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Abstract

Alcoholism is a devastating brain disorder that affects millions of people worldwide. The development of alcoholism is
caused by alcohol-induced maladaptive changes in neural circuits involved in emotions, motivation, and decision-making.
Because of its involvement in these processes, the amygdala is thought to be a key neural structure involved in alcohol
addiction. However, the molecular mechanisms that govern the development of alcoholism are incompletely understood.
We have previously shown that in a limited access choice paradigm, C57BL/6J mice progressively escalate their alcohol
intake and display important behavioral characteristic of alcohol addiction, in that they become insensitive to quinine-
induced adulteration of alcohol. This study used the limited access choice paradigm to study gene expression changes in
the amygdala during the escalation to high alcohol consumption in C57BL/6J mice. Microarray analysis revealed that
changes in gene expression occurred predominantly after one week, i.e. during the initial escalation of alcohol intake. One
gene that stood out from our analysis was the adapter protein 14-3-3f, which was up-regulated during the transition from
low to high alcohol intake. Independent qPCR analysis confirmed the up-regulation of amygdala 14-3-3f during the
escalation of alcohol intake. Subsequently, we found that local knockdown of 14-3-3f in the amygdala, using RNA
interference, dramatically augmented alcohol intake. In addition, knockdown of amygdala 14-3-3f promoted the
development of inflexible alcohol drinking, as apparent from insensitivity to quinine adulteration of alcohol. This study
identifies amygdala 14-3-3f as a novel key modulator that is engaged during escalation of alcohol use.
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Introduction

Alcoholism, characterized by a loss of control over alcohol

intake, is a disease that affects over 76 million people worldwide

[1]. Although recent years have seen progress in this regard,

treatment strategies for alcoholism are still limited in number and

efficacy [2–4], which underscores the pressing need to understand

the neural underpinnings of alcoholism.

The development of alcoholism is caused by alcohol-induced

maladaptive changes in neural circuits involved in emotions,

motivation, habit formation and decision making [5–11]. The

amygdala is a key structure in several of these processes. Within

the amygdala, integration of sensory information and attribution

of affective valence to primary rewards and associated cues takes

place. Connections of the amygdala with the nucleus accumbens,

ventral tegmental area and prefrontal cortex allow amygdaloid

mechanisms to influence various aspects of alcohol-motivated

behavior, while projections from the amygdala to hypothalamus

and brainstem contribute to arousal and stress that promote

alcohol intake [12–18].

Human alcoholics have reduced amygdala volumes [19] and

exposure of alcoholics to alcohol odor induces intense craving that

is associated with amygdala activation [20]. Consistent with its role

in processing negative emotional stimuli, the amygdala contributes

to alcohol consumption in alcohol-dependent animals that display

enhanced negative affect. Increased alcohol intake and enhanced

negative affect, apparent from decreased brain reward and

enhanced anxiety-like behavior, in alcohol-dependent animals is

associated with neurophysiological changes in the amygdala

including enhanced CRF and GABA release [21–23]. These

observations are consistent with the known involvement of the

amygdala in the generation and perception of positive and

negative emotions [17,24], as well as in the influence of

behaviorally meaningful environmental cues, such as drug-

associated conditioned stimuli, on behavior [13,16,17,25–27].

Recent evidence has implicated physiological changes in the

central nucleus of the amygdala (CeA) in alcohol intake. Thus,

escalation of alcohol intake and the development of alcohol

dependence has been shown to be paralleled by alterations in

neuropeptide expression and changes in GABAergic neurotrans-

mission [28,29] and to involve PKC signaling [30], but the

molecular mechanisms involved remain incompletely understood.
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The aim of this study was to identify molecular mechanisms in

the amygdala that contribute to the escalation of alcohol intake,

which is an important stage in the development of drug addiction

[31]. During the development of alcoholism, casual alcohol use

escalates into excessive drinking, ultimately culminating in full-

blown alcohol addiction, characterized by loss of control over

alcohol intake. For this study we used a limited access choice

paradigm, in which C57BL/6J mice show rapid escalation of

alcohol consumption [32], which depends on processes within the

CeA [30]. Moreover, using this paradigm C57BL/6J mice display

alcohol use despite adverse consequences, an important behavioral

characteristic of alcoholism, in that they fail to reduce their alcohol

intake when an alcohol solution is adulterated with quinine and

consume an aversive, quinine-containing alcohol solution despite

the simultaneous availability of unadulterated alcohol [33]. Here,

we studied gene expression patterns in the CeA during the

escalation of alcohol intake in C57BL/6J mice, using microarray

analysis followed by qPCR. We subsequently used RNA interfer-

ence to pinpoint the involvement of 14-3-3f, a candidate gene that

stood out from our analysis, in alcohol intake. Together, these data

show that 14-3-3f signaling in the CeA controls the escalation of

alcohol intake in mice.

Materials and Methods

Animals
8–10 Weeks old male C57BL/6J mice, derived from Jackson

Labs (Bar Harbor, Maine, USA) and bred in our facility, were

group-housed with food and water ad libitum under controlled

conditions (2062uC and 50–70% humidity) and acclimatized to a

12-h light/dark cycle (7:00 AM lights off) at least 2 weeks prior to

testing. Experimental procedures were approved by the Animal

Ethics Committee of Utrecht University and conducted in

agreement with Dutch laws (Wet op de dierproeven, 1996) and

European regulations (Guideline 86/609/EEC).

Limited access alcohol consumption
Mice were trained to voluntarily consume alcohol using a

limited access choice paradigm [30,34,35]: they had access to one

drinking tube containing tap water and one containing alcohol

(10–15% v/v) in daily 2 hour sessions, starting 3 hours into the

dark cycle. Bottle positions were switched daily after 7 days to

avoid side-preference. Fluid volumes were measured and alcohol

intake, alcohol preference and total volume consumed were

calculated.

For microarray analysis, mice were randomly assigned to 3

experimental groups that consumed alcohol for 1, 2 or 4

consecutive weeks (N = 14, 14 and 13), representing 3 stages of

the development of alcoholism: initial escalation of alcohol intake

(1 week), the stage where high alcohol intake is reached and

insensitivity to quinine adulteration emerges [33] and the stage of

stable high alcohol intake (4 weeks). A water control group (N = 6)

was included and a group of naı̈ve mice (N = 21) served as a

reference sample. To ensure active engagement in the limited

access choice paradigm and to exclude animals consuming

extremely high or low amounts of alcohol, we applied the

following inclusion criteria.

