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Abstract

Niemann-Pick Type C (NPC) is a rare genetic disorder characterized by progressive cell death in 

various tissues, particularly in the cerebellar Purkinje cells, with no known cure. Mouse models for 

human NPC have been generated and characterized histologically, behaviorally, and using 

longitudinal magnetic resonance imaging (MRI). Previous imaging studies revealed significant 

brain volume differences between mutant and wild-type animals, but stopped short of making 

volumetric comparisons of the cerebellar sub-regions. In this study, we present longitudinal 

manganese-enhanced MRI (MEMRI) data from cohorts of wild-type, heterozygote carrier, and 

homozygote mutant NPC mice, as well as deformation-based morphometry (DBM) driven brain 

volume comparisons across genotypes, including the cerebellar cortex, white matter, and nuclei. 

We also present the first comparisons of MEMRI signal intensities, reflecting brain and 

cerebellum sub-regional Mn2+-uptake over time and across genotypes.
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1. Introduction

Niemann-Pick type C (NPC) is a rare, autosomal recessive disease characterized by an 

inability of the body to metabolize and dispose of cholesterol and other lipids (Carstea et al., 

1997). NPC is caused mostly by mutations in the NPC1 gene (approximately 95% of cases), 

and the remaining cases are caused by mutations in the NPC2 gene. Manifestations of the 

disease include neonatal jaundice, splenomegaly, ataxia, and progressive neurodegenerative 

impairment of motor and intellectual function. Most often, the onset of symptoms occurs in 

early childhood, leading to death within a decade. Unfortunately, diagnosis is challenging 

since NPC is rare and disease presentation is highly variable in terms of symptom onset and 

severity. There is currently no known cure for NPC, although early results employing NPC1 
gene therapy or novel lipid sequestration compounds have shown some therapeutic potential 

(Papandreou and Gissen, 2016). Accurate models of disease progression are required to 

rapidly validate putative therapies.

The BALB/cNctr-Npc1m1N/J mouse is the most frequently used model for severe NPC 

(Morris et al., 1982). Studies of these mice have shown specific, patterned degeneration of 

the cerebellar Purkinje cells of homozygous mutants. Early disease features include reduced 

body weight, hunched posture, thin fur coat, and stunted development. Homozygotes also 

exhibit gait ataxia, hind limb paralysis, and intention tremors at late disease stage. As in the 

human condition, heterozygotes do not exhibit any of these features and are phenotypically 

indistinguishable from wild-type (WT) littermates. In addition to histological and behavioral 

phenotyping of these animals, longitudinal neuroimaging studies have been performed 

(Totenhagen et al., 2017; Maue et al., 2012). These studies showed gross morphological 

reductions in the brains of mutant mice when compared to control littermates, though they 

stopped short of analyzing cerebellar layers and sub-regions. This was due, in part, to 

insufficient tissue-specific contrast afforded by non-contrast enhanced T2-weighted MRI of 

the mouse brain.

Manganese-enhanced MRI (MEMRI) has been shown to significantly improve contrast in 

the developing and adult mouse brain (Wadghiri et al., 2004; Watanabe et al., 2002). Region 

specific contrast enhancement is apparent in the olfactory bulb, hippocampus, and the 

cerebellum. Given this focal enhancement, in addition to increases in whole brain signal 

intensity, it is possible to specifically probe volume differences in brain sub-regions using 

MEMRI (Szulc et al., 2015).

With large neuroimaging datasets comes the problem of time-efficient and accurate data 

analysis. Expert delineation of fine brain structures is time consuming, but still remains the 

gold-standard of anatomical evaluation. However, the number of trained experts is small, and 

inter- and intra-rater variability limits the reliability of manual measurements. To mitigate 

these issues, semi-automated or fully-automated image registration workflows have been 

developed (Friedel et al., 2014). Individual volumes can be registered into a well-defined 

atlas space and the resultant transformations from the registration chain can be manipulated 

to produce deformation-based measurements of volume.
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In this study, we followed cohorts of BALB/cNctr-Npc1m1N/J homozygous mutant mice 

(Npc−/−) and their control wildtype (WT) and heterozygous (Npc+/−) littermates using 

MEMRI at critical timepoints of disease progression. The imaging data were registered 

together using a well-established processing pipeline and the resulting transforms were used 

to make volumetric measurements. Since MEMRI signal intensities have been shown in 

some cases to reflect brain function (Lin and Koretsky, 1997; Yu et al., 2005), quantitative 

comparisons of brain sub-region MEMRI signal intensities were also made after correction 

for volume differences.

2. Methods

2.1. Animals

All mice used in this study were maintained under protocols approved by the Institutional 

Animal Care and Use Committee at New York University School of Medicine. Mice 

carrying a homozygous mutation in the Npc1 gene were generated by breeding together 

BALB/cNctr-Npc1m1N/J heterozygous animals obtained from The Jackson Laboratory 

(Stock No: 003092). Progeny of this cross were genotyped at postnatal day 21, using PCR of 

tail DNA to identify homozygotes (Npc−/−), heterozygotes (Npc+/−), and wild-type (Npc+/+), 

WT) mice.

