one [66–68]. As seen in Table 6, the suggested MEP model meets nearly
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all the stated requirements, which is consistent with the findings of existing literature and
recommendations [69–72].

Table 6. External validation of data.

S. No. Equation Condition MP Suggested
by

1 R =
∑n

i=1(xi−xi)(yi−yi)√
∑n

i=1(xi−xi)
2 ∑n

i=1(yi−yi)
2

R > 0.8 0.98 [63–65]

2 k =
∑n

i=1(xi×yi)

x2
i

0.85 < k < 1.15 0.975
[62]

3 k′ = ∑n
i=1(xi×yi)

y2
i

0.85 < k′ < 1.15 0.976

4
Rm = R2 × (1−

√∣∣R2 − R2
0

∣∣
where

R2
o = 1− ∑n

i=1(yi−xo
i )

2

∑n
i=1(yi−yo

i )
2 , xo

i = k× yi

R′2o = 1− ∑n
i=1(xi−yo

i )
2

∑n
i=1(xi−xo

i )
2 , yo

i = k′ × xi

Rm > 0.5 0.856 [66–68]
R2

o
∼= 1 0.989 [69–72]

R′2o ∼= 1 1.000

5.4. 10-K Fold Cross Validation

A desired level of accuracy is required for the validity of prediction models. The 10
K-fold cross-validation method is used to ensure the accuracy of the model by shuffling
the available data. By using this technique, the bias associated with a random sampling
of training data set is minimized. This technique divides the experimental data samples
into ten equal subsets and utilizes the nine subsets for developing and shaping the strong
learner. Meanwhile, the last subset is utilized to gauge the validity of the developed
model. The validation process repeats for ten times, and at the end, the average accuracy is
obtained from the ten times repetition. The generalization performance and the reliability
of the model are well represented by 10 K-fold cross-validations [65]. The cross-validation
tests for individual MEP model are represented in Figure 11. The results of 10 K-fold cross-
validations are assessed by using the coefficient of determinant, R2 (regression tool) along
with MAE and RMSE (statistical error tools) as shown in Table 7. In Figure 11, fluctuation
in the value R2 is observed for the 10 K-fold validation of different ML techniques, but still,
a high level of accuracy is maintained in each fold. The accuracy of the cross-validation
was also assessed in terms of MAE and RMSE and is given in Figure 11, respectively. The
average value of MAE for is 4.2 MPa, respectively, as shown in Figure 11.
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Table 7. Statistics for K-fold Validation.

MAE RMSE R2

4.47 5.4 0.919

4.209 7.68 0.91

4.71 5.82 0.86

2.97 4.14 0.91

1.60 2.71 0.95

11.1 15. 0.89

2.99 3.45 0.90

4.04 5.21 0.87

3.30 4.22 0.89

2.97 2.73 0.93

Figure 11 shows the RMSE values of 10 K-fold validation and gives an average value
of 5.7 MPa, respectively. The results of the 10 K-fold cross-validation method reflect the
accuracy and reliability of the concerned developed models.

5.5. Explanation Using MEP Model

A detailed explanation of the machine learning model, as well as the feature correla-
tions and interactions, is performed. To begin, better global depictions of feature impacts
are created by aggregating local descriptions from the SHAP tree integrator over the whole
dataset. Figure 12 illustrates a SHAP summary graphic in which each mark corresponds
to a single data point in the dataset. The dots along the x-axis represent the effect of each
feature values on the compressive strength of CRHA prediction. The marks are heaped
together to demonstrate the density of several dots landing at the same x-axis point. Ac-
cording to Figure 12, the top three characteristics that have the most effect on compressive
strength of CRHA prediction, in order of importance, are the age of concrete (AS), the
amount of cement (C), and the amount of aggregate (A).
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Figure 13 illustrates the feature reliance on the machine learning model in further
depth by evaluating every single value in the dataset independently. On the x- and y-axes,
the feature values and their related SHAP values are shown. The plots are additionally
enhanced by feature interactions (shown by color bars) that indicate the combined influence
of many features. One must keep in mind that SHAP values do not indicate causal linkages
but rather characterize the model’s behavior. A greater SHAP value implies that the
model is attempting to forecast higher compressive strengths from the associated feature
values. Similarly, a SHAP value less than zero indicates that the model is seeking to
reduce the predicted compressive strength. These microscopic representations demonstrate
interactions between various feature pairs impact the related SHAP values, which correlate
to the comparable compressive strength values.
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Historically, AIA were mostly viewed as black boxes that served as a significant
barrier between research and practice [73–75]. Because of AIA’s lack of explainability and
credibility, practitioners avoid it [75]. However, due to the improved predictability and
explainability of the MEP model described in this study, it may be used by a broader
range of experts to make some real-world judgments. This amount of data regarding the
composition versus strength connection of concrete enhances one’s comprehension of the
concrete’s nature and the optimization of the concrete mixture.