(1) To ensure sufficient sampling of the fluids, total fluid intake should

be $12 ml/kg on day 6 [30,32].

(2) To ensure active engagement and motivation to consume alcohol,

preference for alcohol over water should be .50% by

day 6–8.

(3) To ensure analysis of escalation, alcohol intake should be #2 g/kg

by day 4 and $0.6 g/kg by day 6–8.

The final sample size after application of these criteria was

N = 6.

For qPCR validation, a separate batch of mice consumed

alcohol for 1 week or 2 weeks (N = 13); a total of 6 and 7 mice,

respectively, met the inclusion criteria. Naı̈ve mice (N = 7) and a

water group (N = 6) were included as controls.

Tissue dissection
The mice were sacrificed by decapitation 10–11 hours after the

final limited access choice session. Blood alcohol analyses using an

NAD/ADH assay (Sigma, Germany) confirmed clearance of

alcohol from blood at this time: blood alcohol levels were low (6.5–

35 mg/dl) compared to levels of 97.7624.9 mg/dl immediately

after a drinking session [32]. Brains were dissected, snap frozen on

dry ice and stored at 280uC. Amygdala samples were obtained

using a 20G punch needle, aiming at the CeA [30,36] and were

immersed instantly in RNAlater (Sigma, Germany). Total RNA

was isolated from the amygdala using TRIzol (Invitrogen, NL),

DNAse treated (Ambion, TX, USA) and purified using the

RNeasy MinElute Cleanup kit (Qiagen N.V., NL). RNA integrity

was confirmed using the Bioanalyzer (Agilent Technologies Inc,

CA, USA).

RNA isolation and Hybridization
Two-color oligonucleotide microarray analysis was performed

as described [37]. RNA was amplified in a single round and

complementary DNA (cDNA) was synthesized with Superscript III

reverse transcriptase (Invitrogen) using a T7 oligo(dT)24VN

primer [38]. Complementary DNA was transcribed in vitro using

the T7Megascript kit (Ambion) in the presence of aminoallyl-UTP,

and copy ribonucleic acid (cRNA) quality was evaluated using the

Bioanalyzer. Cy3 or Cy5 fluorophores (Amersham Biosciences,

NL) were coupled to 1500 ng cRNA, and label incorporation was

monitored by spectrophotometry and hybridizations were set up

with 1000 ng of Cy3-labeled and 1000 ng of Cy5-labeled cRNA.

Each cRNA sample was labeled with Cy3 or Cy5 and was

hybridized in dye swap against a common reference pool sample

consisting of RNA from naı̈ve mice; a total of 6 slides were

hybridized for each experimental group. The mouse Array-Ready

oligo set (version 3.0; Operon Biotechnologies GmbH, Germany)

was printed on Corning UltraGAPS slides as previously described

[37]. Slides were washed manually, scanned in the Agilent

G2565AA DNA Microarray Scanner (100% laser power and

30% photomultiplier tube) and quantified and background

corrected with IMAGENE (version 5.6.1; BioDiscovery, Inc.,

CA, USA) and Loess normalized per print-tip [39].

The microarray data were analyzed by ANOVA-modeling [40]

to identify genes that show differential expression from naı̈ve

control mice. In a fixed effect analysis, sample, array and dye

effects were modeled. Sample-specific differences between groups

were then modeled and tested using permutations and family-wise

error correction. MIAMEcompliant descriptions of protocols,

experiment design, arrays, raw and normalized data have been

deposited in the public microarray database ArrayExpress (http://

www.ebi.ac.uk/arrayexpress/), all under the experiment accession

number E-TABM-956. In addition, the microarray data was

analyzed using the short time-series expression miner (STEM) with

integrated gene ontology (GO) database [41].
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qPCR Validation
Total RNA was isolated from the amygdala as described and

cDNA was synthesized from the RNA samples using oligo-dT

primers. qPCR analysis was performed using the LightCycler

(Roche, NL), the Fast Start DNA Master PLUS SYBRgreen I kit

(Roche) and primers listed in Table 1. After initial normalization

to the housekeeping gene beta-actin, gene expression was

calculated as the ratio to levels of naı̈ve mice using the comparative

Ct method [42].

RNA interference
Two shRNAs were designed for mouse 14-3-3f (YWHAZ,

NCBI accession no. NM_011740): 1222 bp (GTGAAGAGTCG-

TACAAAGG) and 1854 bp (GAAGTTGTCTCTAGACAAG).

A non-coding sequence was used as a control (GCGTGTACG-

GACCTATTGG). The sequences were cloned into a LentiLox

3.7 vector (pLL3.7, http://www.sciencegateway.org/protocols/

lentivirus/pllmap.html).

Knockdown efficiencies were determined by transfection of

Neuro2A cells with the respective lentiviral vectors and semi-

quantitative 14-3-3f protein analysis by western blot 48 hours

after transfection. For each condition 5, 10, 15 and 20 mg protein

was loaded and 14-3-3f was visualized using goat anti-14-3-3f
antibody (SantaCruz, 1:5000), donkey anti-goat HRP (Jackson

ImmunoResearch, 1:25.000) and detection by enhanced chemilu-

minescence (Thermo Scientific). Knockdown efficiency was

determined by densitometry and comparative slope analysis as

described [30].

Lentivirus was produced by co-transfecting HEK293T cells

with the respective shRNA-pLL3.7 vector (22.5 mg), pMD2\VSV-

G (7.9 mg), pMDL\pRRE (15.6 mg) and pRSV-Rev (5.6 mg). Viral

titers were determined in Neuro2A cells and expressed as number

of infected GFP-positive cells per viral volume.

