
Research Article
Cost-Sensitive Classification for Evolving Data Streams with
Concept Drift and Class Imbalance

Yange Sun ,1,2 Meng Li,1 Lei Li,1 Han Shao,1 and Yi Sun3

1School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China
2Henan Key Lab of Analysis and Applications of Education Big Data, Xinyang Normal University, Xinyang, China
3Institute of Zhengzhou Information Science and Technology, Zhengzhou, China

Correspondence should be addressed to Yange Sun; ygsun1982@126.com

Received 7 August 2020; Revised 4 July 2021; Accepted 21 July 2021; Published 2 August 2021

Academic Editor: Jussi Tohka

Copyright © 2021 Yange Sun et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Class imbalance and concept drift are two primary principles that exist concurrently in data stream classification. Although the
two issues have drawn enough attention separately, the joint treatment largely remains unexplored. Moreover, the class imbalance
issue is further complicated if data streams with concept drift. A novel Cost-Sensitive based Data Stream (CSDS) classification is
introduced to overcome the two issues simultaneously. *e CSDS considers cost information during the procedures of data
preprocessing and classification. During the data preprocessing, a cost-sensitive learning strategy is introduced into the ReliefF
algorithm for alleviating the class imbalance at the data level. In the classification process, a cost-sensitive weighting schema is
devised to enhance the overall performance of the ensemble. Besides, a change detection mechanism is embedded in our al-
gorithm, which guarantees that an ensemble can capture and react to drift promptly. Experimental results validate that our
method can obtain better classification results under different imbalanced concept drifting data stream scenarios.

1. Introduction

Data stream classification has attracted much attention in
the scenario of big data mining due to its presence in many
real-world fields, such as social network analysis, weather
prediction, online medical diagnosis, and weblog mining
[1–5]. Concept drift is a common feature of data streams
[6–9], which refers to the phenomenon of target concepts of
streams changing over time. Concept drift can deteriorate
the performance of classification because the model trained
on old concepts may be unsuitable for new concepts. For
example, fashion trends in recommend systems may be
influenced by customer behavior, and the weather forecast
model may no longer be applicable as the season changes.
*erefore, an efficient data stream learning model should
have the capability of capturing drifts promptly and
updating the model accordingly [7, 10].

A growing number of methodologies have been pro-
posed for dealing with concept drift [9]. Among these
techniques, the window-based method adopts a natural way

of forgetting mechanism to add new instances and eliminate
outdated instances. *e sliding window is the most fre-
quently used window technology. It adopts the first-in-first-
out structure to move on processed instances and ensure
that the current window stores the latest instances. Because
ensemble algorithms have the advantage of modularity and
can quickly adapt to changes, ensemble-based methods are
the most common methods for handling concept drift.

Although much work has been done on concept drift
[5–7], the class imbalance problem [11] (i.e., negative class
instances are more extensive than other classes) further
increases the difficulty of addressing concept drift [12]. Class
imbalance commonly exists in the real world. Examples
include cancer diagnosis, financial fraud detection, and
geological disaster prediction. For binary classification, the
class that has more instances is called the majority class
(negative class), and the other is the minority class (positive
class). For example, in the online fraud identification of
automobile insurance, fraudulent customers accounted for
only 1% of the total customers in 100 000 instances. Finding

Hindawi
Computational Intelligence and Neuroscience
Volume 2021, Article ID 8813806, 9 pages
https://doi.org/10.1155/2021/8813806

mailto:ygsun1982@126.com
https://orcid.org/0000-0003-3305-4622
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8813806

a way to identify only 1% of fraudulent instances correctly
can significantly reduce economic loss.

Several popular methods for dealing with the class
imbalance issue [13–18] can be broken down into main
groups: data-level techniques, cost-sensitive learning, and
ensemble methods. Cost-sensitive learning methods aim to
minimize the total cost. Some researchers argue that the
cost-sensitive strategy is the most effective and frequent
technique for dealing with class imbalance [11].

How to tailor the cost-sensitive learning strategy and
adapt it to a nonstationary environment to enhance the
capability of dealing with class imbalance is meaningful
work. In practice, constructing classifiers under evolving
data streams existing class imbalance is not a trivial task. It
should address the following subproblems: (1) How can
concept drift be handled? (2) How can class imbalance be
managed?

A novel cost-sensitive learning scheme, named Cost-
Sensitive based Data Stream (CSDS), is devised to tackle the
combined issue to address these challenges. *e contribu-
tions are threefold:

(1) A novel cost-sensitive variant of the ReliefF algo-
rithm, named Cost-Sensitive based on ReliefF (CS-
ReliefF), is proposed. *e CS-ReliefF considers cost
information in feature weighting to address the class
imbalance issue at the data level.

(2) A dynamic cost-sensitive weighting mechanism is
developed in the classification stage, incorporating
cost value into the learning to alleviate the class
imbalance at the algorithm level.

(3) *e performance of our algorithm was implemented
on different kinds of class imbalance data stream
benchmarks. *e results demonstrated that CSDS
achieves the best overall performance in G-mean,
running time, and concept drifts adaption.

2. Related Work

2.1. Class Imbalance Learning for Static Data. Researchers
have done several works on class imbalance classification on
static datasets [11]. *e research work is mainly divided into
three categories: data preprocessing techniques, cost-sen-
sitive learning methods, and ensemble-based methods [13].

