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Abstract

Complex traits arise from the interplay between genetic and environmental factors. The actions of 

these factors usually appear to be additive, and few compelling examples of gene-environment 

synergy have been documented. Here we show that adiposity significantly amplifies the effect of 

three sequence variants (PNPLA3-I148M, TM6SF2-E167K and GCKR-P446L) associated with 

nonalcoholic fatty liver disease (NAFLD). Synergy between adiposity and genotype promoted the 
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full spectrum of NAFLD, from steatosis to hepatic inflammation to cirrhosis. We found no 

evidence of strong interactions between adiposity and sequence variants influencing other 

adiposity-associated traits. These results indicate that adiposity may augment genetic risk of 

NAFLD at multiple loci through at least three different metabolic mechanisms.

Introduction

For most complex traits, sequence variations identified by genome-wide association studies 

(GWAS) account for only a minor fraction of the heritable variation estimated from family 

studies 1. The missing heritability has been attributed to rare variants that are not represented 

on commercial SNP arrays 2,3, common variants that do not reach genome-wide 

significance 4, and gene-gene and gene-environment interactions that amplify the phenotypic 

effects of individual sequence variations5–7. The contribution of gene-environment 

interactions remains controversial. Genetic variants are usually assumed to act in an additive 

manner 5,8, such that the combined effect of two or more sequence variations equals the sum 

of their individual effects. Compelling examples of synergistic or context-dependent 

relationships between genetic variants and environmental exposures have been described, 

including susceptibility to adverse drug reactions 9, infectious diseases 10, and sun 

exposure 11, but most reports of gene-environment interactions have proved poorly 

reproducible8,12,13.

Obesity has emerged as a major cause of morbidity due to its role in metabolic disorders 

such as type 2 diabetes mellitus, hypertension and dyslipidemia. More recently, obesity has 

been associated with nonalcoholic fatty liver disease (NAFLD), a spectrum of disorders that 

includes excess liver fat (steatosis), inflammation (steatohepatitis), fibrosis (cirrhosis), and 

ultimately malignant transformation (hepatocellular carcinoma) 14. Susceptibility to NAFLD 

is highly variable; not all obese individuals develop steatosis and most cases of steatosis do 

not progress to chronic liver disease. Expression of the disorder is strongly influenced by 

heritable factors. One of the most powerful genetic risk factors for NAFLD is a single 

nucleotide polymorphism (SNP) that changes residue 148 of the patatin-like phospholipase 3 

gene (PNPLA3) from isoleucine to methionine (referred to here as the M variant) 15. Here 

we show that adiposity influences the effect of the M variant on liver fat content, as well as 

on serum ALT (a marker of hepatocellular injury) and cirrhosis. Interactions with obesity 

were also observed for sequence variants in two other genes (TM6SF2 and GCKR) that 

contribute to NAFLD by different mechanisms16–18. We did not observe interactions of 

similar magnitude for a range of other traits that associate strongly with adiposity. Thus, 

gene × adiposity interaction on NAFLD appears to be a rather specific and robust 

phenomenon.

Results

The effect of the M variant on HTGC is highly dependent on adiposity

Previously, we showed that steatosis (HTGC>5.5%) was present in 33% of the participants 

in the Dallas Heart Study and that BMI was strongly associated with increased HTGC 

(Spearman’s rho=0.4) 19. To determine if the effect of the M variant on HTGC is modified 
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by adiposity, we analyzed the relationship between PNPLA3 genotype and HTGC after 

stratifying the DHS participants into four bins based on BMI (Fig. 1). Among lean persons 

(BMI<25 kg/m2), median HTGC increased modestly, though significantly in a stepwise 

fashion in the II, IM and MM individuals (1.8%, 2.3%, and 2.8%, respectively; P=0.0003). 

Steatosis was less common in all three genotype groups (II, 9%; IM, 8%; MM, 18%) than in 

the general population (33%).

The effect of the M variant increased with increasing BMI. Among the most obese 

participants (BMI>35 kg/m2), the median HTGC was 3-fold higher in MM than in II 

individuals (14.2% versus 4.7%) and a significantly greater proportion of the MM 

homozygotes had hepatic steatosis (84% versus 42%; P=0.001). In all 4 BMI groups, the 

median HTGC of IM heterozygotes was intermediate between the levels in the two groups 

of homozygotes.