In vivo knockdown of 14-3-3f in the CeA and alcohol
intake

To establish in vivo knockdown of 14-3-3f, male C57BL/6J mice

were anaesthetized with ketamine (75 mg/kg i.p.) and medetomi-

dine (1 mg/kg i.p.) and placed in a stereotaxic frame (David Kopf

Instruments, CA, USA). The injectors (33G) were targeted at the

CeA using the coordinates: 20.90 mm posterior to bregma, +/2

3.0 mm lateral to midline and 24.6 mm ventral from bregma

[36]. Lentivirus (2 ml, 36107 iU/ml) was infused at a rate of

0.2 ml/min.

To determine knockdown efficiency in vivo, control lentivirus

was infused in one hemisphere and lentivirus expressing 1854 14-

3-3f shRNA was infused into the contralateral CeA. Three weeks

after infection, in situ hybridization for 14-3-3f and GFP was

performed using digoxigenin-labeled cRNA probes transcribed

from mouse 14-3-3f (1046 bp fragment) and eGFP (720 bp

fragment) cDNAs as described [43] and mRNA levels were

compared within animals (N = 3).

For alcohol consumption experiments, control or 14-3-3f
shRNA expressing lentivirus was infused bilaterally into the

CeA. Alcohol consumption was determined in the limited access

choice paradigm as described (N = 8–9) after 3 weeks post-surgery

recovery and adaptation to the reversed light-dark cycle (7:00 AM

lights off). Inflexible drinking behavior was assessed by adulterat-

ing alcohol (15% v/v) with graded quinine concentrations

(100 mM, 250 mM, 350 mM, 500 mM and 750 mM) on 5

consecutive days [33]. Alcohol intake and preference were

normalized to the group average over the last 3 days prior to

quinine modulation. After completion of the alcohol consumption,

intake of sweet (sucrose / saccharin) and bitter (quinine) solutions

was also determined in two-bottle choice tests.

Post-mortem immunohistochemistry for GFP was performed

using an anti-sheep antibody (1:5000, Biogenesis Ltd) to determine

the infection site.

Data Analysis
Consumption data were analyzed by one-way repeated measures

ANOVA with group as the between-subjects factor and time or

quinine concentration as the repeated measures within-subjects

factor. qPCR data were analyzed by one-way ANOVAs with group

as the between-subjects factor, followed by Tukey HSD multiple

comparisons. Post-hoc analysis was performed by two-tailed t-tests

where appropriate. Differences between pairs of means were

considered significant at alpha , 0.05. SPSS 15.0 was used for

data analysis.

Results

Gene expression during the escalation of alcohol intake
In order to trace molecular mechanisms engaged during the

escalation of alcohol intake, gene expression in the CeA was

studied by microarray analysis after 1 week, 2 weeks and 4 weeks

of daily alcohol consumption (Fig. 1A–B). Alcohol preference was

high from the first week of the experiment onwards (1 week

F(time)5,65 = 1.7, N.S.; 2 weeks F(time)7,70 = 0.97, N.S.; 4 weeks

F(time)10,50 = 1.1, N.S.) while alcohol intake stabilized only after

two weeks of daily drinking. The experimental groups represent 3

stages of escalation to alcoholism-like behavior: the transition from

low to high alcohol intake (1 week; intake: F(time)5,75 = 16.8,

P,0.001), the stage when mice reach their highest levels of

alcohol intake and start to show inflexible and indifferent alcohol

intake (2 weeks; see Lesscher et al, 2010; intake: F(time)7,70 = 10.3,

P,0.001) and finally also the stage where high alcohol intake has

stabilized (4 weeks; intake: F(time)10,50 = 0.87, N.S.). Microarray

analysis revealed marked changes in gene expression as a result of

alcohol consumption, particularly during the early stages of

alcohol intake (P,0.01 from control mice, Fig. 1D and Fig. 1E–

F). After exclusion of those genes that showed differential

expression after water consumption compared to naı̈ve mice,

267 genes in the CeA were found to be differentially regulated

after 1 week of alcohol consumption, i.e. during the transition

from low to high alcohol intake. Of these 267 genes, 211 were up-

regulated and 56 were down-regulated. By contrast, only 29 and

20 genes, respectively, were differentially regulated after 2 and

Table 1. Primer sequences for qPCR validation.

Gene Primer Fwd Primer Rev

Gabrg2 TGTGGTCACCGAATGTGTTT TCATTGCTGTTGCTCAAAGG

Gria3 CTCGGTGCTTTCCTAAAACG CCAAACACGTCTGGGAGAAT

YWHAZ AGCAGGCAGAGCGATATGAT TTCTCAGCACCTTCCGTCTT

Gprasp1 CCCATTAGATCCCCTTGGTT CCTGTGATGGTCTTGGTCCT

Ctnnd2 CGCCAGCATCACTTGTCC ACTGCTTCCTGGCGAACAT

Tmod2 CCAGCTAAATTGTGGGCATT GGCTCTGTCTTCGAGGTGAC

Gabrb3 AGGCATCCATAAACCGACTG GGCCACCGAAAAATCAAGTA

Prkacb TCTTTCCTGCGTCATCAGTG AAGGGAGCACTGGTCAGAGA

Actb (beta-
actin)

AGCCATGTACGTAGCCATCC CTCTCAGCTGTGGTGGTGAA

doi:10.1371/journal.pone.0037999.t001

Amygdala 14-3-3f Modulates Alcohol Intake

PLoS ONE | www.plosone.org 3 May 2012 | Volume 7 | Issue 5 | e37999



4 weeks of alcohol consumption, i.e. when highest alcohol levels

are reached and signs of alcoholism-like behavior emerge, and

alcohol intake is stabilized. Regulated genes in all three

experimental groups are presented in Table 2.

Gene Ontology for those genes that were regulated specifically

during the first week of alcohol consumption identified significant

enrichment of genes involved in transport, ligand-gated ion

channel activity, synaptic transmission and cytoplasm (Penrichment

,0.01, Table 3). Based on effect size, significance and evidence for

involvement in processes that likely contribute to alcoholism, e.g.

synaptic plasticity, memory processing or addiction-related signal-

ing pathways, eight top candidate genes were selected for further

investigation. The top candidate genes that we identified include

genes which have previously been associated with alcoholism, such

as Gabrg2, Gabrb3 and Gria3 [44,45], but also genes that have

not been associated with alcoholism before. Those novel genes are

the adapter protein 14-3-3f, the G-protein associated sorting

protein Gprasp1, two genes involved in structural and functional

plasticity (Tmod2 and Ctnnd2) and Prkacb, which has been

postulated to affect cAMP-dependent gene expression. qPCR

analysis for the 8 top candidate genes in an independent batch of

mice confirmed significant up-regulation of Gria3, Gabrb3, 14-3-

3f and Prkacb in the CeA after alcohol consumption (Fig. 2).