2.2. MEMRI

A 30 mM solution of manganese chloride (MnCl2) tetrahydrate (Sigma-Aldrich-221279) in 

isotonic saline was injected intraperitoneally (IP) 24 h before each imaging session at a dose 

per weight of 0.5 mmol/kg (62.5 mg MnCl2 per kg body weight). This MnCl2 dose was 

similar to the dose documented in our previous work using MEMRI for brain and brain 

tumor imaging (Suero-Abreu et al., 2014; Rallapalli et al., 2020). At this dose, no chronic 

adverse effects were observed as a consequence of MnCl2 administration in this study.

Mice were imaged on postnatal weeks (W) 3, 6, and 9, where each timepoint was the 

specified week ± 1 day. MRI was performed using a 7 T, 200 mm diameter horizontal bore 

magnet (Magnex Scientific) interfaced to a Bruker Biospec Avance II console (Bruker 

BioSpin MRI) with actively shielded gradients (750 mT/m; BGA9s; Bruker) and using a 25 

mm quadrature Litzcage coil (Doty Scientific). Animals were anesthetized using isofluorane 

at 1.5 L/min compressed air flow rate (3% isofluorane for induction and 1–2% isofluorane 

for maintenance) delivered through a nose cone. Core body temperature (range: 34–37 °C) 

and respiration rate were monitored using a MRI-compatible thermocouple and respiratory 

pillow (SAII; SA Instruments). Custom 3D-printed plastic sleds were produced to secure 

mice of varying size.

T1-weighted MEMRI sessions were conducted using the following protocol: 1 min, low-

resolution pilot; 21 min, 100 μm isotropic resolution, spoiled 3D gradient echo sequence 

(echo time/repetition time, TE/TR = 3/30 ms; flip angle, FA = 30°; field of view, FOV = 1.8 

× 0.9 × 1.6 cm; Matrix size = 180 × 90 × 160 voxels).
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2.3. Image registration

Image registration allows quantification of anatomical differences between images in a high-

throughput manner. We followed the Pydpiper (Friedel et al., 2014) framework in our study. 

Images were linearly (6 parameter followed by a 12 parameter) and non-linearly registered 

together using ANTS (Avants et al., 2007) to create an average image of the entire study 

population. In order to preserve acquisition-specific signal intensity variation for quantitative 

analyses, population intensity normalization (‘inormalize’) and nonuniformity correction 

(‘N3’) stages were disabled. At the completion of this registration, all images had been 

deformed into alignment with each other in an unbiased fashion. This potentiated 

deformation based morphometry (DBM), or the analysis of the transformations required to 

register the anatomy of each individual mouse into the final consensus space. From the 

deformation fields, Jacobian determinants (local deformation magnitudes) were calculated 

for each transformation, providing statistics for cross-genotype comparison at W3, W6, and 

W9 (Whittaker et al., 2017). Absolute Jacobians (without removal of overall linear 

transformations) were used to quantify localized voxel-wise expansion and contractions in 

volume. Such measurements also allowed for visualization of local growth rate differences 

between WT and Npc−/− animals.

2.4. Automated segmentation

We employed the MAGeT Brain (Chakravarty et al., 2013) procedure for automated tissue 

segmentation using the Dorr-Steadman-Ulman-Richards-Qiu-Egan (DSURQE) atlas (182 

structures, freely available at: https://wiki.mouseimaging.ca/display/MICePub/Mouse+Brain

+Atlases) (Dorr et al., 2008; Steadman et al., 2014; Ullmann et al., 2013; Richards et al., 

2011). In brief, our application of MAGeT generated a set of template atlases by non-

linearly aligning the DSURQE atlas to a subset of the input images. Then, the input images 

were aligned to each of these templates. Finally, a voxel-voting procedure selected the most 

common label for each voxel among the set of segmentations.

2.5. Statistical analyses

Statistical analyses were performed in R (R, v3.5.0) with image analysis-specific tools 

exposed through RMINC (Lerch, 2006). Imaging voxel-wise linear mixed-effects models 

were used to assess the effects of genotype (WT, Npc+/−, or Npc−/−) and time (W3, W6, or 

W9) on Jacobians (Bates et al., 2015). These models also allowed for small variation 

between subjects, as some animals were imaged longitudinally (i.e. across multiple 

timepoints) and others cross-sectionally (i.e. one timepoint only). The form of the linear 

mixed effects-model – applied using the ‘mincLmer’ function - used in our analysis can be 

written as follows:

yi = β0 + β1x1i + Si + ε

Individual voxels were denoted by (i); the interaction between genotype and time (x1i) was a 

fixed-effects regressor with corresponding fixed-effects coefficient (β1); we allowed for a 

fixed-effect offset (β0); accounted for subtle, subject-specific variation as a random-effect 

