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Abstract: Molecular targets play important roles in agrochemical discovery. Numerous pesticides
target the key proteins in pathogens, insect, or plants. Investigating ligand-binding pockets and/or
active sites in the proteins’ structures is usually the first step in designing new green pesticides.
Thus, molecular target structures are extremely important for the discovery and development of such
pesticides. In this manuscript, we present a review of the molecular target structures, including those
of antiviral, fungicidal, bactericidal, insecticidal, herbicidal, and plant growth-regulator targets,
currently used in agrochemical research. The data will be helpful in pesticide design and the discovery
of new green pesticides.
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1. Introduction

The production of green pesticides is a very complex process, and there are many similarities
among the design-synthesis-test-analysis cycles applied in agrochemical research. For example,
a product cost of a commercial pesticide is approximately $256 million, and it need screen more
than 140,000 compounds and take more than 10 years. Thus, the discovery of a new commercial
pesticide faces great challenges [1]. Recently, 862 pesticide types were reported globally. If these
commercial pesticide types are classified according to the target of action, there are only 52, 26,
and 20 kinds of targets for fungicides, insecticides, and herbicides, respectively [2]. In these
targets, nucleic acids synthesis, cytoskeleton and motor protein, respiration, amino acids and
protein synthesis, signal transduction, lipid synthesis or transport/membrane integrity or function,
sterol biosynthesis, cell wall biosynthesis, melanin synthesis, host plant defense induction are
the most used targets for studying the fungicides mechanisms of action [3]. Acetylcholinesterase,
γ-aminobutyrie acid-gated chloride channel (GABACl), sodium channel, nicotinic acetylcholine
receptor (nAChR), glutamate-gated chloride channel (GluCl), juvenile hormone, transient receptor
potential vanilloid channel (TRPV), chitin synthase I, insect midgut membranes, mitochondrial ATP
synthase, oxidative phosphorylation are the most used targets for studying the insecticides mechanisms
of action [4]. Acetyl CoA carboxylase (ACC), acetolactate synthase/acetohydroxy acid synthase (AHAS),
microtubule assembly, auxin, D1 serine 264/histidine 215, enolpyruvyl shikimate phosphate synthase,
glutamine synthetase, phytoene desaturase, deoxy-D-xyulose phosphate synthase, protoporphyrinogen
oxidase (PPO), very long-chain fatty acid synthesis, auxin transport, microtubule organization,
hydroxyphenyl pyruvate dioxygenase (HPPD), cellulose synthesis, serine threonine protein
phosphatase, solanesyl diphosphate synthase, homogentisate solanesyltransferase, lycopene cyclase
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are the most used targets for studying the herbicides mechanisms of action [5]. Many pesticides have
been discovered that are based on the classical pesticide molecular targets (Table 1). This indicates
that the potential new targets of pesticides are very limited, and most pesticides have been developed
based on the classical pesticide molecular targets.

Table 1. Review of the mechanisms of commercial pesticides.

Pesticide Type Target Site Pesticides or Compounds

fungicides

nucleic acids synthesis (e.g., RNA polymerase I and
adenosin-deaminase)

phenylamides, hydroxy-(2-amino-) pyrimidines,
heteroaromatics and carboxylic acids

cytoskeleton and motor protein (e.g., ß-tubulin)

methyl benzimidazole carbamates, N-phenyl
carbamates, benzamides, thiazole carboxamide,
phenylureas, benzamides, cyanoacrylates and

aryl-phenyl-ketones

respiration (e.g., complex I: NADH oxido-reductase,
complex II: succinate-dehydro-genase, complex III:

cytochrome bc1)

pyrimidinamines, succinate-dehydrogenase inhibitors
(e.g., phenyl-benzamides, thiazole-carboxamides,

and pyrazole-4-carboxamides) and quinone
outside/inside inhibitors (e.g., methoxy-acrylates,

oximino-acetates, and tetrazolinones)
amino acids and protein synthesis anilino-pyrimidines and tetracycline antibiotic

signal transduction (e.g., MAP/histidine-kinase in
osmotic signal transduction) phenylpyrroles and dicarboximides

lipid synthesis or transport/membrane integrity or
function (e.g., phospholipid biosynthesis and