Water consumption did not affect the expression of any of the

genes tested (not shown).

Amygdala 14-3-3f controls the development of
alcoholism

Of the genes that were consistently up-regulated during

escalation of alcohol intake, we found 14-3-3f to be of particular

interest. 14-3-3 Proteins are adapter proteins that have multiple

Figure 1. Alcohol intake and preference for C57BL/6J mice that consumed alcohol for 1, 2 or 4 weeks. A The mice show a progressive
increase in alcohol intake during the first two weeks of the experiment, stabilizing thereafter. B Preference for alcohol was high throughout the
experiment. C RNA for microarray analysis was isolated from 0.6 mm diameter punches (O) from serial sections through the CeA. D The majority of
the gene expression changes occurred after 1 week of alcohol consumption; the bar graph shows the total numbers of up- (black) and down-
regulated (grey) genes for each time-point while the Venn Diagram shows the total number of up- and down-regulated genes (marked by arrows) for
each time-point and overlap between the experimental groups. E–F Analysis of the microarray data using the Short Time Series Expression Miner
(STEM), revealed significant gene enrichment particularly during the early stages of escalation of alcohol intake (week 1 and/or week 2). When
considering all possible time profiles for gene expression after 1 wk, 2 wk and 4 wk of alcohol consumption, relative to data from naı̈ve control mice
(exemplified by E), 6 time profiles showed significant gene enrichment: they represented more genes than expected based on chance (F). The
commonality between these 6 significant time profiles is that they all show an initial change in gene expression, normalizing thereafter to baseline
levels.
doi:10.1371/journal.pone.0037999.g001
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Table 2. Significant effects of 1 week, 2 weeks and 4 weeks of daily alcohol consumption in the limited access choice paradigm
on gene expression changes in the amygdala of C57BL/6J mice.

Symbol Gene description p value EtOH/N

1 week alcohol consumption *

Prkacb cAMP-dependent protein kinase, beta-catalytic subunit 0,0013 1,44

Ywhaz 14-3-3 protein zeta/delta 0,0001 1,43

Mapk10 Mitogen-activated protein kinase 10 0,0007 1,38

Gprasp1 G-protein coupled receptor-associated sorting protein 1 0,0034 1,36

Rasgrp1 RAS guanyl releasing protein 1 0,0037 1,35

Rdm1 RAD52 motif-containing protein 1 0,0024 1,34

Camk2a Calcium/calmodulin-dependent protein kinase type II alpha chain 0,0002 1,32

Eif4a2 Eukaryotic initiation factor 4A-II 0,0003 1,31

Trim37 Tripartite motif-containing protein 37 0,0098 1,30

Pdia3 Protein disulfide-isomerase A3 precursor 0,0005 1,30

Slc22a17 solute carrier family 22 (organic cation transporter), member 17 0,0055 1,30

Atp6ap1 Vacuolar ATP synthase subunit S1 precursor 0,0002 1,29

Zfp758 zinc finger protein 758 0,0001 1,28

Arf1 ADP-ribosylation factor 1 0,0034 1,28

Rtn4 Reticulon-4 (Neurite outgrowth inhibitor) 0,0003 1,28

Lgi1 Leucine-rich glioma-inactivated protein 1 precursor 0,0094 1,27

Trim23 GTP-binding protein ARD-1 0,0018 1,26

Cdk5rap2 CDK5 regulatory subunit-associated protein 2 0,0000 1,26

Fbxl3 F-box/LRR-repeat protein 3 0,0079 1,26

Cd47 Leukocyte surface antigen CD47 precursor 0,0038 1,26

Pcmtd1 Protein-L-isoaspartate O-methyltransferase domain-cont protein1 0,0036 1,26

Arhgef9 Rho guanine nucleotide exchange factor 9 0,0016 1,26

Actg2 Actin, gamma-enteric smooth muscle 0,0000 1,26

Ptk2b Protein tyrosine kinase 2 beta 0,0022 1,25

Homer1 Homer protein homolog 1 0,0003 1,25

Lrp11 Low-density lipoprotein receptor-related protein 11 precursor 0,0008 1,25

Dnajc5 DnaJ homolog subfamily C member 5 0,0016 1,25

Ybx1 Nuclease sensitive element-binding protein 1 0,0024 1,24

Gls glutaminase isoform 1 0,0079 1,24

Arf1 ADP-ribosylation factor 1 0,0038 1,24

Eif4h Eukaryotic translation initiation factor 4H 0,0045 1,23

Azin1 Antizyme inhibitor 1 (AZI) 0,0016 1,23

Syn2 Synapsin-2 0,0002 1,23

Gapdh Glyceraldehyde-3-phosphate dehydrogenase 0,0037 1,23

Lrrc58 Leucine-rich repeat-containing protein 58 0,0011 1,23

Tmod2 Tropomodulin-2 0,0023 1,23

Slc17a7 solute carrier family 17 0,0001 1,23

Wsb2 WD repeat and SOCS box-containing protein 2 0,0033 1,22

Gria3 Glutamate receptor 3 precursor 0,0001 1,22

Hnrpk Heterogeneous nuclear ribonucleoprotein K 0,0007 1,22

Ube2d3 Ubiquitin-conjugating enzyme E2 D3 0,0001 1,22

Cabp5 Calcium-binding protein 5 0,0000 1,22

Sec23a Protein transport protein 0,0001 1,22

Ddx3x ATP-dependent RNA helicase 0,0020 1,22

Gapdh Glyceraldehyde-3-phosphate dehydrogenase 0,0001 1,22

Fbxl16 F-box/LRR-repeat protein 16 0,0010 1,22

Usp31 MKIAA1203 protein 0,0026 1,22

Amygdala 14-3-3f Modulates Alcohol Intake
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Table 2. Cont.