(Si); and assumed normally distributed error (ε). The log Jacobian determinant for each 
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voxel (yi) was our response variable. Denominator degrees of freedom were estimated using 

Sattherwaite’s method through ‘min-cLmerEstimateDF’. Then the ‘mincFDR’ function was 

used to compute the False Discovery Rate (Benjamini and Hochberg, 1995; Genovese et al., 

2002) (FDR) and the ‘thresholds’ function computed statistically significant effect size 

thresholds after FDR correction at multiple confidence intervals. The voxel-wise Npc−/− 

subset of β1 parameters were mapped for visualization of growth rate deviations from WT.

The DSURQE atlas shares hierarchical definitions with the Allen Brain Institute’s mouse 

brain atlas (Lein et al., 2007), which made it possible to pull labels for the cortex, hindbrain, 

hippocampus, hypothalamus, midbrain, olfactory bulb, thalamus, cerebellum, and cerebellar 

sub-regions programmatically. Region-specific volume and signal cross-genotype 

comparisons were made using Tukey’s method (Tukey, 1949). The relative signal intensity 

in each brain region and sub-region were normalized to the whole brain signal:

Relative signal intensity =
Mean signal per voxelRegion

Mean signal per voxelWℎole Brain

Plots of quantitative volume and signal data include 95% confidence intervals as error bars 

about the mean of the measurement. Non-overlapping 95% confidence intervals indicate 

significant differences.

Raw data, R-code, and supplemental analyses are included in Supplementary Data 1.

3. Results

3.1. MEMRI reveals progressive degeneration and signal intensity differences

Mice were imaged both longitudinally and cross-sectionally between postnatal weeks W3 

and W9 (Table 1, Fig. 1A). At W3, MEMRI from representative WT and Npc +/− control 

mice showed appreciable signal enhancement – particularly apparent in the olfactory bulb, 

hippocampus, and the cerebellum – consistent with previous MEMRI studies of the 

developing and adult mouse brain (Szulc et al., 2015; Watanabe et al., 2013). Whole brain 

signal reduction between W3 and W6 was apparent in Npc+/− mice, similar to WT and Npc 
+/− mice. However, visually apparent reductions in cerebellar contrast were noticeable by 

W6 and progressively worsened by W9.

Across genotypes, all animals significantly gained weight from W3 to W6. Both WT and 

Npc +/− control animals also gained weight from W6 to W9, but this growth was not 

significant. Npc−/− animals significantly lost weight from W6 to W9, as expected for end-

stage progressive NPC. These animals were significantly underweight compared to control 

littermates across all time points (Fig. 1B).

The visual trends in brain volume were corroborated by quantitative comparisons over time 

(Fig. 1C). All mice experienced significant brain growth from W3 to W6, although Npc−/− 

mice had significantly smaller brain volume than control littermates at both time points. In 

control animals, there was no statistically significant increase in brain volume from W6 to 

W9, while Npc−/− mice experienced significant reductions in brain volume from W6 to W9.
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Interestingly, Npc−/− mouse brains were significantly hyperintense across all time points 

compared to control littermates (Fig. 1D). For each genotype, mouse brains followed the 

same trend: statistically significant reduction in signal per voxel from W3 to W6, then 

relative isointensity from W6 to W9.

3.2. Deformation-based morphometry revealed sub-region specific volume and growth 
rate retardation in Npc−/− mice

Voxel-wise DBM analyses were performed on the data from all of the mice imaged from W3 

to W9 (Table 1). These analyses showed significantly smaller volumes in Npc−/− mouse 

brains as early as W3 (Fig. 2). Of note, the olfactory bulb was significantly stunted at this 

early timepoint. Smaller magnitude volume reductions were apparent in several regions, 

including the pons, hippocampus, thalamus, and hypothalamus. Parts of the anterior 

cerebellum were also significantly smaller in volume, particularly in the cerebellar 

hemispheres.

At W6, more widespread volume reductions were apparent in the Npc−/− mice. The 

significant effects persisted in the olfactory bulb, hippocampus, thalamus, and 

hypothalamus. At W6, the posterior cerebellum was also smaller in volume, in addition to 

the anterior cerebellum, corroborating previous reports that the Purkinje cells degenerate in 

an anterior-posterior/time-dependent manner (Ko et al., 2005).

At W9, there were few unaffected sub-regions in the Npc−/− mouse brain. Significant 

volume reductions were apparent in the cortex, midbrain, and hindbrain in addition to the 

structures that were significantly affected at W6.

The volumetric data derived from DBM analyses were also used to estimate the growth rates 

in each genotype, showing that the Npc−/− brain was significantly retarded in growth across 

most sub-regions compared to WT brains (Supplementary Fig. 1).

