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ABSTRACT

BACKGROUND/OBJECTIVES: Oxidative stress is a fundamental neurodegenerative disease 
trigger that damages and decimates nerve cells. Neurodegenerative diseases are chronic 
central nervous system disorders that progress and result from neuronal degradation and 
loss. Recent studies have extensively focused on neurodegenerative disease treatment and 
prevention using dietary compounds. Heseperetin is an aglycone hesperidin form with 
various physiological activities, such as anti-inflammation, antioxidant, and antitumor. 
However, few studies have considered hesperetin’s neuroprotective effects and mechanisms; 
thus, our study investigated this in hydrogen peroxide (H2O2)-treated SH-SY5Y cells.
MATERIALS/METHODS: SH-SY5Y cells were treated with H2O2 (400 µM) in hesperetin absence 
or presence (10–40 µM) for 24 h. Three-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium 
bromide assays detected cell viability, and 4′,6-diamidino-2-phenylindole staining allowed 
us to observe nuclear morphology changes such as chromatin condensation and apoptotic 
nuclei. Reactive oxygen species (ROS) detection assays measured intracellular ROS production; 
Griess reaction assays assessed nitric oxide (NO) production. Western blotting and quantitative 
polymerase chain reactions quantified corresponding mRNA and proteins.
RESULTS: Subsequent experiments utilized various non-toxic hesperetin concentrations, 
establishing that hesperetin notably decreased intracellular ROS and NO production in 
H2O2-treated SH-SY5Y cells (P < 0.05). Furthermore, hesperetin inhibited H2O2-induced 
inflammation-related gene expression, including interluekin-6, tumor necrosis factor-α, 
and nuclear factor kappa B (NF-κB) p65 activation. In addition, hesperetin inhibited NF-
κB translocation into H2O2-treated SH-SY5Y cell nuclei and suppressed mitogen-activated 
protein kinase protein expression, an essential apoptotic cell death regulator. Various 
apoptosis hallmarks, including shrinkage and nuclear condensation in H2O2-treated cells, 
were suppressed dose-dependently. Additionally, hesperetin treatment down-regulated Bax/
Bcl-2 expression ratios and activated AMP-activated protein kinase-mammalian target of 
rapamycin autophagy pathways.
CONCLUSION: These results substantiate that hesperetin activates autophagy and inhibits 
apoptosis and inflammation. Hesperetin is a potentially potent dietary agent that reduces 
neurodegenerative disease onset, progression, and prevention.
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INTRODUCTION

The brain demands high oxygen, low antioxidant enzymes, and catalytic transition metal 
abundance, making it more susceptible to oxidative damage [1]. Many studies demonstrate 
how oxidative stress instigates cell damage and neurodegenerative diseases [2]. Reactive 
oxygen species (ROS) generate oxidative stress, damaging cell membrane structures, proteins, 
lipids, and DNA functions that ultimately cause cell death and exacerbate neurodegenerative 
diseases [3]. Mitochondria frequently generate ROS hydrogen peroxide (H2O2), a common 
cellular oxidative stress [4,5]. H2O2 influences mitochondrial dysfunction and caspase 
activation, leading to DNA damage, inflammation, and apoptosis in the human body [6].

Recent studies reported that the blood and brain of neurodegenerative disease patients 
exhibited heightened inflammatory cytokine levels such as interleukin (IL)-6, tumor 
necrosis factor (TNF)-α, and cyclooxygenase-2 (COX-2) [7]. Hassanzadeh-Taheri et al. 
[8] conveyed that rosmarinic acid prevented IL-6 and TNF-α overproduction in mice 
with lipopolysaccharide (LPS)-induced cognitive impairment. In addition, Ha et al. [9] 
established that 6-Shogaol inhibited COX-2, inducible nitric oxide synthase (iNOS), and 
nuclear factor (NF)-κB in LPS-treated BV2 cells to protect neurons. Central nervous system 
damage activates neuroinflammation, associated with tissue repair, whereas chronic 
neuroinflammation relates to neurodegenerative disease progression. Neurodegenerative 
disease patients exhibit significant neuronal attenuation [10-12], corroborated by in vitro and 
in vivo studies, chromatin condensation, DNA fragmentation, and caspase activity, which are 
morphological apoptosis features [13]. Apoptosis is characterized by typical biochemical and 
morphological features, such as cell contraction, membrane-bound apoptotic body division, 
caspase activation, and increased apoptosis promoter [14]. ROS-induced apoptosis reduces 
mitochondrial caspases, B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax), and Bcl-2 
[15]. In addition, pro-apoptotic factor activation such as Bax, caspase, poly (ADP-ribose) 
polymerase (PARP), and their intracellular pathways result in cell death [16,17].