5.6. Sensitivity Analysis

Figure 14 demonstrates that each parameter is crucial for predicting the compressive
strength of CRHA. According to sensitivity analysis, cement and age have a significant part
in the total contribution to compressive strength, which is greater than fifty percent. Age
of concrete (AS) provides around 29.47 percent, whereas cement quantity (C) contributes
approximately 27.93 percent. The remaining four factors, namely RHA, water (W), SP, and
aggregate (A), contribute about 8.26%, 12.85%, 13.49%, and 7.99%, respectively.
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6. Conclusions

Experts have been examining several AIA techniques for predicting the compressive
strength of CRHA as feasible alternatives to the highly time-consuming and costly experi-
mental compression testing. However, little effort has been made to improve the predictive
powers and explainability of these commercial AIAs, which function as a significant barrier
between research and practice, since practitioners avoid adopting AIA owing to their lack
of understandability and reliability. To address this, an MEP model is employed to increase
the predictability of the compressive strength of CRHA’s. Advanced AIA principles such
as model pipelining, model optimization, and feature selection via cross-validation are
employed to help in the generation of more accurate models to forecast the compressive
strength of CRHA. A comparison of the findings demonstrates that the created model
generates the most precise prediction when compared to previously published models over
the last two decades.

It is proved that the created MEP model generates verifying data (not available in the
current literature) regarding the feature impacts, dependencies, and interactions with the
compressive strength of CRHA. The core concept of this study was to explain a prediction
model by calculating the contribution of each feature to the prediction of CRHA’s compres-
sive strength. In addition, the relationship between different variables affecting the strength
of CRHA is calculated using SHAP analysis. It was discovered that the most significant
factors impacting the compressive strength of CRHA are the age of concrete (AS), amount
of cement (C), and the amount of aggregate (A). Furthermore, the dependency factors and
relationship between different variables may help in future research to make a novel CRHA
mix design as per the requirement of the site without compromising on cost, mechanical
properties, available time, and availability of the mix ingredients.

Future Recommendation

The CRHA can effectively replace OPC concrete. Recommendation: comprehensive
research of CRHA that includes more parameters. Including more input parameters and
expanding the database can yield more trustworthy results for more generic expressions.
These parameters should include resistance to acid attack and high temperature, sulphate
and chloride resistance, and corrosion. For additional predictions, sophisticated techniques
such as particle swarm programming and ensemble methods can be utilized.
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ML approaches can be used with heuristic methods, such as the whale optimization,
ant colony optimization, and PSO, for improved outcomes. These procedures may then
be compared to those utilized in this investigation. In addition, MEP is an expanded and
enhanced version of GEP. It is necessary to apply and analyze Honeybee algorithm to
overcome the limits of ensemble algorithms.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15113808/s1, Table S1: A database of 192 data points based
on the literature review and the published data to build computational equation for predicting the
compressive strength of CRHA [52–58].
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Abbreviations

RHA Rice husk ash
MEP Multi-expression programming
CRHA Concrete made with rice husk ash
SHAP SHapley Additive exPlanations
OPC Ordinary Portland cement
AIA Artificial intelligence algorithms
BBA Black-box algorithms
EA Evolutionary algorithms
GA Genetic algorithm
NN Neural network
GEP Gene expression programming
SP Superplasticizer
C Amount of cement
W Amount of water
A Amount of aggregate
AC Age of concrete
CS Compressive strength
RMSE Root mean square error
R Coefficient of correlation
MAE Mean absolute error
R2 Coefficient of regression
RRMSE Relative root mean square error
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RE Relative squared error
ρ Performance index
OBF Objective function
NSE Normalized mean square error

Appendix A

pg[0] = x[0];
pg[1] = sqrt(pg[0]);

pg[2] = x[1];
pg[3] = x[3];

pg[4] = exp(pg[1]);
pg[5] = pg[1] × pg[2];
pg[6] = pg[4] / pg[3];
pg[7] = pg[0] + pg[3];
pg[8] = pg[2] − pg[7];

pg[9] = x[4];
pg[10] = pg[8] × pg[9];
pg[11] = pg[10] + pg[5];
pg[12] = pg[1] × pg[0];
pg[13] = pg[8] + pg[11];

pg[14] = pow(pg[1], pg[9]);
pg[15] = pg[13] − pg[12];

pg[16] = sqrt(pg[15]);
pg[17] = x[2];

pg[18] = pg[6] + pg[8];
pg[19] = pg[9] × pg[17];
pg[20] = pg[12] / pg[18];
pg[21] = pg[19] + pg[18];

pg[22] = sqrt(pg[11]);
pg[23] = pg[5] / pg[21];

pg[24] = sqrt(pg[14]);
pg[25] = pg[24] × pg[4];
pg[26] = pg[6] − pg[20];
pg[27] = pg[22] / pg[25];
pg[28] = pg[26] / pg[23];
pg[29] = pg[16] − pg[27];
pg[30] = pg[29] + pg[28];
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