Regression analysis using BMI as an ordered categorical variable revealed highly significant 

differences in the effect of PNPLA3 genotype on HTGC among the 4 BMI groups (t-test; 

P=0.0004). Significant interaction was also observed using BMI as a continuous variable in 

the regression model (t-test; P = 4×10−5).

Interactive effects on continuous traits are influenced by the scale on which they are 

analyzed 20,21. Therefore, we repeated the interaction tests using the untransformed data, 

other transformations of HTGC (inverse normalized, or logarithmically transformed), and 

after dichotomizing the data (normal vs steatosis). The BMI×PNPLA3 interaction remained 

significant in all of these analyses (Supplementary Fig. 1). To assess whether observed 

interaction effects were a result of heteroscedasticity, we repeated the analysis using model-

robust estimates of standard errors 22. The BMI×PNPLA3 interactions remained significant 

(Supplementary Fig. 1). These data indicate that the effect of PNPLA3 genotype on HTGC 

is strongly influenced by adiposity.

Adiposity amplifies effect of other NAFLD-associated genetic variants

To determine whether the interaction between PNPLA3 genotype and BMI on HTGC is 

peculiar to the M variant, we examined the relationship between HTGC, BMI, and other 

NAFLD-related variants. We first tested whether variants in loci that associated with HTGC 

in the Genetics of Liver Disease (GOLD) study were associated with HTGC in the DHS 

(Supplementary Table 1) 18. Two of these SNPs, TM6SF2-E167K and GCKR-P446L, were 

associated with HTGC in the DHS 16.

We examined whether adiposity influenced the effects of the risk alleles at the TM6SF2 and 

GCKR loci on HTGC in the DHS. As was observed with the M variant, the effect of the 

GCKR risk allele (P446L) was significantly amplified by increasing BMI (Fig. 2) (P-

interaction =5.5×10−5). A similar amplifying effect of BMI on HTGC was seen for the 

TM6SF2 risk variant (E167K), though the interaction was less significant (P-interaction 

=0.006), likely due to the lower frequency of the risk allele when compared to the GCKR 

risk allele (MAF=0.05 versus 0.25). As was observed for PNPLA3, the interactions 

remained significant after different transformations of HTGC, and when using a 

heteroscedasticity-robust model (Supplementary Fig. 1). Thus, the interaction between 
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genotype and BMI on HTGC is not unique to PNPLA3. This finding suggests that obesity 

promotes development of NAFLD through interactions with at least three genes that act in 

different metabolic pathways.

PNPLA3-148M × adiposity interaction on serum levels of liver enzymes

Hepatic steatosis per se is considered to be benign 23. A subset of individuals with steatosis 

develops hepatic inflammation, which can result in elevated serum levels of liver enzymes, 

especially alanine aminotransferase (ALT) 24. To determine if adiposity exacerbated the 

effect of the M variant on liver inflammation, we tested for interaction between the PNPLA3 
genotype and BMI on serum ALT levels (Fig. 3). In the DHS, serum ALT levels were 

increased by the M variant as previously reported 15. Median ALT was 18 U/L in II-

homozygotes, 20 U/L in IM-heterozygotes, and 22 U/L in MM-homozygotes (P-

trend=9×10−5). As with HTGC, the effect of the M variant on ALT increased with increasing 

BMI. The M variant was not associated with increased ALT in the lean (BMI<25 kg/m2) or 

the overweight (BMI 25–30 kg/m2) groups, but increased ALT in the obese (BMI 30–35 

kg/m2) and massively obese (BMI >35 kg/m2) groups. In the Dallas Biobank and in the 

Copenhagen Cohort, which are larger cohorts than the DHS, the effect of the M variant on 

ALT was also apparent in the overweight group. Nonetheless, in all three cohorts the 

interaction between BMI and PNPLA3 genotype on ALT was highly statistically significant.