The mitogen-activated protein kinase (MAPK) signaling pathway is imperative for complex 
cellular programs such as differentiation, proliferation, transformation, and apoptosis; 
thus, this signal is a vital apoptotic cell death regulator. Oxidative stress activates the 
MAPK pathway, induces brain nerve cell death, and causes brain disease [17]. In addition, 
intracellular ROS generation kindles oxidative stress closely related to normal physiological 
homeostasis and disease [18].

The autophagy pathway eliminates abnormal cellular protein aggregates and regulates ROS 
and apoptosis levels [19,20]. ROS can transcriptionally and post-translationally regulate 
autophagy activity, which removes excess cellular ROS by activating transcription factors 
to degrade damaged organelles and proteins. Thus, autophagy can act as an antioxidant to 
protect cells from oxidative stress [18]. AMP-activated protein kinase (AMPK)/mammalian 
target of rapamycin (mTOR) is essential in regulating autophagy [21]. Recent studies have 
confirmed that SIRT1 regulates autophagy and AMPK. AMPK signaling response is cellular 
stress-sensitive to reduce oxidative stress and increase autophagy [22]. Increased mTOR 
signals diminish memory storage capacity [23], and cognitive-disease mouse models indicate 
escalated mTOR expression [24].

Various studies on neurodegenerative disease prevention and treatment using natural 
products have discovered safe and various dietary-derived candidates. For example, a recent 
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study reported that phytochemicals such as limonoids, epigallocatechin-3-galate, and 
berberine alleviated neurodegenerative diseases [25]. Hesperetin is an aglycone hesperidin 
form and a representative flavonoid component primarily in citrus fruit and citron [26]. 
Hesperetin exhibits protective effects on the vascular system, anticancer, antibacterial, and 
antiallergic [27]; however, its neuroprotective effects in H2O2-induced neurodegenerative 
diseases remain unknown. Thus, we investigated hesperetin’s protective effects and precise 
mechanisms against H2O2-induced oxidative damage in SH-SY5Y neuroblastoma cells.

MATERIALS AND METHODS

Materials
Hesperetin and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) were 
obtained from Sigma Aldrich (St. Louis, MO, USA). Quantitative polymerase chain reaction 
(qPCR) primers were procured from Bioneer (Daejeon, Korea). Thermo Fisher Scientific 
(Waltham, MA, USA) provided the bicinchoninic acid (BCA) protein assay kit. Unless 
otherwise stated, all other chemicals were purchased from Sigma Aldrich or Biosesang 
(Seongnam, Korea).

Hesperetin and H2O2 treatment in human SH-SY5Y cells
Human SH-SY5Y cells were procured from the Korean Cell Line Bank (Seoul, Korea). Cells were 
cultured in Dulbecco’s modified Eagle’s medium-F12 supplemented with 10% (v/v) fetal bovine 
serum and 1% penicillin/streptomycin (Welgene, Daegu, Korea) and maintained at 37°C in a 
humidified 5% CO2 atmosphere. Neuronal cells were seeded at a 1 × 105 cells/mL density. SH-
SY5Y cells were pretreated with hesperetin 2 h before 24 h 400 µM H2O2 exposure.

Measuring cell viability
The MTT assay measured hesperetin’s cytotoxic effects on SH-SY5Y cells. First, cell viability 
was determined by adding the MTT solution (100 µL; 1 mg/mL) and a 2 h incubation. Next, 
the precipitated formazan was solubilized in 1 mg/mL of 100% dimethyl sulfoxide. Finally, 
plates were placed in a plate reader to measure absorbance at 570 nm.

Measuring nitric oxide (NO) production
The Griess reaction measured the medium’s NO production [28]. Each cell-free culture 
supernatant (100 µL) was mixed with an equal Griess reagent volume (1% sulfanilamide and 
1% naphthyl ethylenediamine dihydrochloride in 30% acetic acid) for 15 min. An EZRead 400 
Microplate reader (Biochrom, Cambridge, UK) determined the mixture’s absorbance at 562 nm. 
The nitrite concentration was calculated using a sodium nitrite dilution as the standard curve.