3.3. Fully-automated segmentation enabled quantitative brain region-wise analyses

Consistent with the DBM results, quantitative, region-specific analyses after automated 

segmentation showed statistically significant reductions in the Npc−/− mice compared to 

control WT and Npc+/− mice (Fig. 3). The trends observed for whole brain volume changes 

in the Npc−/− brains (Fig. 1C) were also seen in the brain sub-regions, with variable 

magnitude and statistical significance in the differences (Fig. 3).

The WT and Npc+/− cerebella were similar in volume across all time points. These animals 

experienced statistically significant growth in the cerebellum from W3 to W6, but no 

significant growth from W6 to W9. In contrast, Npc−/− cerebella were significantly reduced 

in volume across all time points compared to controls. These animals experienced 

statistically significant growth in the cerebellum from W3 to W6, though the cerebella 

significantly regressed from W6 to W9. A summary of the quantitative volumetric trends 

and similar trends in other brain sub-regions is given in Supplementary Table 1.
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3.4. MEMRI signal comparisons showed brain sub-region specific trends over time

Relative signal intensity measurements from brain sub-regions were expressed as a 

percentage of the whole brain signal in each animal (Fig. 4). The WT and Npc +/− cerebella 

showed no significant differences in relative signal across all time-points. These control 

animals remained relatively isointense from W3 to W9. Interestingly, Npc+/− cerebella 

showed similar relative signal intensity to WT at W3 and W6, but were significantly 

hyperintense at W9. A summary of the quantitative signal trends and similar trends in other 

brain sub-regions is given in Supplementary Table 2.

3.5. MEMRI enables longitudinal study of Npc−/− cerebellar sub-regions

Since Purkinje cell degeneration is a known phenotype of Npc−/− mutant mice, we 

performed detailed analyses of the cerebellar sub-regions. Automated segmentation of the 

MEMRI images enabled visualization (Fig. 5) and quantitative analysis (Fig. 6) of the 

cerebellar cortex (which includes the cell bodies and dendrites of the Purkinje cells), white 

matter (which includes the Purkinje cell axons) and cerebellar nuclei (CN, the target cells of 

the Purkinje cell axons) of WT, Npc+/−, and Npc−/− mice. These results showed that the 

cerebellar sub-regions followed similar trends to the whole cerebella of each genotype. 

Specifically, we observed significant volume increase of the WT and Npc+/− sub-regions 

between W3 and W6 and no significant growth between W6 and W9, while Npc−/− sub-

regions grew from W3 to W6 but then regressed between W6 and W9. In addition, the Npc
−/− sub-regions were all significantly reduced in volume across all time points compared to 

the control WT and Npc+/− sub-regions. Similarly, comparisons of the cerebellar (central) 

vermis and (lateral) hemispheres showed significant reductions in volume compared to WT 

mice across all time points, with no obvious difference between these two sub-regions. A 

summary of these quantitative volumetric trends is given in Supplementary Table 3.

3.6. Cerebellar signal comparisons

Comparisons of cerebellar sub-regional relative signals were made over time across 

genotypes (Fig. 7). At W3, relative signal in the Npc−/− cerebellar cortex, white matter and 

CN were increased – significantly so in the white matter and CN – compared to WT and 

Npc+/− control mice. From W3 to W6, there was reduction in signal across all sub-regions 

and genotypes. Npc−/− mice experienced significant reductions in signal across all three 

regions, whereas WT and Npc+/− mice exhibited significant reductions only in the white 

matter and CN. At W6, the Npc−/− cerebellar cortex had a similar relative intensity 

compared to the control mice whereas the white matter and CN were hyperintense at W6. 

From W6 to W9, the relative signal from all three cerebellar sub-regions remained roughly 

isointense in the control animals. Interestingly, relative signal from all sub-regions 

significantly increased from W6 to W9 in the Npc−/− mice. A summary of these quantitative 

volumetric trends is given in Supplementary Table 4.

4. Discussion

In this study, we presented a novel characterization of the BALB/cNctr-Npc1m1N/J mouse 

model of NPC using MEMRI. We followed the progression of disease longitudinally and 

cross-sectionally in cohorts of genotype-validated animals at critical time points; performed 
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deformation-based morphometry (voxel-wise) to visualize both subtle and severe degeneracy 

in the Npc−/− brain; and performed brain region-wise statistical analyses of volume and 

signal.