As for HTGC, we retested the BMI×PNPLA3 interaction in the DHS after various 

transformations of ALT. The interaction remained robust regardless of transformation 

applied (Supplementary Fig. 2).

We also tested for interaction between BMI and the risk alleles at TM6SF2 and GCKR on 

ALT levels in the DHS, Biobank, and Copenhagen cohorts. The effect of the TM6SF2-

E167K variant on ALT was significantly affected by BMI in the Copenhagen Cohort 

(P=10−4), but not in the DHS (P=0.14) or Dallas Biobank (P=0.39)(Supplementary Fig. 3). 

GCKR showed marginal evidence for interaction with BMI on ALT in the DHS (P=0.01), 

but not in the two larger cohorts (Supplementary Fig. 4). Thus, in contrast to what we 

observed with the M variant, we did not find reproducible evidence of an interaction 

between risk alleles at TM6SF2/GCKR and BMI on ALT levels. This may be explained by a 

reduced effect size on HTGC (e.g., GCKR) or a lower allele frequency (e.g., TM6SF2), 

resulting in a reduced power to detect interactions.

Adiposity augments the effect of M variant on the prevalence of cirrhosis in the 
Copenhagen Cohort

The DHS and Dallas Biobank both contain too few subjects with cirrhosis to examine the 

gene-environment interactions for this phenotype. The Copenhagen cohort included 384 

participants with cirrhosis due either to alcoholism or NAFLD (see Supplementary Table 2 

for baseline characteristics). The effect of the PNPLA3 risk variant on the prevalence of 

cirrhosis increased with increasing BMI (Fig. 4). The risk of cirrhosis was higher among 

MM homozygotes in each BMI category, even those with a BMI <25 kg/m2. Among persons 

with BMI>35 kg/m2, the odds ratio for cirrhosis was 5.8 in homozygotes for the M variant 

versus those homozygous for the I variant. The corresponding odds ratio in those with 
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BMI<25 kg/m2 was 2.4. Additional adjustments for alcohol×BMI or alcohol×PNPLA3 

(individually or simultaneously) did not materially change results. Thus, interaction between 

adiposity and the 148M isoform appears to promote chronic liver disease as well as 

steatosis.

Adiposity as a causal risk factor for NAFLD: Mendelian randomization analysis

If adiposity contributes to NAFLD, then SNPs that are associated with BMI would be 

expected to also associate with HTGC. Since the individual effects on BMI of these SNPs 

are small, we constructed a genetic risk score using 30 SNPs that were associated with 

adiposity in a previous GWAS (Supplementary Table 3) 25, and tested for association with 

BMI and HTGC in the DHS. As expected, an increasing genetic risk score was associated 

with a modest, though significant increase in BMI (P for trend across SNP-score=0.001) 

(Supplementary Fig. 5). Subjects in the first quintile had a median BMI of 27.5, whereas 

those in the fifth quintile of the risk score had a median BMI of 29.3 kg/m2. The BMI risk 

score was also associated with an increase in HTGC (p=0.02). The modest effect of the 

obesogenic risk score on HTGC was consistent with the small increase in BMI associated 

with these variants.

Gene × adiposity interaction on other BMI-associated traits

To assess whether gene-environment interactions were commonly observed with genetic 

predictors of other metabolic traits that are related to obesity, we screened the DHS database 

for phenotypes that showed a correlation with BMI with an absolute r-value of more than 0.2 

after adjusting for age, gender and ethnicity (Supplementary Table 4). We then determined if 

these traits were associated with any SNP assayed using the Illumina Exome BeadChip array 

at an exome-wide significance level (P<3.6×10−7). For comparison we included SNPs found 

to associate with NAFLD in previous studies 18,26. A total of 13 traits and 21 SNPs meeting 

these criteria were identified (Supplementary Table 5). As an example, BMI was strongly 

associated with plasma levels of leptin (Partial r=0.74; P<1×10−300). A SNP located in the 

leptin gene was strongly associated with leptin levels (per allele change in standardized 

leptin levels= −0.22 s.d. units; P=2.28×10−11). Despite the strengths of the SNP-leptin and 

BMI-leptin associations, no SNP×BMI interaction was seen (P=0.60). A similar lack of 

SNP×BMI interaction was observed for CRP, the second most strongly BMI-correlated trait. 