Data preprocessing techniques are mainly to alleviate the
influence of class imbalance employing changing the orig-
inal data distribution. Undersampling and oversampling are
two common data preprocessing technologies. *e under-
sampling method balances the classes by deleting the ma-
jority of instances, resulting in information loss [14]. *e
oversampling technique balances the data by duplicating a
minority of instances. However, due to the uncertainty in the
synthesis of new instances, it may weaken the classifier’s
performance [15]. SMOTE [16] is the most famous random
oversampling algorithm, synthesizing new minority in-
stances near the original minority instances. However, it
often results in overfitting.

Cost-sensitive learning solutions [17] assign different
costs to different classes, which seek to minimize the total

cost. Suppose that the majority class is misclassified as a
minority class. In that case, a lower misclassification cost is
assigned, and when a minority class is misjudged as a
majority class, a higher misclassification cost is assigned. In
this way, we could balance the class distribution of the data.
Most of these methods extend traditional machine learning
methods to make them cost-sensitive. For example, litera-
ture [18] introduced cost-sensitive strategies into the SVM
algorithm to minimize cost-sensitive hinge losses. AdaCost
algorithm proposed in literature [19] reduces the weight of
misclassified instances by introducing a cost-sensitive
weight function into the AdaBoost. Sun et al. presented a
series of algorithms based on cost-sensitive learning [20].

Bagging and boosting are two commonly used strategies
in ensemble algorithms. Representative bagging-based en-
semble algorithms used to deal with class imbalance include
OverBagging [21], UnderBagging [22], UnderOverBagging
[23], and DES-MI [24]. Data preprocessing techniques are
often used in boost-based algorithms. Representative
methods include SMOTEBoost [25] and RUSBoost [26].
Some ensemble methods combine both bagging and
boosting strategies, including EasyEnsemble and Balance-
Cascade [27].

2.2. Data Streams Learning under Concept Drift and Class
Imbalance. Althoughmany efforts have beenmade focusing
on class imbalance or concept drift separately [28–32], the
combination of the two issues in data stream classification
has not yet drawn enough attention.

Gao et al. proposed a general framework, called Sample
and Ensemble (SE), for addressing class imbalance issues
under streaming scenarios [28]. *e SE divides the con-
tinuously arriving block into two groups: majority class
instances and minority class instances. And then, SE collects
the minority instances of the previous blocks and removes
some of the majority class instances from the current chunk.
Chen and He [29] introduced a novel ensemble solution,
called Recursive Ensemble Approach (REA), for tackling
class imbalance issues under a nonstationary environment.
REA utilized the K-NN algorithm to measure the similarity
between the minority class instances of the previous block
and the minority class instances of the current block and
chose the previous minority instances to balance the classes
of the current block. Polikar et al. [30] presented an algo-
rithm based on the Learn++ framework [31] to deal with class
imbalance under a data stream environment named
Learn++.NIE. Recently, Mirza et al. introduced an online
version of Extreme Learning Machine to solve the class
imbalance issue [32].

In [33], a novel neural networks framework based on a
cost-sensitive strategy was devised for handling the class
imbalance issue. Li et al. introduce an ensemble algorithm
using a multiwindow strategy to handle class imbalance
issues [34]. More specially, three windows are designed in
the algorithm: the current data block, the latest minority
instances, and the pool of base classifiers. Lu et al. extended
and improved the classic dynamic weighted majority
(DWM) to effectively deal with the imbalance issue and

2 Computational Intelligence and Neuroscience

named DynamicWeighted Majority for Imbalance Learning
(DWMIL) [35]. Moreover, DWMIL used an underbagging
strategy during data preprocessing to handle class imbal-
ance. However, it has the drawback of overfitting. Zyblewski
et al. proposed a dynamic classifier ensemble selection for
imbalanced drifted data streams [36]. Most recently, Cano
and Krawczyk proposed an algorithm called Kappa Update
Ensemble (KUE) [37], which utilized the Kappa statistic for
dynamically updating weights of base classifiers.

Simultaneously, some common problems exist in im-
balanced data stream classification methods: these algo-
rithms can deal with a specific type of concept drift. Besides,
class imbalance often exists in the data stream together with
concept drift. Most algorithms only focus on one problem
and do not fully consider two issues simultaneously.

3. Our Method

3.1. Cost-Sensitive Based Data Stream Algorithm. A novel
ensemble framework based on cost-sensitive feature selec-
tion is introduced to handle this study’s joint issue. As
shown in Figure 1, the proposed algorithm primarily con-
sists of four steps:

Step 1: Data preprocessing: a cost-sensitive feature
selection based on the ReliefF algorithm, named cost-
sensitive ReliefF (CS-ReliefF), is devised. CS-ReliefF
incorporates the cost information into feature selec-
tion, which selects a subset of features helpful in
identifying the minority class. Hence, the feature set is
more meaningful for effective prediction and has the
effect of dimension reduction.
Step 2: Change detection: our algorithm employs
concept detection to capture the changes explicitly, and
when concept drift is detected, a new member classifier
is built on the latest data.
Step 3: Classification module: a novel weighting
scheme, that is, the weight of the base classifier, is
updated based on accuracy and the total cost of mis-
classification on the latest data.
Step 4: Prediction: the weighted majority voting rule is
used for predicting unknown instances.