Symbol Gene description p value EtOH/N

Pja2 E3 ubiquitin-protein ligase Praja2 0,0000 1,22

Srp54a Signal recognition particle 54 kDa protein 0,0010 1,22

Igf1r Insulin-like growth factor 1 receptor precursor 0,0000 1,21

Ube2i SUMO-conjugating enzyme UBC9 0,0026 1,21

Arl8b ADP-ribosylation factor-like protein 8B 0,0001 1,21

Gabrb3 Gamma-aminobutyric acid receptor subunit beta-3 precursor 0,0002 1,21

Lpgat1 Acyl-CoA:lysophosphatidylglycerol acyltransferase 1 0,0002 1,21

Mrfap1 MORF4 family-associated protein 1 0,0073 1,21

Gabrg2 Gamma-aminobutyric acid receptor subunit gamma-2 precursor 0,0000 1,21

Txndc13 Thioredoxin domain-containing protein 13 precursor 0,0003 1,21

Rab18 Ras-related protein Rab-18 0,0024 1,21

Kcnma1 Calcium-activated potassium channel subunit alpha-1 0,0001 1,21

Spag9 C-jun-amino-terminal kinase-interacting protein 4 0,0010 1,21

Peg3 Paternally-expressed gene 3 protein (ASF-1) 0,0002 1,21

Pten Phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase 0,0019 1,21

Synj1 Synaptojanin-1 0,0055 1,21

Slc4a10 Sodium-driven chloride bicarbonate exchanger 0,0016 1,21

Kpna3 Importin subunit alpha-3 0,0015 1,20

Abr active BCR-related isoform 2 0,0052 1,20

Ccdc132 Coiled-coil domain-containing protein 132 0,0099 1,20

Ap2a2 AP-2 complex subunit alpha-2 0,0002 1,20

Ppp2ca Serine/threonine-protein phosphatase 2A catalytic subunit alpha 0,0014 1,20

Cap2 Adenylyl cyclase-associated protein 2 0,0002 1,20

Psap Sulfated glycoprotein 1 precursor (SGP-1) 0,0021 1,20

Elmo2 Engulfment and cell motility protein 2 0,0080 1,20

Kcnip2 Kv channel-interacting protein 2 0,0043 1,20

Atp5k ATP synthase subunit e, mitochondrial 0,0001 0,81

Mt2 Metallothionein-2 0,0034 0,81

Tsx Testis-specific protein 0,0016 0,80

Olfr779 Olfactory receptor Olfr779 0,0002 0,79

Olfr806 olfactory receptor 806 0,0085 0,77

2 weeks alcohol consumption

Vsnl1 Visinin-like protein 1 0,0001 1,33

Tmem130 Transmembrane protein 130 precursor 0,0005 1,27

Pdia3 Protein disulfide-isomerase A3 precursor 0,0016 1,26

Ipo7 Importin-7 0,0001 1,24

Camk2d Calcium/calmodulin-dependent protein kinase type II delta chain 0,0005 1,18

Ranbp6 Ran-binding protein 6 0,0016 1,18

Atp6ap1 Vacuolar ATP synthase subunit S1 precursor 0,0081 1,18

Ppap2b Lipid phosphate phosphohydrolase 3 0,0083 1,17

Ptprz1 protein tyrosine phosphatase, receptor type Z, polypeptide 1 0,0004 1,17

Zbtb2 zinc finger and BTB domain containing 2 0,0005 1,16

Prkar2b cAMP-dependent protein kinase type II-beta regulatory subunit 0,0051 1,16

Zdhhc2 Palmitoyltransferase ZDHHC2 0,0072 1,16

Rab6 Ras-related protein Rab-6A 0,0099 1,16

Slc6a1 Sodium- and chloride-dependent GABA transporter 1 0,0016 1,16

Arhgap5 Rho GTPase activating protein 5 0,0029 1,16

Gls glutaminase isoform 1 0,0028 1,15

Gabrg1 Gamma-aminobutyric acid receptor subunit gamma-1 precursor 0,0049 1,15
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and diverse binding partners [46,47]. These include transcription

factors and signaling molecules such as PKCs [48] and ionotropic

glutamate receptors [49] that have previously been implicated in

alcoholism [30,44,50-53]. Therefore, 14-3-3 proteins are well

positioned to integrate signaling inputs and influence alcohol

addiction. Indeed, previous studies reported gene and protein

expression changes for 14-3-3f in the nucleus accumbens and

amygdala after prolonged alcohol use [54,55] and a recent study

has shown reduced 14-3-3f in brain tissue of human alcoholics

[56]. Because we found that amygdala 14-3-3f levels were up-

regulated during the escalation of alcohol intake, we investigated

whether amygdala 14-3-3f contributes to the escalation of alcohol

intake in mice. For this purpose, lentiviral vectors expressing 14-3-

3f specific shRNA sequences (1222 and 1854 bp, Fig. 3A) were

generated to reduce the expression of 14-3-3f in vivo. As a control,

a shRNA sequence that did not recognize any known mammalian

gene in a BLAST search was used. Of the two shRNA constructs

tested, the 1854 construct was most effective in knocking down 14-

3-3f in vitro (Fig. 3B). Densitometry and slope analysis revealed

lower 14-3-3f protein levels in Neuro2A cells that were transfected

with both 14-3-3f shRNA constructs. Knockdown efficiency,

calculated from the ratio of the slopes for 14-3-3f shRNA over

those for untreated cells, was greater for the 1854 construct (71%)

as compared to the 1222 shRNA construct (38%). In contrast, the

scrambled construct did not affect 14-3-3f protein expression (2.5–

3.7% change from untreated cells). In situ hybridization after

unilateral infusion of the 1854 14-3-3f shRNA expressing

lentivirus in the CeA and infection with the scrambled shRNA

expressing lentivirus in the contralateral CeA confirmed effective

knockdown of 14-3-3f in vivo in the CeA using this same 14-3-3f
shRNA construct (1854 bp, Fig. 3C). Comparison of adjacent

sections stained for GFP, to localize the infection site, with sections

stained for 14-3-3f revealed that 14-3-3f mRNA was completely

absent in the CeA that was infected with the 1854 14-3-3f shRNA

expressing lentivirus while 14-3-3f was expressed in the contra-

lateral CeA that was infected with the scrambled shRNA

expressing lentivirus.