Of the 13 traits examined, only HTGC showed robust and highly statistically significant 

interactions between trait-associated SNPs and BMI.

For the remaining 12 BMI-associated traits, only 3 nominally significant interactions were 

identified (between BMI and SNPs in APOA5, LPL, and GCKR on plasma TG levels). 

None of these three interactions were observed in the Dallas Biobank, and only one was 

replicated (p=0.02) in the large Copenhagen cohort (Supplementary Table 6).

Discussion

The major finding of this paper is that adiposity amplifies the genetic risk of NAFLD. In a 

cohort from the general population (the DHS), the prevalence of hepatic steatosis ranged 

from 9% in lean individuals who did not carry the M variant to 84% in very obese 
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individuals who were homozygous for the M variant. Adiposity also amplified the effects of 

the M variant on serum ALT activity and the risk of cirrhosis. Taken together, these results 

indicate that gene × adiposity interaction plays a major role in the development and 

progression of NAFLD in humans. Other traits that are strongly correlated with adiposity 

(e.g., plasma leptin and CRP levels) were not influenced by gene × BMI interactions in our 

study, despite having associations with genetic variants that were comparable in magnitude 

to that of the M variant on HTGC.

The interaction with adiposity was not specific to the M isoform of PNPLA3. We found 

similar gene × adiposity relationships for two other steatogenic alleles, GCKR-446L and 

TM6SF2-167K. These three variants promote steatosis by distinct metabolic mechanisms. 

The M isoform of PNPLA3 accumulates on cytoplasmic lipid droplets and likely 

compromises TG mobilization 27. GCKR is a negative regulator of glucokinase; the loss-of-

function variant (446L) results in increases in phosphorylation of glucose 28, glycolysis, and 

fatty acid synthesis 17 in the liver. TM6SF2 is a polytopic ER protein that is required for 

VLDL secretion from the liver 16. The E167K substitution is a loss-of-function mutation that 

results in impaired hepatic TG secretion and accumulation of hepatic fat 16. Thus, obesity 

may augment genetic risk of NAFLD through at least three different metabolic mechanisms.

One possibility is that obesity may amplify the effect of the three risk alleles by altering their 

expression. PNPLA3 is a direct target of the insulin-regulated transcription factor sterol 

regulatory element binding protein-1c (SREBP-1c) and is highly regulated by fasting and 

refeeding 29. GCKR expression is also increased by glucose and insulin 30. The insulin 

resistance associated with obesity may therefore increase expression of these two genes. 

However, TM6SF2 does not respond to food intake 31. Thus, the gene × adiposity interaction 

appears not to be due simply to an enhancement in the expression of the risk allele at these 

three loci.

Do the variants in PNPLA3, TM6SF2, and GCKR interact with other environmental risk 

factors associated with obesity? Increasing visceral fat content augmented the effect of the 

M-variant on hepatic fat content in a previous study of 2,257 non-diabetic European-

Americans 32. A diet rich in carbohydrates is associated with an increase in risk of 

NAFLD 33. Among 158 Hispanic children, a high carbohydrate intake increased HTGC in 

those homozygous for the PNPLA3 M-variant, but not in IM-heterozygotes or II-

homozygotes 34. We observed a similar phenomenon in mice. Knockin mice expressing 

PNPLA3-148M do not develop hepatic steatosis on a low-fat chow diet, whereas on a high-

sucrose diet, which dramatically increases the levels of insulin, the mice have 2–3 fold 

increased HTGC compared to wildtype mice 27. These findings support the hypothesis that 

gene × diet interactions play a role in NAFLD. We speculate that energy surplus is an 

absolute requirement for the deposition of fat in the liver. In the absence of an energy 

surplus, there is no driver for hepatic fat accumulation, irrespective of genotype. This 

situation is analogous to a pharmacogenetics interaction, in which the effect of a genetic 

variant is contingent on the action of a drug.