3.2. Cost-Sensitive ReliefF Algorithm. A novel cost-based
feature selection, named Cost-Sensitive ReliefF algorithm
(CS-ReliefF), is proposed in this section. We adopt the
ReliefF algorithm [38] mainly because it is simple, fast, and
effective. More specially, we tailed the famous feature select
algorithm ReliefF into a cost-sensitive learning model, which
takes advantage of cost information into account during
feature selection.

*e main idea of the ReliefF algorithm is to weigh
features according to their classification contribution.
Specifically, the ReliefF randomly selects an instance xi
with class value y, finds its k nearest neighbors from the
same class and different classes, and is denoted by Hj and
Mj (y), respectively. It updates the weights of all features

based on their ability to distinguish neighboring
instances.

Let xi and xj denote two instances, and their classes are yi
and yj. *e function diff (f, xi, xj) is defined as the difference
between the value of feature f for two instances xi and xj, and
it can be calculated according to

diff f, xi, xj􏼐 􏼑 �
0, yi � yj,

1, yi ≠yj.

⎧⎨

⎩ (1)

If the class is numerical, i.e., y ∈R

diff f, xi, xj􏼐 􏼑 �
yi − yj

maxf − minf

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (2)

where maxf andminf represent the maximum andminimum
values of f, respectively, and the diff (f, xi, xj) reflects the
discrimination between xi and xj on f.

Let Wf denote the influence of feature f, where Wf ∈ [−1,
1]. ReliefF initializes the weights of all features to zero firstly.
*en, the RelifF randomly selects an instance xi and searches
its k nearest neighbors. *e ReliefF updates the weight of
each feature according to

Wf � Wf −
􏽐

k
j�1 diff f, xi, Hj􏼐 􏼑

r · k

+

􏽐
y≠yi

P(y)/1 − P yi(􏼁(􏼁 􏽐
k
j�1 diff f, xi, Mj(y)􏼐 􏼑􏽨 􏽩

r · k
,

(3)

where P (y) is the prior probability of class y estimated from
the training set, and r is a user-defined parameter indicating
the number of iterations.

Unlike ReliefF, the proposed CS-ReliefF algorithm up-
datesWf considering cost information according to equation
(4). In this way, the CS-ReliefF algorithm tends to select
features with low costs.

Wf � Wf −
􏽐

k
j�1 diff f, xi, Hj􏼐 􏼑

r · k

+

􏽐
y≠yi

P(y)/1 − P yi(􏼁(􏼁 􏽐
k
j�1 diff f, xi, Mj(y)􏼐 􏼑􏽨 􏽩

r · k

− λ
Costf
r · k

,

(4)

where Costf is the test cost of f, and λ is the influence factor
specified by the user.

Costf is generated by a normal distribution, and the cost
function is defined as follows:

f(x) �
1

����
2πσ2

􏽰 e
(x− μ)2/σ2(), (5)

where μ and σ2 are the mean and variance. To avoid the
randomness of one sampling, the above process needs to be
iterated r times. In our algorithm, the parameter p% is

Computational Intelligence and Neuroscience 3

selected to adapt to the dynamically changing feature space.
We adopt p as 75 in the following experiments. *e pseu-
docode is shown in Algorithm 1.

3.3. Cost-Sensitive Ensemble Learning Method. Let E � {C1,
C2, . . . , Ck} represent an ensemble with k base classifiers.
*e CSDS uses a sliding window technique to divide data
stream S into data blocks Bi, i � 1, 2, . . ., n, where |Bi| � |
Bj| � d, i ≠ j. More specially, whenever a new instance at
time j is observed and inserted into the window, the j − |W|
is discarded. When a new block Bi arrives or a change
occurs, we evaluate the effect of features according to
equation (4) and use this to select an effective feature
subset F’ ⊆ F (refer to Section 3.2). *e CSDS uses Bi to
build a new classifier C′ and weights it according to the
following equation:

W C′(􏼁 �
1

MSEr + α
. (6)

*eCSDS weights each base classifier Ci ∈E according to
the following equation:

W Ci(􏼁 �
1

Costi + MSEr + MSEi + ε
, i � 1, 2, . . . , k, (7)

where MSEr represents a randomly predicting classifier’s
performance of, and is employed as, the baseline for pre-
dicting the current distribution; MSEi represents the mean
square error of Ci on Bi at time t, respectively; Costi is the
total misclassification cost of Ci on Bi. When the ensemble is
full, the worst classifier is removed, and the newly learned
classifier is added to the ensemble. Our method adopts the
weighted voting rule to make the final prediction. Moreover,
the proposed algorithm utilizes the Drift Detection Method
(DDM) [39], a change detection schema by detecting the
classification model’s error rate, as the change detector. In
fact, it could be any change detection algorithm. *e
pseudocode of the cost-sensitive-based data stream algo-
rithm is shown as follows (Algorithm 2).

4. Experiments and Analysis

*e experiments were carried out on the Scikit-Multiflow
framework [40], which is a python platform based on
popular open-source frameworks including scikit-learn and
MOA [41]. It includes data stream generators, classification
algorithms, and evaluation methods.