We chose to use MEMRI because of our experience with this approach for studying normal 

cerebellar development and other mouse models of cerebellar disease. Contrast enhancement 

provided by MEMRI enables fine definition of brain sub-regions, potentiating focal study of 

the cerebellar layers known to be affected in NPC. It is also interesting that MEMRI enabled 

in vivo analyses of the cerebellar nuclei, which have recently been reported to be critical for 

control of cell number and sub-regional volumes during normal cerebellum development 

(Willett et al., 2019). In addition to the fine-level anatomical detail provided by MEMRI in 

the current study, previous diffusion and tract-density weighted imaging methods have 

revealed differences in fractional anisotropy, tract dispersion, and apparent diffusion 

coefficient in the white matter of children (Trouard et al., 2005) and mice (Totenhagen et al., 

2012) carrying mutations in NPC1. Further study of diffusion in combination with the 

cerebellar sub-region specific contrast afforded by MEMRI may be useful in future studies 

of NPC.

Automated image registration, as used in this study using the well-established Pydpiper 

framework, enabled rapid, objective quantification of a relatively large 3D imaging dataset. 

The transformations were pooled and processed to produce deformation maps of Npc−/− 

brains compared to control littermates. Use of a well-defined atlas as a target for the 

registration permitted automated segmentation of the individual images. These steps 

represent an improvement on the semi-automated approaches utilized by a previous imaging 

study of this mouse model, and also enabled novel visualization of NPC disease progression 

(Totenhagen et al., 2017). Compared to this previous study, the estimated brain volumes of 

the Npc−/− mice and their control littermates are smaller in our study. Possible reasons for 

these differences could include smaller body and brain size due to larger litters and/or 

different diets in our colony, and differences in brain volume estimation due to a different 

whole brain atlas definition. Nevertheless, the relative magnitudes of longitudinal effects 

were similar across genotypes in the two studies.

The flexible registration pipeline was tuned to reduce signal resampling and normalization. 

Because of this, individual-specific signal trends were preserved and quantitative 

comparisons across genotypes were potentiated. Use of hierarchical anatomical atlases - 

such as the DSURQE or the Allen Mouse Brain Atlas – enabled selection of brain sub-

regions of varying granularity. In addition, the Allen Institute has published gene expression 

and functional connectivity data in the same space as the reference atlas (Lein et al., 2007). 

These data could be exploited in future studies of NPC mouse models if the Allen Mouse 

Brain atlas were aligned with the MRI study average (Yee et al., 2018; Fernandes et al., 

2017).

Several brain sub-regions exhibited surprising hyperintensity in Npc−/− mice, especially at 

later stages of disease. The cause of this is currently not well understood, but several features 

must be considered contributors to this effect. It is impossible to ignore the significant whole 

brain volume reduction in these mice. By nature of our imaging and processing workflow, 
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partial volume effects become more prevalent as the segmented structure shrinks. 

Disentangling volume effects from the signal effects has proven to be challenging. Although 

Mn2+ dose was scaled to animal mass, Npc−/− mice more aggressively lose brain volume 

compared to the magnitude of weight reduction. This may result in increased Mn2+ exposure 

to the brain in these animals compared to controls. Another challenging consequence of 

significant animal mass differences between control and Npc−/− animals is systematic image 

acquisition parameter differences in (e.g. coil loading, automatic signal gain calculations, 

etc.). We attempted to correct for automatic global signal level adjustment apparent in online 

reconstructions by programmatically reversing automatic signal gain scaling before 

performing quantitative analyses post hoc. We also experimented with several forms of 

correction – including N3 bias field correction and population intensity normalization. 

However, we did not include these post-processing steps in any of the analyses presented in 

the manuscript. We have included the raw data used to perform these analyses in addition to 

the data normalized using population intensity normalization, N3 bias field correction, or 

both in Supplementary Data 1.

In addition to mass and volume effects, differences in cellular-level Mn2+ uptake 

mechanisms in the context of neurodegenerative disease have been reported (Saar and 

Koretsky, 2019). Hyperintensity in T1-weighted MEMRI has been attributed to astrogliosis 

in models of inflammation post ischemic stroke (Kawai et al., 2010) and late stage 

Parkinson’s disease (Olson et al., 2016), and to aberrant Ca2+ channel activity in models of 

multiple sclerosis (Boretius et al., 2008). Further mechanistic studies are required to 

determine the dominant uptake mechanism in this model of progressive NPC.

Our mice were on a Balb/cNctr background, which is the most widely studied model of 

progressive NPC. Given the natural heterogeneity in clinical disease presentation and 

progression, it may be prudent in the future to also study the longitudinal progression of 

other models of NPC. For example, the Npc1m1N mutation on a C57BL/6J background has 

been shown to have more rapid and severe Purkinje cell degeneration than the animals used 

in this study (Parra et al., 2011). Conversely, the Npc1nmf164 model has been reported to be 

less aggressive and to more closely reflect the majority of the human alleles than the 

previously described null alleles (Maue et al., 2012). Assessments of behavioral deficits or 

regression- e.g. gait mapping, rotorod, or open field testing – have been performed on 

Npc1nmf164 and other NPC model mice (Maue et al., 2012; Xie et al., 2017), but correlations 

of imaging with behavior have been limited to a single timepoint (Maue et al., 2012). In 

future, correlations of longitudinal behavioral and noninvasive imaging data could help 

predict out-comes in studies of NPC model mice, and add another axis for therapeutic 

efficacy analysis.