The effects of 14-3-3f knockdown on escalation of alcohol

intake were determined by bilaterally infusing either the 1854 14-

3-3f or the control lentivirus into the CeA and allowing the mice

to consume alcohol in the limited access choice paradigm. The

mice with CeA knockdown of 14-3-3f using the 1854 14-3-3f
shRNA construct showed increased alcohol intake (45-53%

increase from control in weeks 3 and 4; Fig. 4A, 10% v/v; rep.

measures ANOVA: Fgroup(1,12) = 1.3, N.S., Ftime x group(18,216) = 2.0,

P,0.05). Mice that were infected with the less effective 1222 14-3-

3f shRNA expressing lentivirus showed a less prominent but

significant increase in alcohol intake (23–22% increase from

control in weeks 3 and 4; Fig. 4B, 10% v/v; rep. measures

ANOVA: Ftime x group(18,216) = 2.6, P,0.01), demonstrating a gene-

dosage effect of amygdala 14-3-3f on alcohol intake. We next

confirmed the involvement of amygdala 14-3-3f in alcohol

Table 2. Cont.

Symbol Gene description p value EtOH/N

Dpp6 Dipeptidyl aminopeptidase-like protein 6 0,0022 1,15

Calcr Calcitonin receptor precursor 0,0069 1,15

Olfr779 Olfactory receptor 0,0010 0,85

Ap4e1 AP-4 complex subunit epsilon-1 0,0003 0,83

Tesc Tescalcin 0,0070 0,83

Rpl27a ribosomal protein L27a 0,0007 0,83

Itpka Inositol-trisphosphate 3-kinase A 0,0099 0,82

Cck Cholecystokinins precursor 0,0072 0,81

4 weeks alcohol consumption

Pum2 Pumilio homolog 2 0,0061 1,24

Igf1r Insulin-like growth factor 1 receptor precursor 0,0030 1,21

Pisd Phosphatidylserine decarboxylase proenzyme 0,0021 1,20

Pkia cAMP-dependent protein kinase inhibitor alpha 0,0033 1,19

Ptprz1 protein tyrosine phosphatase, receptor type Z, polypeptide 1 0,0021 1,19

Prepl Prolyl endopeptidase-like 0,0039 1,18

Peg3 Paternally-expressed gene 3 protein (ASF-1) 0,0058 1,17

Kpna1 Importin subunit alpha-1 0,0003 1,17

Prkacb cAMP-dependent protein kinase, beta-catalytic subunit 0,0015 1,17

Atp6ap1 Vacuolar ATP synthase subunit S1 precursor 0,0030 1,17

Homer1 Homer protein homolog 1 0,0032 1,16

Ncdn neurochondrin 0,0032 1,16

Dnm1 Dynamin-1 0,0085 1,16

Rasgrp1 RAS guanyl releasing protein 1 0,0003 1,16

Tmem40 Transmembrane protein 40 0,0059 0.84

*for the 1 week group only those genes are shown that display a change in expression of at least +/220% from naı̈ve controls. EtOH/N = fold change of the EtOH
group (1 wk, 2 wk or 4 wk) to naı̈ve controls. Hypothetical genes were excluded from this list.
doi:10.1371/journal.pone.0037999.t002
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consumption in a separate batch of mice using a higher alcohol

concentration (15% v/v). In agreement with our initial exper-

iment, CeA 14-3-3f knockdown using the 1854 shRNA increased

intake of the 15% alcohol solution (63–73% increase from control

in weeks 1–3; Fig. 4C; rep. measures ANOVA: Fgroup(1,11) = 5.1,

P,0.05, Ftime x group(13,143) = 1.0, N.S.). Furthermore, to evaluate

the relevance of our findings for alcoholism-like behavior, we next

determined the effects of amygdala 14-3-3f knockdown on the

development of inflexible alcohol drinking [33]. For this purpose,

the alcohol solution was adulterated with graded concentrations of

the bitter substance quinine. The mice with CeA 14-3-3f
knockdown using the 1854 shRNA showed a persistent high

preference for the quinine-adulterated alcohol solution, indicative

of inflexible alcohol drinking (Fig. 4D; Fquinine x group(5,50) = 2.37,

P = 0.053).

Finally, we also determined specificity of these findings for

alcohol and potential confounding effects of 14-3-3f knockdown

on taste sensitivity. Mice treated with the 14-3-3f 1854 shRNA

showed equal intake of the caloric sweet tastant sucrose (Fig. 5A;

Fgroup(1,11) = 0.002, N.S.; Fsucrose x group(1,11) = 1.04, N.S.) and the

non-caloric sweet tastant saccharin (Fig. 5B; Fgroup(1,11) = 2.5, N.S.;

Fsaccharin x group(1,11) = 1.6, N.S.) as compared to control mice. The

groups also showed similar preference for these sweet solutions

(not shown). Mice with 14-3-3f knockdown also did not differ from

control mice in aversion for bitter quinine solutions (Fig. 5C;

Fgroup(1,11) = 0.001, N.S.; Fquinine x group(1,11) = 0.21, N.S.). Taken

together, the increase in alcohol intake in mice with CeA 14-3-3f
knockdown does not generalize to natural rewards and can not be

explained by altered taste sensitivity.

Bilateral infection of the CeA was confirmed by post-mortem

immunohistochemistry for GFP with the main infection site

located between 20.9 and 21.5 mm from bregma (Figure 4E)

[36]. Mice that showed unilateral infection were excluded from

further analysis; one mouse was excluded after histology revealed

hydrocephalus. There was occasional infection of the basolateral

nucleus of the amygdala and in the caudate putamen along the

injection tract.

Discussion

The development of alcoholism is a progressive process that

invariably starts with casual, social drinking, which escalates to

heavy drinking, problem drinking and ultimately alcohol addic-

tion. Consistent with its role in processing negative emotional

stimuli, the amygdala contributes to alcohol consumption in

human alcoholics and alcohol-dependent animals that display

enhanced negative affect [19–22]. However, the amygdala is also

important for perception of positive emotions [17] and it may

therefore also be involved in the reinforcing properties of alcohol

[57] and in escalation of alcohol intake in non-dependent animals

[30]. Here, we combined gene expression analysis, RNA

interference and a murine model for escalation of voluntary

alcohol intake to identify amygdala 14-3-3f as a novel key

modulator in the development of high alcohol intake.