4.1. Data Benchmarks. In the following experiments, we
employed eight data stream benchmarks, including syn-
thetic and real-world streams. *e stream generators gen-
erated the synthetic streams in the Scikit-Multiflow
framework. We adopted the ConceptDriftStream generator
to simulate concept drift and used the ImbalancedStream
generator to set the class imbalance rate (#majority instances:
#minority instances). *e description of the streams is
shown in Table 1.

*e Hyperplane that simulates a d-dimensional hyper-
plane is the most popular synthetic data to simulate gradual
concept drift. A gradual drift stream with 1m instances was
generated in our experiments, and its imbalance rate was set
to 5.

*e SEA dataset is the most commonly used dataset
representing sudden drift scenarios in data stream mining.
We use the data stream generator to generate a data set of a
sudden change in concept recurrence.*e data set has a total
of 1m instances, which reappear every 250K instances. Each
instance is described by three attributes, which are used to
represent one of the four concepts.

*e LED dataset contains data used to predict the seven-
segment LED display. We chose the 24 attributes version of
the LED. We generate a mixed drifts stream containing 1m
instances, including sudden and gradual concept drifts.

*e Rotating spiral is a dataset with the class imbalance
and gradual concept drift. It is used to describe four types of
spirals. *e rotating spiral data stream contains 1m in-
stances, and the imbalance rate is 19.

*e Spam dataset is a representative imbalanced real-
world dataset, which collects e-mail messages from the Spam

Feature
selection

CS-reliefF

Data stream

Built a new
classifier Prediction

Change
detection Classifier

C1

Classifier
Ci

Classifier
Cmax

…
…

Cost sensitive
weighting

Wk

Wi

W
1Change alarm

Figure 1: *e framework of CSDS.

4 Computational Intelligence and Neuroscience

Assassin Collection. It has 9324 instances with 500 attri-
butes. *ere are two classes (legitimate and spam). *e
imbalance rate of spam is 4. We simulate the spam into a
stream with gradual drift by changing the features of spam
over time.

*e Sensor dataset has 2219803 instances, and five at-
tributes describe each instance. *e data is the information
of 54 sensors of Intel Berkeley Research Lab in two months.
Since attributes such as brightness and temperature change
over time, the stream may contain concept drift.

*e Electricity dataset is one of the most widely used
real-world datasets. It was collected from the Electricity
Market in Australia, containing 45312 instances, each

described by seven attributes. *e purpose of this dataset is
to predict whether the price of electricity will increase (up)
or decrease (down) with changes in market demand and
supply. *e classes are approximately balanced.

*e Airlines stream contains 539383 instances, and eight
attributes describe each instance. *e class of Airlines is a
delay, which indicates whether the flight is delayed.

4.2. EvaluationMetrics for Class Imbalance Learning. *e G-
mean is the geometric means of the recall of abnormal
classes and that of normal classes, often used to measure the
classifier’s ability to handle unbalanced data [11]. It is often

Input: D: data in sliding window; F: feature set; k: number of neighbors; r: number of iterations
Output: Feature weight vector W

(1) Begin
(2) for all f ∈ F do
(3) Wf � 0;
(4) end for
(5) for i� 1 to r do
(6) random select x ∈D;
(7) sampling xj ∈D, if yj � y then add xj to Hi, otherwise add to Mj, until |Hi|� |Mj|� k;
(8) end for
(9) for all f ∈ F do
(10) Update Wf according to equation (5);
(11) endfor
(12) endfor
(13) Select the top p% of the features;
(14) end.

ALGORITHM 1: Cost-sensitive ReliefF feature select algorithm.

Input: data stream S, the maximum number of based classifiers max
Output: ensemble E with weighted classifiers {C1,., Cmax}

(1) E⟵ ϕ;
(2) for each xi ∈ S do
(3) W⟵W∪ {xt};
(4) apply CS-ReliefF on Bi;
(5) if |W||≥ d or change is detected then
(6) learn a new classifier C′ on data after feature selection;
(7) weight C′ according to equation (6);
(8) for Ci ∈E do
(9) calculate the MSEij and MSEr;
(10) update W (C′) according to equation (7);
(11) end for
(12) if |E| ˂max then
(13) add C′ into E;
(14) else
(15) replace the worst classifier with C′;
(16) end if
(17) for Cj ∈E\{C′} do
(18) train all Cj ∈E on Bi;
(19) end for
(20) end for
(21) end.

ALGORITHM 2: Cost-sensitive based data stream algorithm.

Computational Intelligence and Neuroscience 5

applied in data streams with class imbalance to reduce the
bias of the overall accuracy. For binary class classification,
the G-mean is as follows [42, 43].

G − mean �

����������������
TP

TP + FN
×

TN
TN + FP

􏽲

. (8)

G-mean can be extended to multiclass cases. Assuming
that there arem classes,G-mean is still the geometric average
of various correct rates, defined as

G − mean � 􏽙
m

i�1
G − meani

⎛⎝ ⎞⎠

1/m

, (9)

where G-meani is G-mean of ith class.

4.3. Experimental Results. We verified the effectiveness of
CSDS using cost-sensitive strategies in evolving data stream
scenarios involving different types of drifts and class im-
balance. CSDS was compared with the following methods:

(i) VFDT: VFDT is an incremental decision tree
classification based on the Hoeffding inequality
theory, which can guarantee the constructed deci-
sion tree’s accuracy with a certain probability.