methyltransferase)

phosphoro-thiolates, dithiolanes, heteroaromatics,
and oxysterol binding protein homologue inhibitors

sterol biosynthesis in membranes
(e.g., C14-demethylase)

demethylation inhibitors (e.g., piperazines, pyridines,
pyrimidines, imidazoles, triazoles,

and triazolinthiones)
cell wall biosynthesis (e.g., chitin synthase and

cellulose synthase) polyoxins and carboxylic acid amides

melanin synthesis in cell wall (e.g., reductase,
dehydratase, polyketide synthase)

melanin biosynthesis inhibitors
(e.g., isobenzo-furanone, pyrrolo-quinolinone,

triazolobenzo-thiazole, cyclopropane-carboxamide,
carboxamide, propionamide,
and trifluoroethyl-carbamate)

host plant defence induction (e.g., salicylate-related,
polysaccharide elicitors, anthraquinone elicitors,

microbial elicitors, and phosphonates)

benzo-thiadiazole, benzisothiazole,
thiadiazole-carboxamide, natural compound

(e.g., polysaccharides), plant extract
(e.g., anthraquinones, resveratrol), microbial

(e.g., bacterial Bacillus spp. and fungal Saccharomyces
spp.), and phosphonates (e.g., ethyl phosphonates)

insecticides

Acetylcholinesterase carbamates and organophosphates
γ-aminobutyrie acid-gated chloride channel cyclodiene, organochlorines, and phenylpyrazoles

sodium channel pyrethroids, pyrethrins, DDT, and methoxychlor
nicotinic acetylcholine receptor neonicotinoids and nicotine

glutamate-gated chloride channel avermectins and milbemycins

Juvenile hormone
juvenile hormone analogues (e.g., hydroprene,
kinoprene, and methoprene), fenoxycarb and

pyriproxyfen
chordotonal organ transient receptor potential

vanilloid channel
pyridine azomethine derivatives (e.g., pymetrozine

and pyrifluquinazon) and pyropenes
chitin synthase I clofentezine, diflovidazin, hexythiazox, and etoxazole

insect midgut membranes Bacillus thuringiensis and Bacillus sphaericus

mitochondrial ATP synthase diafenthiuron, organotin miticides, propargite,
and tetradifon

oxidative phosphorylation pyrroles, dinitrophenols, sulfluramid
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Table 1. Cont.

Pesticide Type Target Site Pesticides or Compounds

herbicides

Acetyl CoA carboxylase Cyclohexanediones, and aryloxphenoxy-propionates

acetolactate synthase/acetohydroxy acid synthase triazolopyrimidine, imidazolinone, sulfonylurea,
sulfonanilides, and pyrimidinylbenzoates

microtubule assembly dinitroanilines, phosphoroamidates, and pyridines
auxin phenoxy-carboxylates

D1 serine 264/histidine 215 triazines, ureas, triazinones, phenylcarbamates, and
amides

enolpyruvyl shikimate phosphate synthase glyphosate
glutamine synthetase phosphinicacids
phytoene desaturase phenyl-ethers

deoxy-D-xyulose phosphate synthase isoxazolidinones
protoporphyrinogen oxidase N-Phenyl-imides and diphenyl ethers

very long-chain fatty acid synthesis thiocarbamates, α-chloroacetamides, benzofuranes,
and azolyl-carboxamides

auxin transport aryl-carboxylates
microtubule organization carbamates

hydroxyphenyl pyruvate dioxygenase triketones and pyrazoles
cellulose synthesis alkylazines and nitriles

serine threonine protein phosphatase endothall
solanesyl diphosphate synthase aclonifen

homogentisate solanesyltransferase solanesyl diphosphate synthase; cyclopyrimorate
lycopene cyclase amitrole