Measuring intracellular ROS levels
A DCFDA cellular ROS detection assay kit (Abcam, Cambridge, UK) measured intracellular 
ROS following the manufacturer’s protocol. Cells were incubated with DCFDA for 45 min 
at 37°C. A microplate fluorescence reader (Tecan, Zurich, Switzerland) determined ROS 
distribution at Ex/Em = 485/535 nm.

Immunoblotting analysis
A RIPA buffer (Biosesang) and the Halt™ protease and phosphatase inhibitor cocktail 
(Thermo Fisher Scientific) prepared whole-cell lysates. Nuclear lysates were prepared using 
a nuclear extraction buffer (20 mM HEPES, 0.4 mM NaCl, 1 mM ethylenediaminetetraacetic 
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acid, 1 mM ethylene glycol tetraacetic acid, 1 mM dithiothreitol, and 1 mM 
phenylmethylsulfonyl fluoride) containing 10% NP-40. A BCA protein assay (Pierce, IL, USA) 
is used to measure lysate protein concentrations following the manufacturer’s protocol. 
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis separated proteins (20 µg), and 
protein bands were transferred onto a nitrocellulose membrane (Invitrogen, Waltham, MA, 
USA), reacted for 2 h in a blocking buffer (10 mM Tris-HCl [pH 7.5], 150 mM NaCl, 0.1% 
Tween 20, and 5% nonfat dry milk), and incubated with appropriate primary antibodies 
for 2 h. After incubation, blots were washed thrice and incubated with diluted conjugated 
secondary antibody for 2 h. The Chemidoc XRS+ imaging system (Bio-Rad, Hercules, CA, 
USA) applied a Western blotting luminol reagent (Santa Cruz Biotechnology, Dallas, TX, 
USA) to analyze results. The TNF-α, COX-2, phosphorylated (p)-IκBα, NF-κB, Bax, Bcl-2, 
p-p38 mitogen-activated protein kinase (p38), AMPK, mTOR, p-mTOR, and β-actin were 
purchased from Santa Cruz Biotechnology. Caspase-3, p-extracellular signal-regulated kinase 
(ERK), p-c-Jun N-terminal kinase (JNK), p-AMPK, and SIRT1 were purchased from Cell 
Signaling Technology (Beverly, MA, USA). Protein expression intensity was normalized to 
β-actin and quantified using ImageJ (a free online image analysis software).

Real-time qPCR analysis
Following the manufacturer’s protocol, total RNA was isolated from the cultured cells 
using a Trizol reagent (Thermo Fisher Scientific). Total RNA concentration and purity 
were assessed through 260 and 280 nm absorbance measurements using a NanoDrop 
2000 (Thermo Fisher Scientific). An Omniscript RT kit (QIAGEN, Hilden, Germany) 
is used to synthesize first-strand cDNA from 1 µg of total RNA. SYBR green-based 
qPCR was performed using a real-time PCR detection system (Bio-Rad). The primers 
designed with an online program (Bioneer) were as follows: human Bax, forward 
5′-TCCACCAAGAAGCTGAGCGAG-3′ and reverse 5′-GTCCAGCCCATGATGGTTCT-3′; Bcl-2, 
forward 5′-TCCGCGTGATTGAAGACACC-3′ and reverse 5′-TCTCCCGGTTATCGTACCCT-3′; 
NF-κB, forward 5′-GACAAGGTGCAGAAAGATGACAT-3′ and reverse 
5′-TCATACGGTAACACAAGGCCT-3′; β-actin forward 5′-CACCCCGTGCTGCTGAC-3′ and 
reverse 5′-CCAGAGGCGTACAGGGATAG-3′. All reactions were run in triplicate. Significance 
was determined from β-actin-normalized 2−∆∆CT value comparisons.

Nuclear morphology assay
Cells were fixed in 4% paraformaldehyde (PFA) for 30 min and then washed with phosphate-
buffered saline (PBS). Subsequently, cells were stained for 10 min in a freshly prepared 
4′,6-diamidino-2-phenylindole (DAPI, 100 ng/mL; Beyotime, Shanghai, China) solution. 
Finally, the mounting solution was dropped onto a glass slide, a cover glass was placed over 
it, and nuclei were observed at 400× magnification via a fluorescence microscope (Leica 
Microsystems, Wetzlar, Germany).