(ii) AUE2: AUE2 is a block-based ensemble that
combines the accuracy-based weighting mechanism
with the incremental learning of the Hoeffding tree
and aims to deal with various types of drift.

(iii) KUE: KUE is a dynamic weighting ensemble that
utilized the Kappa statistic to update base classifiers’
weight dynamically.

*e evaluation can generate an incremental learning curve
of metrics changing over time. For a fair comparison, the
maximum number of the compared ensemble algorithms was
set to 15.We chose the Hoeffding tree as the base classifier.*e
performance can be evaluated concerning G-mean and time
(the averaged results of 10 runs), as shown in Tables 2 and 3.

4.3.1. G-Mean Analysis. Concerning the G-mean, CSDS
achieved the best average ranking, as shown in Table 2. CSDS
gained the best performance over four data streams: Hy-
perPlane, SEA, Spam, and Electricity. We find that CSDS
classification performs better in class imbalance data streams
environment. VFDT obtains the worst performance. *is is
because it cannot solve the class imbalance challenge, but
also incapable of dealing with concept drift. CSDS classifi-
cation employs the cost-sensitive learning strategy during
the data preprocessing and classification stages. CSDS uses
the CS-ReliefF algorithm to incorporate cost information
into feature selection to select a subset of features helpful in
identifying minority classes. *erefore, the feature set is
moremeaningful for effective prediction and has the effect of
dimension reduction. Simultaneously, a dynamic cost-sen-
sitive weighting strategy is developed to reduce class im-
balance at the algorithm level.

4.3.2. Time Analysis. In terms of running time, VFDT
performs best, followed by our algorithm, and KUE
performed the worst. As shown in Table 3, we observe that
the ensemble algorithms have certain advantages in G-
mean, but it does not perform well in running time.
Although the single decision tree classifier VFDT has
apparent advantages in time, it performs the worst in
overall performance. Overall, in most cases, CSDS can
achieve a good compromise between G-mean and running
time and adapt to drifts faster than other ensemble
methods. Our algorithm benefits from the modular
characteristics of ensemble learning, which can better deal
with recurring gradual drifts. Meanwhile, the change

Table 1: Description of the datasets.

Data stream # Inst # Attrs # Cls IR Drift
HyperPlane 1m 10 2 5 Gradual
SEA 1m 3 4 10 Sudden, recurring
LED 1m 24 10 3 Mixted
Rotating spiral 1m 40 3 19 None
Spam 9324 500 7 4 Unkown
Sensor 2219803 5 54 54 Unkown
Electricity 45312 10 10 1 Unkown
Airlines 539 383 7 2 2 Unknown

Table 2: Average G-mean of comparing algorithms.

VFDT AUE2 KUE CSDS

HyperPlane 0.93± 0.04
(4)

0.95± 0.06
(3)

0.96± 0.05
(2)

0.97 ± 0.01
(1)

SEA 0.72± 0.10
(4)

0.83± 0.12
(3)

0.86± 0.22
(2)

0.88± 0.01
(1)

LED 0.82± 0.02
(4)

0.87± 0.07
(1)

0.86± 0.06
(2)

0.84± 0.02
(3)

Rotating
spiral

0.73± 0.10
(4)

0.79± 0.05
(1)

0.76± 0.02
(3)

0.78± 0.01
(2)

Spam 0.62± 0.08
(4)

0.66± 0.02
(3)

0.80± 0.04
(2)

0.86± 0.02
(1)

Sensor 0.76± 0.11
(3)

0.74± 0.07
(4)

0.86± 0.06
(1)

0.83± 0.04
(2)

Electricity 0.60± 0.05
(4)

0.64± 0.02
(2)

0.62± 0.02
(3)

0.73± 0.02
(1)

Airlines 0.76± 0.07
(3)

0.74± 0.08
(4)

0.83± 0.07
(1)

0.81± 0.03
(2)

Average
rank 3.75 2.63 2.00 1.63

Table 3: Times of comparing algorithms (seconds).

VFDT AUE2 KUE CSDS
HyperPlane 25.32 (2) 15.33 (1) 35.68 (4) 18.10 (3)
SEA 8.32 (1) 12.23 (3) 22.07 (4) 10.60 (2)
LED 29.15 (1) 36.03 (3) 43.29 (4) 34.65 (2)
Rotating spiral 9.68 (1) 16.01 (3) 21.35 (4) 11.04 (2)
Spam 4.31 (1) 15.47(4) 14.56(3) 7.45 (2)
Sensor 80.46 (2) 90.24 (3) 104.41 (4) 66.79 (1)
Electricity 48.79 (2) 69.41 (3) 77.46 (4) 31.63 (1)
Airlines 59.45 (3) 32.23 (1) 60.20 (4) 37.80 (2)
Average rank 1.63 2.63 2.88 1.88

6 Computational Intelligence and Neuroscience

detection mechanism is embedded in our algorithm to
capture sudden drift in time.

Next, we adopt graphical plots to visualize how the al-
gorithm is affected by different kinds of change. X-axis and
y-axis denote the number of processed instances and G-
mean of the algorithms, respectively.