Structural studies of molecular targets have paved a key pathway for understanding the
pathogenic mechanism and for the discovery of new green pesticides. Driven by genomics, proteomics,
bioinformatics technologies, and chemical biology, many structures of potential molecular targets
have been identified owing to the emergence of highly active pesticides. Viral structural proteins,
viral matrix protein, viral helicase, pyruvate kinase, dihydrolipoamide S-succinyltransferase (DLST),
FabV, PYL family proteins (PYLs), coronatine insensitive 1 (COI1), gibberellin insensitive dwarf1 (GID1),
hydrolase DWARF14 (D14), oxysterol-binding protein (OSBP), myosin I, and OfHex1 was applied to
developing new green pesticide targets, while succinate dehydrogenase (SDH), tubulin, cytochrome
bc1 complex, 14 α-demethylases (DM), nAChR, GluCl, GABACl, ryanodine receptor (RyR), TRPV,
AHAS, PPO, HPPD, ACC, and dihydroxy-acid dehydratase (DHAD) are classical pesticide molecular
targets (Figure 1). In this review, we summarize the antiviral, fungicide, bactericide, insecticide,
herbicide, and plant growth regulator target structures involved in agrochemicals discovery.
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2. Pesticide Targets

2.1. Antiviral Targets

Viral coat proteins (CP), virus-like particles, viral helicases, viral matrix proteins, and capping
enzymes have been used as targets to develop green anti-plant viral pesticides. The crystal structures
of tobacco mosaic virus (TMV) CP [6], cucumber mosaic virus CP [7], potato virus Y virus-like
particles [8], tomato mosaic virus helicase [9], rice black-streaked dwarf virus viral matrix protein
P9-1 [10], southern rice black-streaked dwarf virus viral matrix protein P9-1 [11], and rice dwarf
virus capping enzyme P5 (PDB ID: 5X6Y, unpublished) were solved using X-ray crystallography or
cryo-electron microscopy. These structures are regarded as antiviral targets. Based on these structures,
the mechanisms of some commercial antiviral agents were studied and revealed. Ningnanmycin
breaks down the TMV disassembly by targeting CP [12,13]. Dufulin inhibits the replication of southern
rice black-streaked dwarf virus by targeting viral matrix protein at a binding site located inside an
internal pore that is stabilized by lateral hydrophobic interactions in the octameric structure [14,15].
An antiviral molecule targeting southern rice black-streaked dwarf virus P10 has been reported [16],
and some commercial anti-TMV agents targeting TMV helicase protein have been screened [17,18].
It is noteworthy that ribavirin was screened using a viral helicase with a micro-molar affinity.
Further analyses of the structural conformation showed that the target sites of ribavirin were in a
shallow groove of the TMV helicase surrounded by D122, S139, D140, K143, and Y274 (indicated by
the black arrows in Figure 2A,B [18]. The ribavirin-helicase structure provides a potent complex model
for the antiviral discovery.
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(A) Ribavirin binding Tobacco mosaic virus (TMV) helicase, (B) Ribavirin in the TMV helicase
pocket, (C) Phenamacril binding myosin I, (D) TMG-chitotrimycin binding Ofhex 1, (E) Pinoxaden
bimding ACC, (F) PYL2-HAB1-quinabactin complex.
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2.2. Fungicidal Targets

Succinate dehydrogenase, tubulin, cytochrome bc1 complex, and 14 α-demethylases (DM) are
classical and ideal targets for fungicide discovery. Among these, benzovindiflupyr is a successful
succinate dehydrogenase (SDH) inhibitor, the mechanism of benzovindiflupyr is damaging the cell wall,
membrane, and organelles, and further inhibits mycelial growth and conidial production of Bipolaris
maydis [19], and the SDH and 3-nitropropionic acid complex structure were determined in Gallus gallus,
which can form a covalent adduct of SDH with the side chain of Arg297 [20], Tubulin and boscalid
complex structure was determined in G. gallus, while the tubulin and triazolopyrimidines-complex
structure was confirmed in Bos taurus, which revealed that triazolopyrimidines are important
for complex stability. The result indicated that triazolopyrimidines are microtubule stabilizers
targeting the tubulin vinca site [21]. The structures of mitochondrial cytochrome bc1 in complex with
famoxadone in B. Taurus [22], Rhodobacter sphaeroides [23], and G. gallus (PDB ID: 3L74, unpublished),
were solved, which support an inhibitory mechanism of aromatic–aromatic interaction. The structures
of cytochrome bc1 in complex with trifloxystrobin (PDB ID: 3L70, unpublished), azoxystrobin (PDB
ID: 3L71, unpublished), triazolone (PDB ID: 3L73, unpublished), and fenamidone (PDB ID: 3L75,
unpublished) in G. gallus were also solved. The structure of cytochrome bc1 complexed with
azoxystrobin in R. sphaeroides was solved; the mechanism of azoxystrobin provides a gating mechanism
for bifurcated catalyze electron transfer [24]. The discovery of new green fungicides was based
on the structures of these mitochondrial cytochrome bc1 complexes [25,26]. The structures of
DM complexed independently with S-tebuconazole, R-tebuconazole, S-desthio-prothioconazole,
R-desthio-prothioconazole, fluquinconazole, prochloraz, and difenoconazole in Saccharomyces cerevisiae
were solved, the complex structures reveal triazole-mediated coordination of all compounds and the
specific orientation of compounds within the relatively hydrophobic binding site [27], and that of the
complex of DM and posaconazole in Candida albicans was also confirmed, which provides a molecular
mechanism for the potencies of drugs and the intrinsic resistance to fluconazole [28].