An estimated 30% of those individuals who develop steatosis have associated hepatic 

inflammation 35. In a subset of these individuals, liver enzymes are released into the blood. 
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PNPLA3-I148M was the SNP most strongly associated with serum ALT levels in the first 

GWAS on serum liver enzyme levels 36, and this result has been confirmed in several 

subsequent studies 15,37. We found that adiposity amplified the effect of the M variant on 

ALT levels in a manner that was similar to the effect on steatosis. This finding contrasts with 

Larrieta-Carrasco et. al., who reported that the odds ratio of elevated ALT associated with 

the M variant was greater in normal-weight children than in obese children 38, and with 

Giudice et. al.39, who reported that the effect of the M variant increased with waist to hip 

ratio, but not with BMI, in obese children. The reasons for these discrepancies are not 

known.

We also found a gene×adiposity interaction when we analyzed the effect of PNPLA3-I148M 

on cirrhosis due to NAFLD or to alcoholic liver disease. Among massively obese 

individuals, MM-homozygotes had a 5.8-fold increased risk of cirrhosis compared to II-

homozygotes. Among lean persons (BMI<25 kg/m2), the MM-homozygotes had a 2.4-fold 

increased risk of cirrhosis compared to II-homozygotes. Thus, adiposity appears to amplify 

the effect of the PNPLA3-148M variant on the entire spectrum of NAFLD, from steatosis, to 

steatohepatitis, to end-stage liver disease. A limitation to the observed interaction on 

cirrhosis is that the number of cases was relatively modest, and that cirrhosis was defined by 

registry-based ICD-codes. Pending independent replication in larger patient cohorts, the 

interaction on cirrhosis should therefore be viewed as preliminary.

Adiposity has been found to also amplify the effect of alcohol on liver disease 40. Among 

obese men, those who drank >15 units of alcohol per week had an 18.9 fold increased risk of 

death from liver disease compared to non-drinkers40. The corresponding relative risk among 

lean men was 3.2. Taken together, our data and the results of Hart et al.40 indicate that 

adiposity exacerbates the effects on fatty liver disease of both genetic and nongenetic 

factors. It is possible that adiposity exacerbates alcoholic liver disease through its actions on 

PNPLA3, since PNPLA3-148M has been shown to confer risk of cirrhosis among 

alcoholics41.

Whereas the burgeoning of obesity in the population is a result of secular changes in 

lifestyle factors (presumably diet and exercise), inter-individual differences in adiposity are 

also partly heritable. We show here that genetic variants that associate with increased BMI 

also associate with increased hepatic fat content. This finding indicates that the sequence 

variants at nearly 100 loci that have been associated with BMI 42 would be predicted to be 

associated with liver fat content in a PNPLA3/TM6SF2/GCKR genotype-dependent manner. 

Thus, the heritability of HTGC is determined not only by the primary effect of PNPLA3/

TM6SF2/GCKR genotype but also by the secondary effects of variation at nearly 100 loci 

that influence HTGC indirectly via their effects on adiposity. Thus the interaction between 

BMI and NAFLD-variants reported here should in fact be viewed as a mixture of gene×gene 

and gene×environment interactions.

Obesity increases susceptibility to a wide variety of common complex diseases ranging from 

cancer (e.g., breast and colon cancer) and hypertension to metabolic disorders (e.g., type 2 

diabetes mellitus). Few single gene×adiposity interactions have been robustly documented 

for any of these conditions 12. In an effort to probe the contribution of gene×adiposity 
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interactions to adiposity-associated traits more generally, we screened the DHS database for 

metabolic phenotypes that are strongly correlated with BMI, and then for SNPs that are 

strongly associated with those traits. Of the phenotypes tested, 13 met both criteria, but apart 

from the BMI×SNP interactions on HTGC, only three SNPs showed nominally significant 

interactions with BMI (variants in LPL, APOA5, and GCKR interacted with BMI in their 

effect on plasma TG levels). The interactions were not robustly replicated in two larger 

cohorts. Limitations of this screen include the relatively modest sample size and the 

comparison of candidate gene SNPs with those identified by an agnostic exome-wide 

approach. Nevertheless, these findings support the hypothesis that gene × adiposity 

interactions of comparable magnitude to those observed for PNPLA3, TM6SF2, and GCKR 
on HTGC are uncommon.