Our cerebellar sub-region analyses suggest that the contrast reduction observed in late stage 

Npc−/− mice cerebella are due to both volume and signal level changes of both the white 

matter and the cerebellar cortex. Npc−/− mice have been shown to have significantly reduced 

numbers of Purkinje cells, whose cell bodies and dendrites make up a significant fraction of 

the cortex, while the white matter is composed mostly of Purkinje cell axons. These results 

motivate future studies of the cell-specific source of Mn2+ uptake in the cerebellum.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This work was partly funded by NIH grant R01NS038461. We thank Nikola Otic and Hannah Goldman for their 
help ensuring animal wellness over the course of this study. We also acknowledge the Preclinical Imaging Core at 
NYU School of Medicine for their assistance in implementing the MRI protocols and maintaining the MRI system 
used to acquire the MEMRI data.

References

Avants BB, Epstein CL, Grossman M, Gee JC, 2007 Symmetric Diffeomorphic Image Registration 
with Cross-Correlation: Evaluating Automated Labeling of Elderly and Neurodegenerative Brain. 
10.1016/j.media.2007.06.004.

Bates D, Mächler M, Bolker BM, Walker SC, 2015 Fitting linear mixed-effects models using lme4. J. 
Stat. Software 67, 1–48.

Benjamini Y, Hochberg Y, 1995 Controlling the false discovery rate: a practical and powerful approach 
to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300.

Boretius S, et al., 2008 MRI of optic neuritis in a rat model. Neuroimage 41, 323–334. [PubMed: 
18394926] 

Carstea ED, et al., 1997 Niemann-Pick C1 disease gene: homology to mediators of cholesterol 
homeostasis. Science 277, 228–231 (80-.). [PubMed: 9211849] 

Chakravarty MM, et al., 2013 Performing label-fusion-based segmentation using multiple 
automatically generated templates. Hum. Brain Mapp 34, 2635–2654. [PubMed: 22611030] 

Dorr AE, Lerch JP, Spring S, Kabani N, Henkelman RM, 2008 High resolution three-dimensional 
brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J mice. Neuroimage 42, 
60–69. [PubMed: 18502665] 

Fernandes DJ, et al., 2017 Spatial gene expression analysis of neuroanatomical differences in mouse 
models. Neuroimage 163, 220–230. [PubMed: 28882630] 

Friedel M, et al., 2014 Pydpiper: a Flexible Toolkit for Constructing Novel RegistrationPipelines. 
10.3389/fninf.2014.00067.

Genovese CR, Lazar NA, Nichols T, 2002 Thresholding of statistical maps in functional neuroimaging 
using the false discovery rate. Neuroimage 15, 870–878. [PubMed: 11906227] 

Kawai Y, et al., 2010 In vivo visualization of reactive gliosis using manganese-enhanced magnetic 
resonance imaging. Neuroimage 49, 3122–3131. [PubMed: 19909819] 

Ko DC, et al., 2005 Cell-autonomous death of cerebellar purkinje neurons with autophagy in niemann-
pick type C disease. PLoS Genet. 1, 0081–0095.

Lein ES, et al., 2007 Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–
176. [PubMed: 17151600] 

Lerch J, 2006 Voxel-wise Morphometry Using RMINC, vols. 1–8.

Lin Y-JJ, Koretsky AP, 1997 Manganese ion enhances T1-weighted MRI during brain activation: an 
approach to direct imaging of brain function. Magn. Reson. Med 38, 378–388. [PubMed: 
9339438] 

Maue RA, et al., 2012 A novel mouse model of Niemann-Pick type C disease carrying a D1005G-
Npc1 mutation comparable to commonly observed human mutations. Hum. Mol. Genet 21, 730–
750. [PubMed: 22048958] 

Morris MD, Bhuvaneswaran C, Shio H, Fowler S, 1982 Lysosome lipid storage disorder in NCTR-
BALB/c mice. I. Description of the disease and genetics. Am. J. Pathol 108, 140–149. [PubMed: 
6765731] 

Olson KE, et al., 2016 Manganese-enhanced magnetic resonance imaging for detection of vasoactive 
intestinal peptide receptor 2 agonist therapy in a model of Parkinson’s disease. Neurotherapeutics 
13, 635–646. [PubMed: 27329163] 

Rallapalli et al. Page 10

Neuroimage. Author manuscript; available in PMC 2020 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Papandreou A, Gissen P, 2016 Diagnostic workup and management of patients with suspected 
Niemann-Pick type C disease. Therapeut. Adv. Neurol. Disord 9, 216–229.