Recently, some new fungal targets, such as oxysterol-binding protein (OSBP) and myosin I,
were identified. The OSBP-related ligand-binding domain at the C terminus is highly conserved
with the specific substrate ergosterol in S. cerevisiae [29], with the specific substrate cholesterol in
Kluyveromyces lactis [30], and with the specific substrate cholesterol in Homo sapiens [29,31]. A model
of OSBP in Oomycetes was built on the basis of published homologous structures, which led to the
synthesis and screening of new fungicidal compounds [32]. Myosin I is an important target in Fusarium
graminearum [33], and the complex crystal structure of phenamacril-bound myosin I in F. graminearum
was solved. It was discovered that phenamacril binds in the actin-binding cleft of a new allosteric
pocket (Figure 2C) [34].

2.3. Bactericidal Targets

Compound YZK-C22 inhibits pyruvate kinase by reducing the expression of pyruvate kinase
proteins in the metabolic process. Pyruvate kinase is a potential bactericidal target [35] and regarded
as a novel target for the discovery of new fungicides [36]. Rice bacterial blight caused by Xanthomonas
oryzae is the most serious bacterial disease of rice. The potential bactericidal target dihydrolipoamide
S-succinyltransferase (DLST) was found using a sulfone compound, which used to confirm the
involvement of DLST in the regulation of energy production [37]. The FabV of enoyl-ACP reductase
is the key target enzyme in X. oryzae. The crystal structure of this protein was solved, and D111,
Y236, and K245 were identified as key amino acid residues involved in the inhibition of the reductase
activity [38]. This provided important information for the design and synthesis of anti-bacterial
blight pesticides.
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2.4. Insecticidal Targets

At present, the truly commercial and valuable insecticides mainly target nicotinic acetylcholine
receptor, glutamate-gated chloride channel, γ-aminobutyrate acid receptor, and ryanodine receptor
(RyR) [39–43]. Breakthroughs have been made in the development of the insecticides benzamide and
chlorantraniliprole, which target RyR, as well as cyclaniliprole. These were discovered based on the
allosteric RyR structure [44].

Some new potent insecticide targets have been discovered. The crystal structure of the RyR’s
phosphorylation [45] and N-terminal [46] domains, as well as the SPRY2 domain from Plutella
xylostella [47], were solved. These structures provide insights into the development of novel
insecticides [48]. An insect transient receptor potential channel, transient receptor potential vanilloid,
is a new and potent molecular target. Afidopyropen was discovered based on the structure of
transient receptor potential vanilloid; the role of afidopyropen is a specific modulator of insect TRPV
channels [49].

In addition, insect chitinases play crucial roles in chitinous tissues and other physiological
processes, and thus are new and potent molecular targets. The crystal structure of insect
beta-N-acetyl-D-hexosaminidase OfHex1 [50] and the co-crystal structures with its inhibitors,
TMG-chitotriomycin (Figure 2D) [50], PUGNAc [51], and berberine [52], were successfully solved.
OfHex1 is an enzyme that linked to an “open-close” mechanism at the entrance of the active site; the
active pocket size of OfHex1 to TMG-chitotriomycin was Trp490, the active pocket size of OfHex1 to
PUGNAc was Val327, and the active pocket size of OfHex1 to berberine was Trp322, Trp483, Val484,
which contributes to its inhibitory activity. These protein-ligand complexes formed a model for new
green insecticide discovery [53,54].