Immunofluorescence staining
After hesperetin treatment, cells were washed twice in PBS, fixed with 4% PFA for 30 
min at 4°C, and stained overnight with the NF-κB antibody (1:100 dilution; Santa Cruz 
Biotechnology). Following air drying, slides were incubated with the secondary antibody 
(1:2,000 dilution; Invitrogen) for 60 min. Nuclei were stained with DAPI (100 ng/mL; 
Beyotime), and samples were washed thrice with PBS. The DAPI solution was incubated at 
37°C for nucleic acid detection. Slides were washed twice in PBS, air-dried, treated with a 
mounting medium, and examined at 400× magnification under a fluorescence microscope. 
Leica Application Suite X software collected images.
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Enzyme-linked immunosorbent assay (ELISA)
Cell-free supernatants were collected, and cytokine levels were measured using IL-6 and 
TNF-α ELISA kits (Raybiotech, Norcross, GA, USA) to determine hesperetin’s effect on H2O2-
treated SH-SY5Y cell cytokine production. Values were calculated based on a standard curve.

Statistical analysis
All experiments were repeated at least three times, and each experiment’s data were 
expressed as mean ± standard deviation. Significant differences among groups were 
determined by one-way analysis of variance, followed by the Duncan multiple range test with 
SPSS version 25.0 (IBM Corp., Armonk, NY, USA). Statistical significance was defined as P < 
0.05. Specific significance values are stated in the figure legends.

RESULTS

Hydrogen peroxide’s effect on human neuroblastoma SH-SY5Y cells
Cells were exposed to H2O2 at different concentrations to determine H2O2 cytotoxicity. Our 
results indicated that 400 µM H2O2 triggered approximately 50% of cell population death within 
24 h (or the half maximal inhibitory concentration [IC50] value). Therefore, we used 400 µM of 
H2O2 as the cell damage dose (Fig. 1A). The non-toxic hesperetin 10–40 µM concentration range 
was used in subsequent experiments. As shown in Fig. 1B, hesperetin increased cell viability 
in H2O2-treated SH-SY5Y cells compared to H2O2 alone. Thus, these non-toxic hesperetin 
concentrations and H2O2 IC50 dosages were used for subsequent experiments.

Hesperetin’s effect on ROS and NO production levels in H2O2-treated SH-SY5Y cells
We investigated whether hesperetin suppressed ROS and NO production in H2O2-treated 
SH-SY5Y cells using DCFDA-DA and NO assays. As shown in Fig. 2A, intracellular ROS 
escalated in the H2O2-only treatment group compared to the untreated. Conversely, this 
increased ROS declined due to hesperetin treatment. In addition, H2O2 treatment intensified 
NO production, while hesperetin treatment abated NO production (Fig. 2B). Therefore, our 
results substantiate that hesperetin dose-dependently reduces intracellular ROS and NO 
production levels significantly (P < 0.05).
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Fig. 1. Hesperetin increased cell viability in H2O2-treated SH-SY5Y cells. 
(A) Cells were exposed to various H2O2 concentrations (100-600 µM) for 24 h, and the MTT assay was used to 
measure cell viability. (B) Cells were pretreated with hesperetin at several concentrations and then induced with 
or without 400 µM H2O2 for 24 h. Experiments were performed in triplicate, and results are presented as the mean 
± SD. Different letters indicate significant differences (P < 0.05) as determined by Duncan’s multiple range test. 
H2O2, hydrogen peroxide; MTT, 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide.



Hesperetin’s effect on pro-inflammatory cytokine release and related gene 
expression via NF-κB pathway in H2O2-treated SH-SY5Y cells
We investigated inflammatory cytokines secretion and NF-κB expression from hesperetin 
treatment in H2O2-treated SH-SY5Y cells. ELISA assays revealed that inflammatory cytokines 
TNF-α and IL-6 secretions were significantly increased in H2O2-treated SH-SY5Y cells but 
were suppressed by hesperetin (P < 0.05) (Fig. 3A and B). In addition, COX-2 and TNF-α 
protein expressions increased in H2O2-treated SH-SY5Y cells (Fig. 3C); by contrast, hesperetin 
treatment reduced them.

IκBα and NF-κB gene expressions, involved in NF-κB-mediated neuropathological pathways, 
were markedly affected under oxidative stress conditions [29]. Hesperetin treatment 
significantly reduced NF-κB and p-IκBα levels (P < 0.05) and also reduced the mRNA’s NF-κB 
gene expression levels compared to H2O2 control cells (P < 0.05) (Fig. 4A and B). Moreover, 
immunofluorescence analysis further confirmed 40 µM hesperetin’s inhibition against 
H2O2-induced p65 nuclear translocation (Fig. 4E). These results indicate that hesperetin is a 
potential inhibitor against H2O2-induced neuronal inflammation.