Parra J, et al., 2011 Npc1 deficiency in the C57BL/6J genetic background enhances Niemann-Pick 
disease type C spleen pathology. Biochem. Biophys. Res. Commun 413, 400–406. [PubMed: 
21910975] 

Rallapalli H, et al., 2020 MEMRI-based imaging pipeline for guiding preclinical studies in mouse 
models of sporadic medulloblastoma. Magn. Reson. Med 83, 214–227. [PubMed: 31403226] 

Richards K, et al., 2011 Segmentation of the mouse hippocampal formation in magnetic resonance 
images. Neuroimage 58, 732–740. [PubMed: 21704710] 

Saar G, Koretsky AP, 2019 Manganese enhanced MRI for use in studying neurodegenerative diseases. 
Front. Neural Circ 12.

Steadman PE, et al., 2014 Genetic effects on cerebellar structure across mouse models of autism using 
a magnetic resonance imaging atlas. Autism Res. 7, 124–137. [PubMed: 24151012] 

Suero-Abreu GA, et al., 2014 In vivo Mn-enhanced MRI for early tumor detection and growth rate 
analysis in a mouse medulloblastoma model. Neoplasia 16, 993–1006. [PubMed: 25499213] 

Szulc KU, et al., 2015 4D MEMRI atlas of neonatal FVB/N mouse brain development. Neuroimage 
118, 49–62. [PubMed: 26037053] 

Totenhagen JW, et al., 2012 In vivo assessment of neurodegeneration in niemann-pick type C mice by 
quantitative T2 mapping and diffusion tensor imaging. J. Magn. Reson. Imag 35, 528–536.

Totenhagen JW, Bernstein A, Yoshimaru ES, Erickson RP, Trouard TP, 2017 Quantitative magnetic 
resonance imaging of brain atrophy in a mouse model of Niemann-Pick type C disease. PloS One 
12, e0178179. [PubMed: 28542381] 

Trouard TP, Heidenreich RA, Seeger JF, Erickson RP, 2005 Diffusion tensor imaging in Niemann-Pick 
Type C disease. Pediatr. Neurol 33, 325–330. [PubMed: 16243219] 

Tukey JW, 1949 Comparing individual means in the analysis of variance. Biometrics 5,99.

Ullmann JFP, Watson C, Janke AL, Kurniawan ND, Reutens DC, 2013 A segmentation protocol and 
MRI atlas of the C57BL/6J mouse neocortex. Neuroimage 78, 196–203. [PubMed: 23587687] 

Wadghiri YZ, et al., 2004 Manganese-enhanced magnetic resonance imaging (MEMRI) of mouse 
brain development. NMR Biomed. 17, 613–619. [PubMed: 15761950] 

Watanabe T, Natt O, Boretius S, Frahm J, Michaelis T, 2002 In vivo 3D MRI staining of mouse brain 
after subcutaneous application of MnCl2. Magn. Reson. Med 48, 852–859. [PubMed: 12418000] 

Watanabe T, Frahm J, Michaelis T, 2013 Cell layers and neuropil: contrast-enhancedMRI of mouse 
brain in vivo. NMR Biomed. 26, 1870–1878. [PubMed: 24142688] 

Whittaker DE, et al., 2017 Distinct cerebellar foliation anomalies in a CHD7 haploinsufficient mouse 
model of CHARGE syndrome. Am. J. Med. Genet. Part C Semin. Med. Genet 175.

Willett RT, et al., 2019 Cerebellar nuclei excitatory neurons regulate developmental scaling of 
presynaptic Purkinje cell number and organ growth. Elife 8.

Xie C, Gong XM, Luo J, Li BL, Song BL, 2017 AAV9-NPC1 significantly ameliorates Purkinje cell 
death and behavioral abnormalities in mouse NPC disease. J. Lipid Res 58, 512–518. [PubMed: 
28053186] 

Yee Y, et al., 2018 Structural covariance of brain region volumes is associated with both structural 
connectivity and transcriptomic similarity. Neuroimage 179, 357–372. [PubMed: 29782994] 

Yu X, Wadghiri YZ, Sanes DH, Turnbull DH, 2005 In vivo auditory brain mapping in mice with Mn-
enhanced MRI. Nat. Neurosci 8, 961–968. [PubMed: 15924136] 

Rallapalli et al. Page 11

Neuroimage. Author manuscript; available in PMC 2020 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
MEMRI of Npc wild type, heterozygote and homozygote mouse brains reveal volumetric 

and signal differences across genotypes. (A) Compared to wild-type (WT) brains, 

heterozygotes (Npc+/−) were similar in signal intensity from W3 to W9 and experienced 

similar growth trends over this period. In contrast, homozygote (Npc−/−) brains were 

relatively hyperintense across all timepoints compared to controls and experienced 

noticeable volume reduction from W6 to W9. Scale bar – 3 mm (B) Animal mass trends 

over the study period show WT (red) and Npc+/− (green) animals did not differ significantly 

in their growth (p = 0.2658), whereas Npc−/− (blue) mice were significantly underweight (p 

<0.0001). (C) Brain volume quantitative trends were similar to those of animal mass trends. 