2.5. Herbicidal Targets

Acetohydroxyacid synthase (AHAS), protoporphyrinogen oxidase (PPO),
and 4-hydroxyphenylpyruvate dioxygenase (HPPD) are widely recognized as the most important
herbicidal targets.

For AHAS, the complex structure of its catalyzed subunit with monsulfuron-sulfuron from
Arabidopsis thaliana was successfully solved, the mechanism of monsulfuron-sulfuron is break the
cofactors thiamine diphosphate of AHAS [55], and AHAS was further selected as a potent target for
herbicidal discovery [56].

The complex structure of PPO with acifluorfen [57,58] was solved, which shows that the acifluorfen
molecule binds to Ile176 by forming hydrophobic interactions, and the structural biology of PPO
mutants and the mechanism of actions of herbicides based on PPO and its mutants were systematically
studied as potent targets of novel herbicides [59–61].

In addition, the crystal structures of HPPDs from a variety of different species were systematically
studied [62–64], and the structures in complex with NTBC [65] and a natural substrate were
reported [66]. Thus, the binding mode of the substrate in the enzyme-catalyzed pocket of HPPD was
revealed, which laid a solid foundation for an in-depth understanding of the mechanism of action of
HPPD-inhibiting herbicides [67–70].

Some other herbicide targets were reported and utilized as potential molecular targets, such as
acetyl CoA carboxylase (ACC) and dihydroxy-acid dehydratase (DHAD). ACC is regarded as a
molecular target of phenylpyrazoline herbicide, and the mechanism of pinoxaden acts on ACC
(Figure 2E) [71]. The full-length structure of DHAD was solved, and a natural product, aspterric acid,
with herbicidal activity targeting the biosynthetic pathway of branched-chain amino acids DHAD was
identified [72]. It provides a theoretical basis for designing novel herbicides with new mechanisms.
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2.6. Plant Growth-Regulator Targets

In the plant growth-regulator target field, the PYL family proteins (PYLs), the jasmonic acid
receptor coronatine insensitive 1 (COI1), the gibberellin receptor gibberellin insensitive dwarf1 (GID1),
and the strigolactone receptor hydrolase DWARF14 (D14) were new targets.

The PYLs are cellular abscisic acid (ABA) receptors. PYLs, through binding with ABA,
undergo conformational changes that result in physical associations and the inhibition of the
phosphatase activities of protein phosphatase 2C [73]. Interestingly, PYL2s are the most important
molecular targets of plant growth regulators [74]. An X-ray structure of PYL2-quinabactin-HAB1
shows that quinabactin forms a hydrogen bond with the receptor or the protein phosphatase 2C “lock”
hydrogen bond network (Figure 2F) [75]. It provides a theoretical basis for designing novel plant
growth regulators.

COI1, GID1, and D14 are hormone receptors. A series of receptor structures have been solved.
The structure of the complexes formed by COI1 with jasmonate zim domain [76], GID1 with
gibberellin [77], D14 with strigolactone [78,79], and decreased apical dominance 2 (DAD2) bound
to a quinazolinone derivative [80] were solved, and they could promote the discovery of new plant
growth regulators.

3. Discussion

Target discovery and validation form one pathway to develop green pesticides. In this review,
we summarized 64 potent crystal structures covered in 6 antiviral (Nos. 1–6), 23 fungicidal (Nos. 7–29),
2 bactericidal (Nos. 30 and 31), 7 insecticidal (Nos. 32–38), 14 herbicidal (Nos. 39–52), and 12 plant
growth-regulator (Nos. 53–64) target-related agrochemical research studies in the PDB database
(Table 2). Among them, 44 crystal structures are those of inhibitors or substrates (Figure 3), and these
structural models provide the theoretical basis for discovering new green pesticides.

Table 2. Review of crystal targets with ligands in different species.