Amygdala 14-3-3f and escalation of alcohol intake
In the limited access choice paradigm, C57BL/6J mice show a

rapid increase in alcohol intake in 7–10 days time. This rapid

acquisition of alcohol consumption is likely driven by the positive

subjective properties of alcohol. After two weeks of daily alcohol

consumption, the mice reach their highest levels of alcohol intake

and by that time, C57BL6/J mice also display inflexible alcohol

intake in that they are insensitive to quinine adulteration of the

alcohol solution when this is the sole source of alcohol [33]. In

subsequent weeks, C57BL/6J mice maintain high levels of alcohol

intake and develop indifferent alcohol drinking, indicated by

persistent intake from aversive, quinine-adulterated alcohol despite

the availability of non-adulterated alcohol [33]. Although the level

of alcohol exposure achieved in our rodent model may not be

sufficient to induce a genuine state of alcohol addiction, the

inflexible and indifferent alcohol drinking patterns displayed by

our mice show remarkable similarities to compulsive alcohol

drinking in human alcoholics [5860]. The limited access choice

paradigm therefore models important aspects of alcoholism-like

behavior.

Figure 2. qPCR data for mice that consumed alcohol for 1 week or 2 weeks. qPCR confirmed significant up-regulation of 4 out of 8
candidate genes when compared to naı̈ve control mice: Gria3, 14-3-3 zeta, Gabrb3 and Prkacb. *P , 0.05, **P , 0.01 from naı̈ve mice by Tukey HSD
multiple comparisons.
doi:10.1371/journal.pone.0037999.g002
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The current microarray analysis compared gene expression

levels at three stages of the development of alcoholism-like

behavior: initial escalation of alcohol intake (1 week), the stage

where high alcohol intake is reached and signs of alcoholism-like

behavior emerge (2 weeks) and the stage of stable high alcohol

intake (4 weeks). Our analysis revealed that gene expression

changes in the amygdala occur predominantly during the initial

rapid escalation of alcohol intake (1 week). These data suggest that

the amygdala contributes to the positive subjective properties of

alcohol, which is consistent with the known involvement of the

amygdala in the generation and perception of stimuli with positive

emotional valence [16–18].

One of the genes that stood out from our analysis of alcohol-

regulated amygdala genes is 14-3-3f. Up-regulation of this gene

during initial escalation of alcohol intake was confirmed by qPCR

analysis in an independent batch of mice. Moreover, using RNA

interference we demonstrate functional involvement of amygdala

14-3-3f in the development of high alcohol intake and alcoholism-

like behavior. Local knockdown of 14-3-3f in the amygdala lead to

increased alcohol intake and a greater propensity to develop

inflexible alcohol intake. Together with the observed up-regulation

of 14-3-3f in the amygdala, these findings suggest that 14-3-3f
may serve to restrict alcohol intake.

The observed increase in alcohol intake after 14-3-3f knock-

down in the amygdala was behaviorally specific for alcohol, as we

did not observe alterations in preference for natural rewards, i.e.

sucrose and saccharin or in sensitivity to the aversive taste of

quinine. The enhanced alcohol intake after amygdala 14-3-3f
knockdown, together with the up-regulation of amygdala 14-3-3f
expression during the initial increase in alcohol intake suggests that

the rewarding properties of alcohol are increased in the absence of

14-3-3f. This implies that 14-3-3f may be a protective factor

against the development of alcoholism; up-regulation of 14-3-3f
would be required to demonstrate this role. The augmentation of

alcohol intake after amygdala 14-3-3f knockdown may also reflect

impaired behavioral control. In fact, the increase in inflexible

alcohol intake that we found is indicative of loss of control over

alcohol intake. However, it is also possible that mice with

amygdala 14-3-3f depletions consume more alcohol and as a

consequence develop inflexible alcohol intake more rapidly than

control mice.

Table 3. Gene Enrichment analysis in STEM.

Profile 45 Profile 47

Transport Ion transport
Ligand-gated ion
channels Synaptic transmission Cytoplasm Protein transport

Acbd5 Apc

Atp2a2 Atp2a2 Atp2c1

Atp6ap1 Atp6ap1 B3galnt1

Camk2a Camk2a Camk2a Caprin1

Cspg5 Eps15 Eps15

Ctnnd2 Gatm

Exoc2 Gprasp1

Exoc5 Ipo7 Ipo7

Gabra1 Gabra1 Gabra1 Itch

Gabrb3 Gabrb3 Gabrb3 Kif5A

Gabrg2 Gabrg2 Gabrg2 Gabrg2 Mgea5

Gopc Mrfap1

Gria1 Gria1 Gria1 Pdia3

Gria3 Gria3 Gria3 Peg3

Kcnip2 Kcnip2 Pppca

Kif3a Prkacb

Kpna3 Rab18

Lrp11 Sel1L

Rab10 Sfrs1

Slc38a1 Slc38a1 Stx7 Stx7

Snx27 Tm9sf2

Synj1 Tmed2 Tmed2

Tmod2 Ugcg

Trappc3 Ybx1

Trim9 Trim9 14-3-3 g 14-3-3 g

Tsg101 14-3-3 h 14-3-3 h

14-3-3f

Gene Ontology analysis for the significant time profiles 45 and 47 in STEM revealed significant enrichment of genes involved in transport, ion transport, ligand-gated ion
channel activity, synaptic transmission, cytoplasm and protein transport. Highlighted are the selected 8 top candidate genes.
doi:10.1371/journal.pone.0037999.t003
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The present findings demonstrate an important role of

amygdala 14-3-3f in the escalation of alcohol intake: 14-3-3f
levels in the amygdala are enhanced and 14-3-3f knockdown

causes profound increases in alcohol intake in mice. Alcohol has

previously been shown to alter 14-3-3f levels, although in contrast

to our current findings only after extended alcohol exposure. For

example, prolonged alcohol use in rats and in alcohol dependent

mice induced increased 14-3-3f gene and protein expression in

nucleus accumbens and amygdala [54,55]. Moreover, a recent

study showed reduced 14-3-3f in the motor cortex of human

alcoholics, i.e. after extended alcohol abuse [56]. The apparent

contrast in the directional changes in expression of 14-3-3f may

reflect brain region dependency of 14-3-3f regulation by alcohol:

while 14-3-3f is consistently up-regulated by alcohol use in limbic

brain regions, the same gene may be down-regulated in cortical

regions. Although gene and protein expression changes may not

necessarily cause behavioral changes, these studies suggest

involvement of 14-3-3f in alcohol intake after prolonged alcohol

use. In conclusion, 14-3-3f pathways in the amygdala constitute

important mechanisms that are engaged during the descent of

casual alcohol intake into alcoholism-like behavior.