Hesperetin’s effects on apoptosis signaling in H2O2-treated SH-SY5Y cells
We used immunoblotting and qPCR to assess caspase-3, Bax, and Bcl-2 expression levels 
and investigate whether hesperetin decreased cell death by inhibiting apoptosis signaling 
in H2O2-treated SH-SY5Y cells. As shown in Fig. 5A, hesperetin increased caspase-3 protein 
expression in H2O2-treated SH-SY5Y cells. Proapoptotic factor Bax expression was increased 
by H2O2 treatment compared to untreated cells; however, hesperetin application reduced 
its expression in H2O2-treated SH-SY5Y cells. In addition, anti-apoptotic protein Bcl-2 
expression levels were increased by hesperetin exposure compared to the H2O2-treated group 
(Fig. 5C). The Bax/Bcl-2 ratio was significantly lower in the hesperetin treatment group 
compared to the H2O2-treated (P < 0.05) (Fig. 5D).

Moreover, Bax mRNA levels were increased in H2O2-treated cells compared to untreated 
cells, but Bcl-2 mRNA levels were decreased. However, Bax was significantly decreased, 
and Bcl-2 was considerably increased by hesperetin treatment (P < 0.05) (Fig. 5E and F). 
Additionally, DAPI staining confirmed hesperetin’s effect on H2O2-treated SH-SY5Y nuclear 
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Fig. 2. Hesperetin suppressed ROS and NO production levels in H2O2-induced SH-SY5Y cells. 
(A) The DCFDA assay detected intracellular ROS accumulation. A fluorescence plate reader estimated intracellular 
ROS levels at Ex/Em = 485/535 nm. (B) SH-SY5Y cells were treated with hesperetin (10–40 µM) for 2 h and then 
exposed to H2O2 for 24 h before harvest. The culture supernatant was assayed using the Griess reagent to estimate 
the NO concentration. Experiments were performed in triplicate, and results are presented as the mean ± SD. 
Different letters indicate significant differences (P < 0.05) as determined by Duncan’s multiple range test. 
H2O2, hydrogen peroxide; ROS, reactive oxygen species; NO, nitric oxide.



cell morphology. As displayed in Fig. 5G, DAPI use revealed apoptotic bodies and nuclear 
condensation after H2O2 treatment. Alternatively, these were later inhibited by hesperetin in 
SH-SY5Y cells treated with 400 µM H2O2 (P < 0.05).

Hesperetin’s effect on MAPKs activation in H2O2-treated SH-SY5Y cells
MAPK activation induces neuronal cell death [30]; thus, we observed how hesperetin 
affected it in H2O2-treated SH-SY5Y cells. As shown in Fig. 6, H2O2 increased ERK, JNK, and 
p38 phosphorylation, whereas hesperetin suppressed them. These results indicated that 
hesperetin suppressed cell death via p-ERK, p-JNK, and p-p38 activation.
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Fig. 3. Hesperetin inhibited inflammatory cytokine secretion factor in H2O2-treated SH-SY5Y cells. 
SH-SY5Y cells were treated with hesperetin (10–40 µM) for 2 h and then exposed to H2O2 for 24 h before harvest. 
(A) An ELISA kit measured IL-6 and TNF-α secretion. TNF-α and COX-2 expression levels were measured using (A) 
immunoblotting, and (D–E) densities were normalized to β-actin using ImageJ software. (D) TNF-α and (E) COX-2 
levels. Experiments were performed in triplicate, and results are presented as the mean ± SD. Different letters 
indicate significant differences (P < 0.05) as determined by Duncan’s multiple range test. 
H2O2, hydrogen peroxide; TNF, tumor necrosis factor; IL, interleukin; COX-2, cyclooxygenase-2; ELISA, enzyme-
linked immunosorbent assay.
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Fig. 4. Hesperetin’s effects on NF-κB activation in H2O2-treated SH-SY5Y cells. 
NF-κB and p-IκBα proteins levels were measured using (A) immunoblotting, and (B-E) densities were normalized to β-actin using ImageJ software. (B) p-IκBα 
(cytosol), (C) NF-κB (nuclear). Cells were harvested, and (D) NF-κB mRNA expression in H2O2-induced SH-SY5Y cells was evaluated. Data are presented as 
the mean ± SD. Different letters indicate significant differences (P < 0.05) as determined by Duncan’s multiple range test. (E) SH-SY5Y cells were treated with 
hesperetin and fixed with 4% paraformaldehyde. After blocking with an appropriate buffer, cells were incubated with antibodies. Next, DAPI staining confirmed 
cell nuclei. Signals were quantified using fluorescence microscopy at 400× magnification. 
H2O2, hydrogen peroxide; NF, nuclear factor; p-, phosphorylated; DAPI, 4′,6-diamidino-2-phenylindole.
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Fig. 5. Hesperetin inhibited H2O2-induced apoptosis in H2O2-treated SH-SY5Y cells. 
Procaspase-3 protein expression levels were determined using (A) immunoblotting, and (B) densities were normalized to β-actin using ImageJ software. Bax 
and Bcl-2 protein expression levels were measured using (C) immunoblotting, and (D) densities were normalized to β-actin using ImageJ software. (D) Bax/
Bcl-2 levels. (E, F) The relative mRNA expression levels are depicted after normalization against β-actin mRNA expression. The data are expressed relative to 
untreated cells’ mRNA levels, which was arbitrarily defined as 1. Experiments were performed in triplicate, and the results are presented as the mean ± SD. Data 
were analyzed by applying the 2−ΔΔCT method. Different letters indicate significant differences (P < 0.05) as determined by Duncan’s multiple range test. (G) SH-
SY5Y cells were treated with hesperetin (10–40 µM) for 24 h and fixed with 4% paraformaldehyde. A fluorescence microscope assessed signal quantification at 
400× magnification. 
H2O2, hydrogen peroxide; Bax, Bcl-2-associated X protein; Bcl-2, B-cell lymphoma 2.