No. Target
Protein Species Ligand Target

Type
PDB
ID Reference

1 CP Tobacco mosaic virus no

antiviral
target

4GQH 6

2 P9-1 Southern rice black-streaked
dwarf virus no 5EFT unpublished

3 P9-1 Rice black-streaked dwarf virus no 3VJJ 10
4 Helicase Tomato mosaic virus no 3VKW 9
5 VLP Potato virus Y no 6HXZ 8
6 P5 Rice dwarf virus S-adenosylmethionine 5X6Y unpublished

7 SDH Gallus gallus 3-nitropropionic acid

fungicide
target

2FBW 20
8 Tubulin Bos Taurus triazolopyrimidines 5NJH 21
9 DM Candida albicans S-tebuconazole 5EAB 27
10 DM Candida albicans R-tebuconazole 5EAC 27
11 DM Candida albicans S-desthio-prothioconazole 5EAD 27
12 DM Candida albicans R-desthio-prothioconazole 5EAE 27
13 DM Candida albicans fluquinconazole 5EAF 27
14 DM Candida albicans prochloraz 5EAG 27
15 DM Candida albicans difenoconazole 5EAH 27
16 DM Candida albicans posaconazole 5FSA 28
17 DM Candida albicans posaconazole 5TZ1 28
18 bc1 complex Bos Taurus famoxadone 1L0L 22
19 bc1 complex Rhodobacter sphaeroides famoxadone 5KKZ 23
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Table 2. Cont.

No. Target
Protein Species Ligand Target

Type
PDB
ID Reference

20 bc1 complex Gallus gallus trifloxystrobin 3L70 unpublished
21 bc1 complex Gallus gallus azoxystrobin 3L71 unpublished
22 bc1 complex Gallus gallus triazolone 3L73 unpublished
23 bc1 complex Gallus gallus famoxadone 3L74 unpublished
24 bc1 complex Gallus gallus fenamidone 3L75 unpublished
25 bc1 complex Rhodobacter sphaeroides azoxystrobin 6NHH 24
26 Osh4 Saccharomyces cerevisiae ergosterol 1ZHZ 29
27 Osh1 Kluyveromyces lactis Cholesterol 5WVR 30
28 ORP1 Homo sapiens Cholesterol 5ZM5 29
29 Myosin I Fusarium graminearum Phenamacril 6UI4 34

30 Pyruvate
kinase Saccharomyces cerevisiae no bactericide

target
1A3W 35

31 FabV Xanthomonas oryzae no 3S8M 38

32 RyR PD Plutella xylostella no

insecticide
target

6J6O 45
33 RyR NTD Plutella xylostella no 5Y9V 46
34 RyR SPRY2 diamondback moth no 6J6P 47
35 OfHex1 Ostrinia furnacalis no 3NSM 50
36 OfHex1 Ostrinia furnacalis TMG-chitotrimycin 3NSN 50
37 OfHex1 Ostrinia furnacalis PUGNAc 3OZP 51
38 OfHex1 Ostrinia furnacalis berberine 5Y0V 52

39 AHAS Arabidopsis thaliana monsulfuron-sulfuron

herbicide
target

3EA4 55
40 PPO Bacillus subtilis acifluorfen 3I6D 57
41 PPO Homo sapiens acifluorfen 3NKS 58
42 HPPD Arabidopsis thaliana no 1SQD 62
43 HPPD Arabidopsis thaliana no 1TFZ 62
44 HPPD Arabidopsis thaliana no 1TG5 62
45 HPPD Zea mays no 1SP8 63
46 HPPD Homo sapiens no 3ISQ unpublished
47 HPPD Rattus norvegicus no 1SQI 62
48 HPPD Pseudomonas fluorescens no 1CJX 64
49 HPPD Streptomyces avermitilis NTBC 1T47 65
50 HPPD Arabidopsis thaliana HPPA 5XGK 66
51 DHAD Arabidopsis thaliana aspterric acid 5ZE4 72
52 ACC Saccharomyces cerevisiae pinoxaden 3PGQ 71

53 PYL10-PP2C Arabidopsis thaliana ABA

plant growth
regulator

target

3RT0 73
54 PYL10-PP2C Arabidopsis thaliana no 3RT2 73
55 PYL2-HAB1 Arabidopsis thaliana ABA 3KDI 75
56 PYL2-HAB1 Arabidopsis thaliana quinabactin 4LA7 75