What distinguishes NAFLD from other adiposity-associated phenotypes, such as 

hypertension and blood glucose levels? First, the common alleles that contribute to 

hypertension and blood glucose levels all have smaller phenotypic effects than do the fatty 

liver susceptibility alleles 43,44. For example, homozygotes for the M variant have a 2-fold 

increase in HTGC compared to II-homozygotes, and the variant explains ~5–10% of the 

variance in HTGC in different ethnicities. In contrast, the alleles most robustly associated 

with blood pressure or with blood glucose only increase these traits by ~1%, and each 

explains less than 1% of the total trait variance 43,44. These modest effect sizes limit the 

power to detect interactions with adiposity.

A second major difference between blood pressure and blood glucose, and liver fat content 

is that blood pressure and blood glucose are both under homeostatic control. Consequently, 

the effect of any genetic variant on the levels of blood glucose, or on blood pressure, will be 

opposed by counter-regulatory effects. In contrast, there is no evidence that the 

concentration of TG in the liver is subject to feedback regulation. Therefore, sequence 

variants or environmental factors (such as increased food consumption) can promote the 

accumulation of large amounts of TG within lipid droplets in the liver without eliciting a 

counter-regulatory response. The frequency of the M variant increases from sub-Saharan 

Africa to South America in a pattern that reflects human migration. This pattern suggests 

that the variant may have been under positive selective pressure. Could the M variant be part 

of the “thrifty genome”, as has been suggested previously 45,46?

The findings reported here raise the possibility that consideration of adiposity and genotype 

jointly may provide improved prediction of individuals at highest risk of progressing from 

simple steatosis to chronic liver disease. The risk alleles of the three strongest NAFLD risk 

variants confer only moderate risk in lean individuals, but are major risk factors in the obese, 

suggesting that genetic screening would be especially valuable in this subgroup. Similarly, 

while all obese individuals would benefit from a weight-loss intervention, our data suggest 

that individuals at high genetic risk of NAFLD are likely to benefit the most.

Online Methods

Studies were approved by institutional review boards and ethics committees of the 

University of Texas Southwestern Medical Center and by Danish institutional review boards 
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and ethic committees, and were conducted according to the Declaration of Helsinki. Written 

informed consent was obtained from participants. There was no overlap of individuals 

between the studies.

Participants

We included participants from four studies: the Dallas Heart Study (DHS), the Dallas 

Biobank, the Copenhagen City Heart Study (CCHS), and the Copenhagen General 

Population Study (CGPS). The DHS is a multiethnic, probability-based sample of Dallas 

County that was collected between 2000 and 2002, and between 2007 and 2009 15,19. 

Ethnicity was self-reported in accordance with U.S. census categories. From the DHS, we 

included 2,675 participants in whom hepatic triglyceride content (HTGC) was measured 47 

and up to 1,786 additional individuals were added to the sample size for the analysis of other 

traits. We included 5,434 persons from the Dallas Biobank, a general population cohort of 

African Americans and Hispanic Americans from Dallas, TX 16. The CCHS and CGPS are 

prospective studies of the Danish general population initiated in 1976 and 2003, 

respectively 16,48. All participants from the CCHS and CGPS were white and of Danish 

descent, as determined by the National Danish Civil Registration System. We combined the 

CCHS and CGPS into one cohort, totaling 93,719 persons, here referred to as the 

Copenhagen cohort.

Measurements

Body mass index was measured as weight in kilograms divided by measured height in 

meters squared. Hepatic triglyceride content (HTGC) was measured in the DHS using 

proton magnetic resonance spectrometry47. Hepatic steatosis was defined as an HTGC of 

5.5% or greater; 5.5% represents the 95th percentile of the distribution of HTGC in a 

population with no risk factors for steatosis 47. Serum levels of ALT were measured as 

described 49. PNPLA3 I148M (rs738409; NC_000022.11:g.43928847C>G, p.Ile148Met), 

TM6SF2 E167K (rs58542926; NC_000019.10:g.19268740C>T, p.Glu167Lys), and GCKR 
P446L (rs1260326; NC_000002.11:g.27730940C>T, p.Pro446Leu), the 30 BMI-associated 

variants, and the exome-wide variants used to screen for associations and interactions with 

other phenotypes were genotyped in the Dallas Heart Study by an exome chip as previously 

described 16. PNPLA3 I148M, TM6SF2 E167K, and GCKR P446L were genotyped by 

Taqman in the Dallas Biobank, and by Taqman and PCR-based KASP genotyping in the 

Copenhagen cohort. Alcohol intake in the Copenhagen cohort was self-reported.