Hesperetin’s effect on autophagy-modulating protein expression in H2O2-
treated SH-SY5Y cells
Next, we examined hesperetin’s effect on autophagy in H2O2-treated SH-SY5Y cells. 
AMPK-mTOR is a representative autophagy signaling pathway. As shown in Fig. 7, H2O2 
downregulated AMPK phosphorylation and SIRT1 expression and upregulated mTOR 
activation, whereas hesperetin alleviated these autophagy-modulating protein expressions. 
In summary, hesperetin downregulated mTOR activation and upregulated SIRT1 and AMPK 
phosphorylation.

DISCUSSION

Progressive cognitive function loss and memory, reasoning, and language decline 
characterize neurodegenerative diseases [31]. In addition, oxidative stress also characterizes 
acute and chronic illnesses, including neurodegenerative diseases [32]. Increased neuronal 
ROS and oxidative stressors exacerbate blood-brain barrier (BBB) permeability, leading 
to synaptic function loss and cell death [33,34]. Natural dietary agent studies focus on 
neuroprotection and regeneration, such as curcumin, silibinin, and chlorogenic acids 
[35-38]. For instance, hesperetin is a dietary compound and an aglycone-hesperidin citrus 
polyphenol flavonoid used in cardiovascular disease and cancer treatments [39].
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Fig. 6. Hesperetin’s effect on the MAPK signaling pathway in H2O2-treated SH-SY5Y cells. 
p-ERK, p-JNK, and p-p38 expression levels were measured using (A) immunoblotting, and (B-D) densities 
were normalized to β-actin using ImageJ software. (B) p-ERK, (C) p-JNK, and (D) p-p38 levels. Experiments 
were performed in triplicate, and results are presented as the mean ± SD. Different letters indicate significant 
differences (P < 0.05) as determined by Duncan’s multiple range test. 
MAPK, mitogen-activated protein kinase; H2O2, hydrogen peroxide; p-, phosphorylated; ERK, extracellular signal-
regulated kinase; JNK, c-Jun N-terminal kinase; p38, p38 mitogen-activated protein kinases.



H2O2 is a metabolite and oxidative stress that passes through biological membranes and 
causes cell damage [40]. Furthermore, H2O2 accumulation, brain inflammation, and 
apoptosis are observed in neurodegenerative diseases [41]. We confirmed that the cell 
viability was decreased dose-dependently in H2O2-treated SH-SY5Y cells. However, SH-
SY5Y cell viability with H2O2 incubation was significantly increased when pretreated with 
hesperetin, demonstrating hesperetin’s neuroprotective effect on H2O2-treated SH-SY5Y cells. 
Ma et al. [42] reported that proanthocyanidins, flavonoids derived from plants, attenuated 
rotenone-induced ROS production in SH-SY5Y cells. Ling et al. [43] reported that asiaticoside 
suppressed ROS and NO in H2O2-treated SH-SY5Y cells. Our study corroborates other 
findings that ROS and NO production in H2O2-treated SHSY5Y cells was increased and was 
significantly reduced by hesperetin treatment.