Biological function of 14-3-3f in relation to alcohol
consumption

14-3-3 proteins are adapter proteins, that have multiple and

diverse binding partners [46,47]. Upon binding, they can regulate

the activity or subcellular localization of other proteins and thereby

influence multiple cellular processes including signal transduction or

the cell cycle. 14-3-3 Proteins are most widely studied for their

involvement in cancer [47,61,62], but they have also been

associated with neurological diseases such as Parkinson’s disease

[63–65]. The binding partners of 14-3-3 proteins are diverse and

include transcription factors and signaling molecules. The molec-

ular mechanisms through which 14-3-3f influences alcohol

consumption are currently unknown. However, several binding

partners of 14-3-3 proteins have been implicated in alcoholism and

may contribute to 14-3-3 modulation of alcohol intake.

For example, 14-3-3f is known to interact with protein kinase C

isoforms (PKCs) including PKCe [48]. In fact, 14-3-3 was first

identified as a PKC inhibitor [66], although later reports showed that

14-3-3 may enhance PKC activity [48,67]. PKCs, including PKCd
and PKCe, are critically involved in alcohol sensitivity [52,53,68]. In

fact, amygdala PKCe is important for alcohol intake [30].

Interactions of 14-3-3f with PKCs may contribute to these effects.

14-3-3 proteins may also affect GABAergic neurotransmission.

Interactions of GABA-B receptor subunits with 14-3-3 proteins

were reported [69]. Further, 14-3-3 can affect the phosphorylation

of GABA-A receptor subunits [70] and GABA, in turn, can regulate

14-3-3 proteins [71]. Multiple studies have shown an association of

alcohol dependence to genes encoding GABA-A receptor subunits

alpha1 [45,72-76] and alcohol is known to regulate GABA-A

receptor subunits both in vitro and in vivo [77–81], possibly through

14-3-3f interactions with GABA-A receptors.

Interactions of 14-3-3 proteins with ionotropic glutamate

receptors [49] are another candidate mechanism through which

14-3-3 proteins may affect alcoholism. AMPA receptors have been

associated with alcoholism and alcohol intake in animal models

[44,50,51]. 14-3-3f may modulate alcohol consumption by

interacting with and affecting the activity of glutamate receptors.

Our microarray analysis revealed that, in addition to 14-3-3f,
the GABA-A b3 subunit (Gabrb3) and the AMPA receptor a3

subunit (GRIA3) were also up-regulated in the amygdala during

initial escalation of alcohol intake, suggesting that GABA-A and

AMPA receptors in the amygdala are also involved in escalation of

alcohol intake, possibly through interactions with 14-3-3f. Clearly,

the elucidation of the molecular mechanisms and binding partners

involved in 14-3-3f control over alcohol intake, both during

initiation and maintenance of alcohol use, should be addressed in

future research. In fact, the recent development of drugs that

Figure 3. Design and validation of 14-3-3f shRNA constructs. A 14-3-3f specific shRNA sequences (1222 and 1854 bp) were cloned into
pLentiLox3.7 vectors and B western blot analysis revealed that both constructs effectively reduced 14-3-3f protein levels in Neuro2A cells, the 1854
construct being most effective in vitro. C In situ hybridization confirmed effective knockdown of 14-3-3f in the CeA after infection with the 1854
shRNA expressing lentivirus. The top panels show 14-3-3f expression in the CeA after infection with the control or the 1854 shRNA expressing
lentivirus. The bottom panels show GFP mRNA and therefore the infection site in adjacent sections. 14-3-3f mRNA is completely absent in the area
that is infected with the 1854 shRNA expressing lentivirus.
doi:10.1371/journal.pone.0037999.g003
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Figure 4. Effects of local knockdown of 14-3-3f in the CeA on alcohol consumption. A Local knockdown of 14-3-3f in the CeA using the
1854 shRNA increased intake of a 10% alcohol solution (v/v). B Infection with the less effective 1222 shRNA also increased alcohol intake of a 10%
alcohol solution (v/v), but less prominently so than the 1854 14-3-3f shRNA. C In a separate batch of mice, local knockdown of 14-3-3f in the CeA
using the 1854 shRNA increased alcohol intake of a 15% alcohol solution (v/v) and D local knockdown of 14-3-3f in the CeA using the 1854 shRNA
caused persistent preference for the alcohol solution despite adulteration with the bitter tastant quinine. In E the sites of viral infection in the brain
are summarized. The black ellipses show the core of the infection site that was consistently targeted across all animals. The areas marked in grey
represent less frequent infected sites that include the anterior amygdala, the basolateral amygdala and part of the caudate putamen, along the
injection tract. N Control mice; O 14-3-3f-specific shRNA treated mice. * P,0.05 from controls; # P,0.05, ## P,0.01 from 0 mM quinine for mice
treated with control lentivirus; $ P ,0.05 from 0 mM quinine for mice treated with the 1854 14-3-3f shRNA expressing lentivirus by t-test.
doi:10.1371/journal.pone.0037999.g004
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specifically interact with certain 14-3-3 complexes [82,83]

underscores the need to identify the 14-3-3f-protein complex that

governs the escalation of alcohol intake.

Conclusion
This study identifies amygdala 14-3-3f as a novel key modulator

of alcohol intake. Interactions of 14-3-3f with signaling proteins

such as PKCe [48] or neurotransmitter receptors [49] may

contribute to these effects. The recent development of 14-3-3

complex specific drugs provides exciting opportunities to develop

innovative treatment strategies for alcoholism.
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