*e SEA dataset is used to simulate scenes with sudden
changes and to detect the ability to address sudden concept drift.
In this scenario, the curves of theG-mean with the increment of
processed increases are shown in Figure 2. *e performance of
the VFDT is the worst, followed by AUE2 and KUE, and CSDS
is the best. Moreover, around the 50Kth instance, the G-mean
values of all algorithms undergo rapid fluctuations exceptCSDS.
*is may benefit from the concept drift detection mechanism,
which can promptly capture a sudden drift, thereby establishing
a new classifier to adapt such drift.

*e LED dataset simulates mixed concept drift, that is,
scenes with gradual and sudden concept drift. It is intended
to verify the algorithm’s responsiveness to mixed drift.
Specifically, the dataset is a stream containing two gradual
drifts and one abrupt concept drift. When processing half
of the stream, the target concept suddenly shifts from one
concept to another. As shown in Figure 3, we have observed
that all algorithms maintain a higher G-mean value when
the data is relatively stable. When a sudden change occurs
in the data stream, the performance of all algorithms except
CSDS drops sharply. *is may be because CSDS can
capture different kinds of changes timely and reconstruct a
new model to recover from concept drift quickly. Besides,
CSDS provides the best overall performance utilizing cost-
sensitive learning strategies in feature selection and
classification.

Changes in real-world streaming scenarios are often
complex and changeable, so simulating the real-world en-
vironment can better verify classifiers’ performance. Figure 4
illustrates the G-mean curves on the Spam data stream
change over time. All the curves show varying degrees of
fluctuation, which implies that there may exist a drift in the
stream. Since VFDTand AUE2 cannot deal with imbalances,
the dataset simulates a real-world nonstationary scenario
that includes class imbalance. *ey perform poorly in a
scenario where class imbalance and concept drift coexist.

In contrast, the curves of CSDS and KUE are not sig-
nificantly affected by concept drift, since CSDS is oriented to
the data stream’s changing characteristics to respond to
these problems quickly and in real-time. Additionally, cost-
sensitive learning strategies are adopted at the data level
(feature selection) and algorithm level (classifier weighting)
to effectively deal with imbalances.

Finally, we adopted the nonparametric Friedman test
with a significance level α� 0.05 to perform statistical tests
on all competitive algorithms [44]. *e statistical test re-
sults show that the null hypothesis is rejected. *at is, there
is no significant difference between the algorithms. After
that, we further employ the Nemenyi test [45] to verify
whether the performance of our method is statistically
different from other algorithms. *e result is shown in
Figure 5. *e results show that CSDS is significantly better
than VFDT.

G
-m

ea
n

Processed instances

KUE
CSDS

AUE2
VFDT

0 200 400 600 800 1000
0.70

0.75

0.80

0.85

0.90

0.95

Figure 2: Comparison of G-mean on the SEA dataset.

G
-m

ea
n

Processed instances

KUE
CSDS

AUE2
VFDT

0 200 400 600 800 1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3: Comparison of G-mean on rotating spiral dataset.

G
-m

ea
n

Processed instances

KUE
CSDS

AUE2
VFDT

0 2000 4000 6000 8000 1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4: Comparison of G-mean on spam dataset.

Computational Intelligence and Neuroscience 7

5. Conclusion

*is study provides novel insight into how to utilize a
cost-sensitive learning strategy to deal with class imbal-
ance under dynamic streaming scenarios. An ensemble
schema based on a cost-sensitive strategy is devised to
handle the combination of the two issues. Firstly, a cost-
sensitive version of the ReliefF algorithm that incorpo-
rates cost information during the data preprocessing is
proposed to solve the class imbalance issue at the data
level. Secondly, a cost-sensitive classifier weighting
scheme utilizing cost information is devised in the en-
semble stage. Moreover, a change detection module is
embedded in the ensemble to capture drift in real-time.
Finally, extensive experimental results show that our
method is superior to the competitive algorithms and
gains the best trade-off between performance and re-
sources, especially for nonstationary data streams with
imbalanced class environments. Furthermore, the results
verified its statistical significance with a nonparametric
Friedman test.

*is study focuses on the topic of single-label data
stream classification. Multilabel data streams are common in
many real applications. In the future, we plan to extend cost-
sensitive learning into the multilabel stream scenario.

Data Availability

*e datasets and experimental codes can be downloaded
from the websites: http://moa.cms.waikato.ac.nz/ and
https://github.com/scikit-multiflow/scikit-multiflow.

Conflicts of Interest

*e authors declare no conflicts of interest.

Acknowledgments

*is work was supported by National Natural Science
Foundation of China (Nos. 62062004, 61702550, and
31900710), Teacher Education Curriculum Reform Projects
of Henan Province (No. 2020-JSJYYB-034), the Innovation
Team Support Plan of University Science and Technology of
Henan Province (No. 19IRTSTHN014), Key Scientific Re-
search Projects of Henan Province (No. 20B520030), Young
backbone teachers program in Colleges and Universities of

Henan Province, and Nanhu Scholars Program for Young
Scholars of XYNU.

References

[1] C. C. Aggarwal, Data Streams: Models and Algorithms,
Springer-Verlag, Berlin, Germany, 2007.

[2] J. Gama, Knowledge Discovery from Data Streams, Chapman
& Hall/CRC, London, UK, 2010.