Cirrhosis

In the Copenhagen cohort, diagnoses of cirrhosis (ICD8: 57109 [alcoholic cirrhosis], 57192 

[unspecified cirrhosis], 57199 [non-alcoholic cirrhosis] and ICD10: K70.3 [alcoholic 

cirrhosis], K74.0 [hepatic fibrosis], K74.6 [unspecified cirrhosis]) were collected from the 

National Danish Patient Registry, and the National Danish Causes of Death Registry from 

January 1, 1977 to November 10th, 2014. The National Danish Patient Registry has 

information on all patient contacts with all clinical hospital departments in Denmark, 

including emergency wards and outpatient clinics (from 1994). The National Danish Causes 

of Death Registry contains data on the causes of all deaths in Denmark, as reported by 

hospitals and general practitioners. A validation study in the Danish registry found that 
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85.4% of patients with an ICD-code for cirrhosis fulfilled the diagnostic criteria for 

cirrhosis 50.

Statistical analysis

All analyses were performed using Stata SE 12 (Stata Corp., College Station, Texas) and/or 

R statistical analysis software v 3.2.3 (https://www.R-project.org). A two-sided p-value 

<0.05 was considered statistically significant in all main analyses, whereas p<3.6×107 was 

considered significant in the exome-wide screen. For statistical tests, genotypes were coded 

0, 1, 2. Body mass index was entered as a continuous variable in all analyses (apart from a 

sensitivity test for interaction, in which BMI groups were entered as an ordered categorical 

variable, encoded 0–3). To depict the interaction between genotype and BMI visually, 

participants were divided into four groups of BMI: lean (≤25 kg/m2), overweight (25–30 

kg/m2), obese (30–35 kg/m2) and very obese (>35 kg/m2). The distributions of HTGC and 

ALT were highly skewed to the right 19. Therefore, prior to entering these variables into 

regression analyses, we transformed them to HTGC^0.3 and 1/(ALT^0.25), in order to 

approximate normality and constant variance of the residuals. These transformations were 

selected by using Tukey’s ladder of power transformations, and by visual inspection of Q-Q 

plots of residuals after the transformation. To assess the robustness of the interactions on 

different scales, we also used untransformed, inverse normally transformed, logarithmically 

transformed and dichotomized HTGC or ALT. For each transformation, we plotted 

distributions of the variable, the normal Q-Q plot of the residuals, and distribution of the 

residuals by BMI-category, and tested for BMI×SNP interactions (Supplementary Figs. 1 

and 2). To account for a higher variance in HTGC in the most obese compared to lean 

subjects (heteroscedasticity), we repeated all interaction tests using a heteroscedasticity-

robust model 22. We considered whether adjusting for BMI and PNPLA3/GCKR/TM6SF2 in 

the models could introduce collider bias 51. This was deemed unlikely, given that none of the 

3 genetic variants associate with BMI, and that NAFLD is not known to causally influence 

adiposity. Prevalence of cirrhosis and steatosis were evaluated by logistic regression models 

adjusted for sex and age (and ethnicity in the DHS).

We evaluated the interactions between BMI and SNPs by the inclusion of interaction terms 

between BMI and SNPs in the linear or logistic regression models, adjusted for sex, age, and 

ethnicity (encoded African American=1, European American=2, Hispanic American=3, and 

entered as a factorial variable in the regression). Body mass index and SNPs were entered as 

continuous variables in the interaction term (ie. all interaction tests are 1 degree of freedom). 

In a sensitivity analysis, the interaction on cirrhosis was retested after further adjustment for 

alcohol×BMI and alcohol×PNPLA3 interaction, entered individually or simultaneously into 

the regression.