Abnormal protein accumulation modified by nerve cell damage triggers inflammatory 
responses and secretes inflammatory mediators to cause neurotoxicity and brain tissue 
destruction, exacerbating neurodegenerative diseases [7,44]. iNOS and COX-2 are expressed, 
and PGE2 and NO are excessively produced in ROS-induced inflammation [12]. These 
inflammatory initiation factors (iNOS, IL-6, TNF-α) cause neuro damage when activated 
NF-κB promotes transcription and excessive NO production [45]. NF-κB is a representative 
inflammatory cell signaling factor regulating inflammatory gene substances such as 
cytokines and chemokines [46]. NF-κB binds to IκB and inactively resides in the cytoplasm. 
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Fig. 7. Hesperetin induces autophagy through the SIRT1-AMPK-mTOR pathway. 
SIRT1-AMPK-mTOR pathway protein expression levels were measured using (A) immunoblotting, and (B-D) 
densities were normalized to β-actin using ImageJ software. (B) p-AMPK/AMPK, (C) p-mTOR/mTOR, and (D) SIRT1 
(nuclear) levels. Experiments were performed in triplicate, and results are presented as the mean ± SD. Different 
letters indicate significant differences (P < 0.05) as determined by Duncan’s multiple range test. 
H2O2, hydrogen peroxide; AMPK, AMP-activated protein kinase; mTOR, mammalian target of rapamycin; Sirt1, 
NAD-dependent deacetylase sirtuin-1; p-, phosphorylated.



As ROS and external stimuli separate it from IκB, subunit p65 moves to the nucleus to 
increase COX-2, IL-6, and TNF-α [47,48].

Our study confirmed that H2O2 upregulated TNF-α, COX-2, and NF-κB protein expressions 
in SH-SY5Y cells, indicating that H2O2 could activate inflammatory responses. Conversely, 
hesperetin treatment downregulated NF-κB, COX-2, and TNF-α expression. Park et al. [49] 
reported that Petalonia binghamiae extract regulated inflammatory COX-2, p-IκB, and NF-κB 
factors to inhibit inflammatory responses in LPS-induced microglia BV2 cells. In a recent 
study, inflammatory cytokines in cellular and animal models exhibit inhibition from natural 
products such as luteolin, quercetin, and resveratrol [50]. These findings propose that 
hesperetin suppresses H2O2-induced neuroinflammation by regulating NF-κB expression.

Oxidative stress-induced neuronal cell death is related to the mitochondria-related apoptosis 
pathway and is the most prominent neurodegenerative diseases [1]. Additionally, the Bax/
Bcl-2 ratio is crucial in apoptosis. Recent studies reported that flavonoids, such as bailarein, 
kaempferol, quercetin, and naringenin, modulated the mitochondrial apoptosis pathway, 
activated signal pathways to suppress apoptogenic Bax, and induced antiapoptotic proteins 
[51]. Park et al. [52] determined that Glycyrrhiza uralensis Radix extract inhibited apoptosis 
through caspase-3, Bax, and Bcl-2 regulation in H2O2-induced glial C6 cells. Similarly, we 
confirmed that hesperetin upregulated Bcl-2 and caspase-3 and downregulates Bax in H2O2-
treated SH-SY5Y cells. In addition, hesperetin treatment inhibited Bax/Bcl-2 ratio escalation.

Neurodegenerative disorder apoptosis is characterized by morphological changes such as 
cell shrinkage, chromatin condensation, and nucleosome degradation [53]. DAPI staining 
validated that hesperetin slightly attenuated apoptotic feature induction compared with H2O2 
treatment alone. Oxidative stress activates the MAPK pathway, incorporating ERK, JNK, and 
p38 [54]. ROS is related to MAPK pathway activation, especially in neurons; oxidative stress 
activates JNK and p38 signaling pathways [55,56]. In addition, ERK is essential for enhancing 
neuronal cell death [57,58].