[3] I. Zliobaite, M. Pechenizkiy, and J. Gama, “An overview of
concept drift applications,” Big Data Analysis: New Algo-
rithms for a New Society, Studies in Big Data, vol. 16,
pp. 91–114, 2016.

[4] M. G. De Francisci, A. Bifet, L. Khan, J. Gama, and W. Fan,
“IoT big data streammining,” in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery
and DataMining (KDD 2016), pp. 2119-2120, ACM Press, San
Francisco, CA, USA, August 2016.

[5] H. M. Gomes, J. Read, A. Bifet, J. P. Barddal, and J. Gama,
“Machine learning for streaming data,” ACM SIGKDD Ex-
plorations Newsletter, vol. 21, no. 2, pp. 6–22, 2019.

[6] A. Tsymbal, De Problem of Concept Drift: Definitions and
Related Work, Trinity College Dublin, Dublin, Ireland, 2004.

[7] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and
A. Bouchachia, “A survey on concept drift adaptation,” ACM
Computing Surveys, vol. 46, pp. 231–238, 2014.

[8] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in
nonstationary environments: a survey,” IEEE Computational
Intelligence Magazine, vol. 10, no. 4, pp. 12–25, 2015.

[9] G. I. Webb, R. Hyde, H. Cao, H. L. Nguyen, and F. Petitjean,
“Characterizing concept drift,” Data Mining and Knowledge
Discovery, vol. 30, no. 4, pp. 964–994, 2016.

[10] I. Khamassi, M. Sayed-Mouchaweh, M. Hammami, and
K. Ghédira, “Discussion and review on evolving data streams
and concept drift adapting,” Evolving Systems, vol. 9, no. 1,
pp. 1–23, 2018.

[11] H. Haibo He and E. A. Garcia, “Learning from imbalanced
data,” IEEE Transactions on Knowledge and Data Engineering,
vol. 21, no. 9, pp. 1263–1284, 2009.

[12] H. He and Y. Ma, Imbalanced Learning. Foundations, Algo-
rithms, and Applications, John Wiley & Sons, Inc, Hoboken,
NJ, USA, 2013.

[13] A. Fernández, S. Garćıa, M. Galar, R. C. Prati, B. Krawczyk, and
F. Herrera, “Learning from imbalanced data streams,” Learning
from Imbalanced Data Sets, Springer, Cham, Germany, 2018.

[14] X. Y. Xu-Ying Liu, J. Jianxin Wu, and Z. H. Zhi-Hua Zhou,
“Exploratory undersampling for class-imbalance learning,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 39, no. 2, pp. 539–550, 2009.

[15] N. V. Chawla, K. W. Bowyer, L. O. Hall, and
W. P. Kegelmeyer, “SMOTE: synthetic minority over-sam-
pling technique,” Journal of Artificial Intelligence Research,
vol. 16, pp. 321–357, 2002.

[16] H. He, B. Yang, E. A. Garcia, and S. Li, “ADASYN: adaptive
synthetic sampling approach for imbalanced learning,” in
Proeedings f the 2008 IEEE International Joint Conference on
Neural Networks (IEEE World Congress on Computational
Intelligence), June 2008.

[17] A. Krishnamurthy, A. Agarwal, T. K. Huang, H. Daume III,
and J. Langford, “Active learning for cost-sensitive classifi-
cation,” Journal of Machine Learning Research, vol. 20,
pp. 1–50, 2019.

[18] P. Cao, D. Zhao, and O. Zaiane, “An optimized cost-sensitive
SVM for imbalanced data learning,” in Proceedings of the

CD

4 3 2 1

1.5556 CSDS
2 KUE2.6667AUE2

3.7778VFDT

Figure 5: Nemenyi test for G-mean of all algorithms.

8 Computational Intelligence and Neuroscience

http://moa.cms.waikato.ac.nz/
https://github.com/scikit-multiflow/scikit-multiflow

Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pp. 280–292, Springer, Gold Coast, Australia, April
2013.

[19] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan, “AdaCost:
misclassification cost-sensitive boosting,” in Proceedings of the
Sixteenth International Conference on Machine Learning,
pp. 97–105, Morgan Kaufmann Publishers Inc., Bled, Slov-
enia, June 1999.

[20] Y. Sun, M. S. Kamel, A. K. C. Wong, and Y. Wang, “Cost-
sensitive boosting for classification of imbalanced data,”
Pattern Recognition, vol. 40, no. 12, pp. 3358–3378, 2007.

[21] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and
F. Herrera, “A review on ensembles for the class imbalance
problem: bagging-, boosting-, and hybrid-based approaches,”
IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), vol. 42, no. 4, pp. 463–484, 2012.

[22] S. Wang and X. Yao, “Diversity analysis on imbalanced data
sets by using ensemble models,” in Proceedings of the IEEE
Symposium on Computational Intelligence & Data Mining,
pp. 324–331, IEEE, Nashville, TN, USA, March 2009.

[23] B. Sun, H. Chen, J. Wang, and H. Xie, “Evolutionary under-
sampling based bagging ensemble method for imbalanced
data classification,” Frontiers of Computer Science, vol. 12,
no. 2, pp. 331–350, 2018.