To test whether adiposity is a likely causal risk factor for increased HTGC, we genotyped 30 

SNPs known to be associated with BMI in Whites (Supplementary Table 1) 25. For each 

SNP, the BMI-increasing alleles were weighted by the per-allele effect size reported in the 

GWAS 25. A gene score was calculated for each European American participant of the DHS 

by summation of weighted alleles across all 30 BMI-associated SNPs. The gene score was 

tested for association with BMI and HTGC using linear regression, with the gene score 
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included as a continuous variable. To depict the association between the genotype score and 

BMI and HTGC visually, the genotype score was divided into quintiles (Supplementary Fig. 

6). Instrumental variable analysis was conducted in order to compare the observational 

association between BMI and HTGC with the effect of genetically increased BMI on 

HTGC52. The observational association between BMI and HTGC^0.3 was determined using 

linear regression, adjusted for age and sex. For the genetic, causal analysis, two-stage least 

squares regression was used to assess the effect of a 1 kg/m2 increase in genetically modeled 

BMI on HTGC^0.352. Strength of the genetic instrument was evaluated by F-statistics and 

R2, where F>10 was considered sufficient to avoid weak-instrument bias, and R2 indicates 

the fraction of variation in BMI explained by the instrument.

To determine whether gene-environment interactions were commonly observed with other 

obesity-associated traits, we screened phenotypes relevant to metabolism (plasma lipids, 

glucose and insulin homeostasis, blood pressure, liver enzymes, sterols, biomarkers) for 

correlation with BMI in the DHS. Phenotypes showing a partial correlation with BMI (after 

adjustment for age, gender and ethnicity) exceeding 0.2 in absolute value were further 

screened for association with genetic variants present on the Illumina HumanExome 

BeadChip (12v1_A) 16. Variants exceeding our exome-wide significance threshold 

(p<3.6×107), or variants in established genetic loci from a previously published NAFLD 

GWAS 18, were then tested for SNP×BMI interaction, using linear regression adjusted for 

age, gender and ethnicity. All nominally significant SNP×BMI-interactions (p<0.05) were 

retested in the Dallas Biobank and in the Copenhagen Cohort (where both phenotype and 

genotype data were available).

Data availability statement
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Fig. 1. 
Hepatic triglyceride content by body mass index and PNPLA3 I148M genotype in the Dallas 

Heart Study. Hepatic triglyceride content was measured by magnetic resonance 

spectroscopy. Circles and error bars depict medians and interquartile ranges of HTGC. The 

HTGC-increasing effect of the 148M-allele was amplified by increasing adiposity (p-

interaction I148M × BMI on HTGC=4×10−5). The dashed line marks the 95th percentile of 

HTGC in the general population. Abbreviations: HTGC, hepatic triglyceride content.

Stender et al. Page 15

Nat Genet. Author manuscript; available in PMC 2017 October 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Hepatic triglyceride content by body mass index and GCKR P446L and TM6SF2 E167K 

genotypes in the Dallas Heart Study. Circles and error bars depict medians and interquartile 

ranges of HTGC. The dashed line marks the 95th percentile of HTGC in the general 

population. Abbreviations: HTGC, hepatic triglyceride content.
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Fig. 3. 
Serum levels of alanine aminotransferase by body mass index and PNPLA3 I148M genotype 

in the Dallas Heart Study, the Dallas Biobank, and the Copenhagen cohort. Circles and error 

bars depict medians and interquartile ranges of ALT. The ALT-increasing effect of the 

148M-allele was amplified by increasing adiposity (p-interaction I148M × BMI on ALT 

<0.001 in all three cohorts). Abbreviations: ALT, alanine aminotransferase.

Stender et al. Page 17

Nat Genet. Author manuscript; available in PMC 2017 October 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Risk of cirrhosis by body mass index and PNPLA3 I148M genotype in the Copenhagen 

cohort. Circles and error bars depict odds ratios and 95% confidence intervals. The II-

genotype acted as the reference group within each BMI-group. The risk-increasing effect of 

the 148M-allele was amplified by increasing adiposity (p-interaction I148M × BMI on risk 

of cirrhosis=0.026).
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