Excessive ROS activates MAPKs in the brain, inducing neuronal cell death or 
neurodegenerative diseases [59,60]. MAPKs are signaling systems that mediate biological 
responses such as cell proliferation, death, and differentiation when cell membrane receptors 
are activated by extracellular stimuli [61]. MAPK signaling activation increases the Bax/Bcl-2 
ratio and curtails mitochondrial membrane potential, promoting cytochrome C release and 
caspase activation [62]. Lee et al. [63] reported that red ginseng oil attenuated the MPAK 
signaling pathway in Aβ25-35-treated PC12 cells. Tang et al. [64] elucidated that sabinin 
could reduce ERK, JNK, and p38 activities and inhibit neuroinflammation in the LPS-
induced mouse hippocampus. Similarly, our results verified that hesperetin pretreatment 
suppressed ERK, JNK, and p38 in H2O2-treated SH-SY5Y. Several studies have established 
that autophagy has a significant neuroprotective role in neurodegenerative diseases [65]. 
Kim et al. [66] reported that chebulagic acid enhances autophagy through AMPK/mTOR/
Beclin-1 regulation in MPP-induced SH-SY5Y cells. Additionally, Tao et al. [67] concluded that 
phloretin improved Parkinson’s disease symptoms through autophagy pathway regulation in 
a rotenone-induced Parkinson’s disease mouse model.

Furthermore, autophagy is prominent in AMPK/mTOR pathway regulation, and the 
AMPK/mTOR signaling pathway is necessary for autophagy and apoptosis [68]. When 
phosphorylation increases, AMPK decreases mTOR (a downstream AMPK target) levels 
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which is essential for apoptosis and autophagy. AMPK activates autophagy and plays a crucial 
role in synaptic plasticity and memory formation by controlling the mitochondrial metabolic 
rate in neuronal synaptic activation, thereby maintaining neuronal energy at a certain level 
[69]. Autophagy inhibitor mTOR also affects learning and memory by modulating synaptic 
plasticity, and mTOR signaling dysregulation leads to neuronal dysfunction, apoptosis, and 
decreased memory storage capacity [70,71]. Autophagy activation through mTOR regulation 
exhibits neuroprotective effects in various neurological diseases [72]. Additionally, AMPK 
regulates complex mitochondrial biosynthesis signal transduction through SIRT1 and mTOR 
[73]. SIRT1 regulates autophagy by participating in autophagosome formation and regulating 
chronic disease pathogenesis, such as neurodegenerative and cardiovascular diseases. Also, 
Wang et al. [74] reported that SIRT1/AMPK interaction was integral for Aβ accumulation and 
cognitive functions in Alzheimer’s disease.

Recent in vitro and in vivo studies report that natural compounds such as quercetin, 
conophylline, and limonene regulate autophagy and inhibit neurodegenerative diseases 
[75]. For example, Wu et al. [76] reported that resveratrol modulates the SIRT1/AMPK/mTOR 
pathway to induce mitochondrial autophagy, protecting Parkinson’s disease. Furthermore, 
Chen et al. [77] discovered that quercetin protects neurons by activating the AMPK pathway 
against okadaic acid-induced neurotoxicity in SH-SY5Y cells. In addition, Zhao et al. [78] 
determined that glutamine inhibited the AKT/mTOR pathway to relieve oxidative stress 
from MPP-induced neurotoxicity in PC12 cells. Moreover, epigallocatechin-3-gallate and 
resveratrol improved learning and spatial memory by activating AMPK in animal cognitive 
impairment [79,80].

Post-mortem brain examinations of Alzheimer’s patients revealed increased mTOR signaling 
[81,82]. It has also been suggested that over-activated mTOR signaling in the hippocampus 
and neurons of aged mice contributes to neurodegenerative disorders [83]. Gao et al. [84] 
reported that chlorogenic acid reduced mTOR signaling in cognitive dysfunction and 
ameliorated impairment in. In our study of H2O2-treated SH-SY5Y cells, SIRT1 and p-AMPK 
levels were decreased, whereas p-mTOR expression was increased. However, hesperetin 
pretreatment activated SIRT1 and p-AMPK and suppressed p-mTOR.

These results confirm that hesperetin suppresses apoptosis by inhibiting the MAPK 
signaling pathway. Furthermore, hesperetin treatment in H2O2-treated SH-SY5Y cells inhibits 
inflammation-related (TNF-α, IL-6) and NF-κB target gene expressions. Hesperetin also 
activates autophagy through AMPK/mTOR, an autophagy regulator. Therefore, hesperetin 
can protect against H2O2-induced oxidative damage in SH-SY5Y cells. Our results substantiate 
that hesperetin is a promising natural candidate for protecting neurons from oxidative stress 
and preventing neurodegenerative diseases.
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