Npc−/− animals had significantly smaller whole brain volume than WT by W9 (p <0.0001). 

(D) Quantitative signal trends revealed that Npc−/− mouse brains were significantly 

hyperintense across all timepoints compared to WT and Npc+/− (p = 0.0173). Error bars – 

95% confidence intervals. N values are shown in Table 1. For complete contrast tables, 

please see Supplementary Data 1.
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Fig. 2. 
Deformation-based morphometry (DBM) reveals statistically significant voxel-wise 

contractions in Npc−/− mouse brains. Particularly large contractions were apparent in the 

olfactory bulb (OB) as early as W3. Similarly large magnitude contractions were apparent in 

the cerebellum (Cb), hippocampus (Hi), and thalamus (Th) by W9. Insert: yellow lines 

indicate which sagittal orientation images and maps were rendered.
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Fig. 3. 
Brain sub-region quantitative volume analyses. (A) Statistically significant volume 

reductions were observed by W6, with marked degeneration apparent between W6 and W9 

across all brain regions in Npc−/− mice (blue) compared to WT (red) and Npc+/− mice 

(green). Error bars – 95% confidence intervals. (B) Select regions were analyzed, shown in 

3D (p-values for WT – Npc−/− contrasts at W9, N values are given in Table 1): Olfactory 

Bulb (OB, p <0.0001), Cortex (Cx, p <0.0001), Midbrain (MB, p <0.0001), Cerebellum (Cb, 

p <0.0001), Hindbrain (HB, p <0.0001), Hypothalamus (HT, p <0.0001), Hippocampus (Hi, 

p <0.0001), and Thalamus (Th, p <0.0001).
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Fig. 4. 
Brain sub-region quantitative relative signal analyses. Relative to whole brain signal 

intensity, Npc−/− brain sub-regions (blue) were: relatively hyperintense in the cerebellum (p 

<0.0001), midbrain (p = 0.0099), and thalamus (p <0.0001); relatively hypointense in the 

cortex (p = 0.0268), hypothalamus (p = 0.0049), and the olfactory bulb (p <0.0001); and 

relatively isointense in the hindbrain (p = 0.9955) and hippocampus (p = 1.0000) compared 

to WT (red) and Npc +/− mice (green). Error bars – 95% confidence intervals. (p-values for 

WT – Npc−/− contrasts at W9, N values are given in Table 1).
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Fig. 5. 
Visualization of cerebellar sub-regions. Segmentation of WT, Npc+/−, and Npc−/− cerebella 

revealed sub-region-specific degeneracy in Npc−/− brains. (A) At W9, WT and Npc+/− 

cerebellar cortex (green), white matter (blue), and nuclei (red) segmentations appeared 

similar whereas those of Npc−/− cerebella were reduced in volume. (B) These relationships 

were also apparent in 3D volume rendered segmentations. Over time, WT and Npc+/− 

rendered segmentations showed no obvious differences in sub-region appearance. In 

contrast, the Npc−/− cerebellar cortex (green), white matter (blue), and nuclei (red) were all 

reduced in volume compared to control animals and over time.
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Fig. 6. 
Quantification of cerebellar sub-region volumes over time corroborate visually apparent 

trends. Across all sub-regions and timepoints, there were no significant differences in 

volume between WT (red) and Npc+/− (green) cerebella, whereas the Npc−/− (blue) 

cerebellar cortex (p = 0.0002, <0.0001, <0.0001), white matter (p = 0.0078, <0.0001, 

<0.0001), and nuclei (p = 0.1283, <0.0001, <0.0001) were smaller in volume than WT over 

all timepoints. These trends were not different between the cerebellar hemispheres and 

vermis, suggesting that the Npc−/− cerebellum degenerates uniformly. Inset shows the 

delineation between the (central) vermis and the (lateral) hemispheres. Error bars – 95% 

confidence intervals. (p-values for W3, W6, and W9 WT – Npc−/− contrasts, N values are 

given in Table 1).
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Fig. 7. 
Quantitative signal trends in cerebellar sub-regions over time. As expected, there were no 

significant differences in relative signal between WT (red) and Npc+/− (green) cerebellar 

sub-regions at any timepoint. Interestingly, the Npc−/− (blue) cerebellar cortex was 

hyperintense at W3 and W9 and isointense at W6 compared to WT (p = 0.7557, 0.8197, 

0.0002), while the cerebellar white matter (p = 0.1683, 0.0040, <0.0001) and nuclei (p = 

0.7431, 0.0951, <0.0001) were hyperintense across all timepoints. Error bars – 95% 

confidence intervals. (p-values for W3, W6, and W9 WT – Npc−/− contrasts, N values are 

given in Table 1).
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Table 1

Summary of mice imaged in this study.
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