57 COI1-ASK1 Arabidopsis thaliana incomplete JAZ1
degron 3OGK 76

58 COI1-ASK1 Arabidopsis thaliana JA-isoleucine and the
JAZ1 degron 3OGL 76

59 COI1-ASK1 Arabidopsis thaliana JAZ1 degron 3OGM 76
60 GID1 Oryza sativa Japonica Group GA3 3ED1 77
61 GID1 Oryza sativa Japonica Group GA4 3EBL 77
62 DAD2 Petunia x hybrida quinazolinedione 6O5J 80
63 D14-D3-ASK1 Arabidopsis thaliana strigolactone 5HZG 78
64 D3-ASK1 Arabidopsis thaliana no 5HYW 78
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Among antiviral targets, CP, helicase, matrix, and capping enzyme are the key targets, and the
molecular mechanism is to inhibit the viral activity by direct breaking the CP assembly, and/or binding
the target site. Among fungicidal and bactericidal targets, SDH, tubulin, cytochrome bc1 complex,
DM, DLST, and FabV are the key targets, and the inhibitors play activities by damaging the cell wall,
membrane, and organelles, and/or occupying binding site. Among insecticidal targets, nAChR, GluCl,
GABACl, RyR, and TRPV are the key targets, and the mechanisms of insecticide usual modulate the
conformation of targets to perform the insecticidal effect. Among herbicidal and plant growth-regulator
targets, AHAS, PPO, HPPD, ACC, DHAD, PYLs, COI1, GID1, and D14 are the important targets,
to study the regulation mechanism of ligand and protein receptors is an important way to discover
new pesticides.

With the discovery and development of new green pesticides, many potential molecular targets
have emerged. In particular, plant resistance protein, viral CP, and viral minor CP have the most
potential for antiviral discovery. For example, harpin binding protein-1 is a potential target activated
antiviral response in tobacco by antiviral agent dufulin [81], and tomato chlorosis virus (ToCV), CP play
significant roles in sustaining the methyl cycle and S-adenosylmethionine-dependent methyltransferase
activity and its minor CP play important roles in silencing suppression activity to counteract the RNA
silencing-mediated defense response of the host [82,83]. Glucopyranoside derivatives, pyrimidine
derivatives, 4(3H)-quinazolinone derivatives, and novel quinazolinone sulfide inhibitors targets ToCV
coat protein with high anti-ToCV activity [84–87], and its minor coat protein is regarded as a novel
target for the new green anti-ToCV inhibitors [88].

With deepening studies of functional genomics, proteomics, computer-aided design, and X-ray
crystallography, many new potential molecular targets of pesticides have been identified and structurally
characterized. In particular, in plant pathology, the structures of Phytophthora effectors PexRD54 and
PexRD52, VR3a11 [89,90], and Avh240 [91] were solved, and the complex crystal structures of the
Magnaporthe oryzae immune receptors RGA5A_S and RGA5A_S–AVR1-CO39 were solved [92,93],
which aided in investigating the molecular mechanisms used by the rice disease-resistant protein
RGA5 to recognize effectors. These structures provide a basis for studying the mutation-related
mechanisms of effectors and provide important data for functional research and fungicide discovery.
Interestingly, owing to the molecular dynamics, computational alanine scanning, and site-directed
mutagenesis, residue Asn232 in the carboxylesterase gene of Cydia pomonella is considered a hot
spot for binding with the organophosphate, acephate. Further functional analyses and mutation
detection in field populations of C. pomonella indicated that the substitution N232A forms a new