[24] S. Garćıa, Z.-L. Zhang, A. Altalhi, S. Alshomrani, and
F. Herrera, “Dynamic ensemble selection for multi-class
imbalanced datasets,” Information Sciences, vol. 445-446,
pp. 22–37, 2018.

[25] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer,
“SMOTEBoost: improving prediction of the minority class in
boosting,” in Proceeding of the 7the European Conference on
Principles of Data Mining and Knowledge Discovery,
pp. 107–119, Springer, Cavtat-Dubrovnik, Croatia, September
2003.

[26] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and
A. Napolitano, “RUSBoost: a hybrid approach to alleviating
class imbalance,” IEEE Transactions on Systems, Man, and
Cybernetics—Part A: Systems and Humans, vol. 40, no. 1,
pp. 185–197, 2010.

[27] X. Liu, J. Wu, and Z. Zhou, “Exploratory under-sampling for
class-imbalance learning,” in Proceeding of the 6th IEEE In-
ternational Conference on Data Mining (ICDM 2006),
pp. 965–969, IEEE, Hong Kong, China, December 2006.

[28] J. Gao, W. Fan, J. W. Han, and P. S. Yu, “A general framework
for mining concept-drifting data streams with skewed dis-
tributions,” in Proceedings of the 7th SIAM International
Conference on DataMining, pp. 3–14,Minneapolis, MN, USA,
April 2007.

[29] S. Chen and H. He, “Towards incremental learning of non-
stationary imbalanced data stream: a multiple selectively
recursive approach,” Evolving Systems, vol. 2, pp. 35–50, 2011.

[30] R. Polikar, L. Robi, S. S. Udpa, and V. Honavar, “Learn++: an
incremental learning algorithm for supervised neural net-
works,” IEEE Transactions on Systems, Man & Cybernetics:
Part C—Applications & Reviews, vol. 31, no. 4, pp. 497–508,
2001.

[31] G. Ditzler and R. Polikar, “Incremental learning of concept
drift from streaming imbalanced data,” IEEE Transactions on
Knowledge and Data Engineering, vol. 25, pp. 2283–2301,
2013.

[32] B. Mirza, Z. Lin, and N. Liu, “Ensemble of subset online
sequential extreme learning machine for class imbalance and
concept drift,” Neurocomputing, vol. 149, pp. 316–329, 2015.

[33] A. Ghazikhani, R. Monsefi, and H. Sadoghi Yazdi, “Ensemble
of online neural networks for non-stationary and imbalanced
data streams,” Neurocomputing, vol. 122, pp. 535–544, 2013.

[34] H. Li, Y. Wang, H. Wang, and B. Zhou, “Multi-window based
ensemble learning for classification of imbalanced streaming
data,” World Wide Web, vol. 20, no. 6, pp. 1507–1525, 2017.

[35] Y. Lu, Y. Cheung, and Y. Y. Tang, “Dynamic weighted ma-
jority for incremental learning of imbalanced data streams
with concept drift,” in Proceedings of the 26th International
Joint Conference on Artificial Intelligence, pp. 2393–2399,
AAAI Press, Melbourne, Australia, August 2017.

[36] P. Zyblewski, R. Sabourin, and M. Woniak, “Preprocessed
dynamic classifier ensemble selection for highly imbalanced
drifted data streams,” Information Fusion, vol. 66, pp. 138–
154, 2020.

[37] A. Cano and B. Krawczyk, “Kappa updated ensemble for
drifting data stream mining,” Machine Learning, vol. 109,
no. 1, pp. 175–218, 2020.

[38] I. Kononenko, “Estimating attributes: analysis and extensions
of RELIEF,” in Proceedings of European Conference on Ma-
chine Learning, F. Bergadano and L. D. Raedt, Eds.,
pp. 171–182, Springer, Catania, Italy, April 1994.

[39] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning
with drift detection,” in Proceedings the 17th Brazilian
Symposium on Artificial Intelligence (SBIA 2004, LNCS 3171),
pp. 286–295, Springer-Verlag, Sao Luis, Brazil, September
2004.

[40] J. Montiel, J. Read, A. Bifet, and T. Abdessalem, “Scikit-
multiflow: a multi-output streaming framework,” Journal of
Machine Learning Research, vol. 19, pp. 1–5, 2018.

[41] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA:
massive online analysis,” Journal of Machine Learning Re-
search, vol. 11, pp. 1601–1604, 2010.

[42] R. P. Espı́ndola and N. F. F. Ebecken, “On extending F-
measure and G-mean metrics to multi-class problems,” WIT
Transactions on Information and Communication Technolo-
gies, vol. 35, pp. 25–34, 2005.

[43] W. Shuo, L. L. Minku, and Y. Xin, “A systematic study of
online class imbalance learning with concept drift,” IEEE
Transactions on Neural Networks and Learning Systems,
vol. 29, pp. 4802–4821, 2018.

[44] J. Demšar, “Statistical comparisons of classifiers over multiple
data sets,” Journal of Machine Learning Research, vol. 7,
pp. 1–30, 2006.

[45] N. Settouti, M. E. A. Bechar, and M. A. Chikh, “Statistical
comparisons of the top 10 algorithms in data mining for classi
cation task,” International Journal of Interactive Multimedia
and Artificial Intelligence, vol. 4, no. 1, pp. 46–51, 2016.

Computational Intelligence and Neuroscience 9