Int. J. Mol. Sci. 2020, 21, 7144 10 of 16

mutation associated with resistance to organophosphate insecticides in insects [94]. Thus, identifying
and utilizing pesticide targets clarifies the molecular mechanisms and toxicity levels of agrochemical
compounds at the molecular level. This finding provides important data that can be used to discover
new green pesticides having low resistance. With the development of cryo-electron microscopy
technology, many target proteins which were difficult to crystallize before can be obtained structures.
With the further improvement of resolution, the structures based on cryo-electron microscopy have
reached atomic resolution for the first time. This progress makes the interaction between pesticides
and targets more accurate, and makes the structure-based drug design easier to realize. The recent
interesting founding is the highest-resolution cryo-electron microscopy complex structure of RyR1 and
the anthranilic diamide chlorantraniliprole. This complex structure reveals that chlorantraniliprole
binds to a pocket on the cytoplasmic side in the voltage sensing domain, and it triggers channel
opening and sustained releasing Ca2+, and promotes muscle paralysis and achieves insecticidal effect.
More interesting, it found that chlorantraniliprole is selective to the diamondback moth over honeybee
or mammalian RyRs [95]. These findings provide an important theoretical basis and a foundation for
the development of new green pesticides aimed at overcoming resistance.

In the future, pesticide target structures will be at the frontier of agricultural scientific research.
(1) Structural analysis is the basis of designing pesticides based on structure. With the progress of
computing power and algorithm, under the condition of limited structure, the accuracy of homologous
modeling and protein structure prediction is further improved, and the flux of virtual screening is
also improved at the geometric level. The screening which was completed in the past few months
can be completed in a few weeks or even days, and more and more effective potential pesticides
can be obtained, which saves a lot of time and money compared with traditional screening methods.
(2) Based on more and more resistant mutations being sequenced, more and more pesticide targets
have been found in recent years, and the potential binding sites can be predicted. With the help of
the new gene editing technology CRISPR-Cas-9, gene substitution and derivatization can be realized,
and it is easier to determine pesticide targets. (3) Machine learning has played a great role in the field
of medicine, although this technology is not widely used in the pesticide field. Halicin was developed
based on AI, which opened a new door for humans to resist bacterial resistance [96]. We believe that in
the near future, AI can also bring a new dawn for the structure-based drug design and development
of pesticides.

Pesticide target will be the subject of new technology and innovations in modern agriculture.
Target discovery has become the focus of technology and the source of innovation among global
agrochemical giants. In 2015, the DuPont Company successfully developed the first fungicide, zorvec,
which targets the OSBP and has an excellent control effect on crop diseases with low pesticide
resistance. Industry analysts predict that the annual peak sales of zorvec will be $500 million. In China,
“Innovative research on new green pesticide and discovery of original target” has been chosen as
one of the 60 major technical scientific and engineering problems. Thus, molecular targets will drive
the emergence of a number of major new pesticide products, which are crucial for becoming the
dominant power in the pesticide market in the future. Molecular target-oriented new green pesticide
discovery and development are crucial for stimulating new green pesticide types that are highly
efficient, produce low residue levels, and are environmentally safe.

4. Conclusions

Small molecule pesticides play specific therapeutic and preventive roles through target-binding to
affect the functions of the entire cell or tissue. The safety and effectiveness of green pesticides depend on
the functions and differentiation of targets. Our review summarized antiviral, fungicidal, bactericidal,
insecticidal, herbicidal, and plant growth-regulator targets in agrochemical research, and pointed out
the new potential pesticide targets, including antiviral, bactericidal, and plant growth-regulator targets.
It shows that finding pesticide targets that are indispensable for life activities and differentiated among
different species is a key scientific goal in the development of selective high-performance pesticides.
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Abbreviations

CP Coat proteins
TMV Tobacco mosaic virus
SDH Succinate dehydrogenase
OSBP Oxysterol-binding protein
DLST Dihydrolipoamide S-succinyltransferase
DM 14 α-demethylases
GABACl γ-aminobutyrie acid-gated chloride channel
nAChR Nicotinic acetylcholine receptor
GluCl Glutamate-gated chloride channel
TRPV Transient receptor potential vanilloid channel
RyR Ryanodine receptor
AHAS Acetohydroxyacid synthase
PPO Protoporphyrinogen oxidase
HPPD 4-hydroxyphenylpyruvate dioxygenase
ACC Acetyl CoA carboxylase
DHAD Dihydroxy-acid dehydratase
PYLs PYL family proteins
COI1 Coronatine insensitive 1
GID1 Gibberellin receptor gibberellin insensitive dwarf1
D14 Strigolactone receptor hydrolase DWARF14
DAD2 Decreased apical dominance 2
ABA Abscisic acid
ToCV Tomato chlorosis virus
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