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While the world is stepping into the aging society, rehabilitation robots play a more and more important role in terms of both
rehabilitation treatment and nursing of the patients with neurological diseases. Benefiting from the abundant contents ofmovement
information, electroencephalography (EEG) has become a promising information source for rehabilitation robots control. Although
the multiple linear regression model was used as the decoding model of EEG signals in some researches, it has been considered
that it cannot reflect the nonlinear components of EEG signals. In order to overcome this shortcoming, we propose a nonlinear
decoding model, the particle filter model. Two- and three-dimensional decoding experiments were performed to test the validity
of this model. In decoding accuracy, the results are comparable to those of the multiple linear regression model and previous
EEG studies. In addition, the particle filter model uses less training data and more frequency information than the multiple linear
regression model, which shows the potential of nonlinear decoding models. Overall, the findings hold promise for the furtherance
of EEG-based rehabilitation robots.

1. Introduction

With the growth of the aging population, treatment needs for
nervous system diseases (e.g., spinal cord injury or stroke)
have become bigger and bigger. As an advanced form ofmed-
ical technology, rehabilitation robots have great potential in
terms of both rehabilitation treatment and nursing. In recent
years, the rehabilitation robot has become a research hotspot
in the fields of brain science, biomedical and rehabilitation
engineering, intelligent information processing, bionics, and
so on. The control strategies of rehabilitation robots include
force control, force field control, and bioelectrical signal
(EMG, EEG, etc.) control. Brain signals are recorded by
electrodes, reflecting the summation of the synchronous and
rhythmic activity of neurons. Compared with EMG, brain
signals contain more motion patterns and are available for
more people; they are thus more suitable as an information
source for rehabilitation robots. Brain signals can be obtained
by invasive or noninvasive methods, though signals acquired
by invasive methods have high signal-to-noise ratio and
spatial resolution, and invasive method-based rehabilitation
robot research has made great strides in animal experiments
[1–4].

Due to the inherent risks of surgery and the gradual
degradation of signal integrity, the invasivemethod is difficult
to promote in clinical application. Although neuronal data
acquired noninvasively from the scalp via electroencephalog-
raphy (EEG) has comparatively low signal-to-noise ratio
and spatial resolution, it is more suitable to be used in
rehabilitation robots and in clinical applications because of
its directness, its security, the simplicity of its acquisition
equipment, its easy operation, its lower cost, and its fewer
environmental restrictions.

In recent years, researchers have tried to read human
mind from the EEG to determine the movement intent of
people to achieve a noninvasive intelligent prosthetic control
using, for example, the motor imagery-based rehabilitation
system [5], the MindWalker of the Twente University [6],
and the lower exoskeleton control system studied by the
University of Houston [7]. Researchers, who study the EEG
signals, concentrated more on pattern classification and
feature extraction based on event-related potentials [8], visual
evoked potential [9], and mental tasks [10].

In order to better control prostheses using EEG,
researchers have been trying to get more movement
information from the EEG signal besides pattern recognition
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or time-frequency analysis to identify the intent to achieve
movement. For instance, Zhao et al. used the duration
of a specific image to define the intensity of the task
control commands, thus providing continuous control of
an additional parameter [11]. Logar controlled the clamping
force according to the phase demodulation method based
on EEG [12]. The literature [13] analyzed the relationship
between the actual movement velocity and the image. But,
this movement information for intelligent prosthesis control
is also far less.

Researchers have conducted studies on motion infor-
mation extraction from EEG based on research on motion
information extraction methods from an invasive signal
(mainly decoding method includes linear filtering [14–16],
Kalman filtering [17, 18], linear equation of state [19], and
support vector machines [20]). In 2009, Bradberry et al.
proposed a method to continuously decode hand position,
velocity, and acceleration from 55-channel EEG signals and
established a mapping model between EEG and motion
information [14]. On this basis, in 2010, Bradberry contin-
uously decoded 2D center-out movements, unconstrained
3D center-out movements, and 3D finger gestures, showing
that EEG signals also contain rich motion information in
the macroscale movement [15]. Lv et al. used a Kalman filter
to predict the hand velocity in a “self-routed” movement
based on features such as amplitude and power spectrum [21].
Antelis et al. established a mapping model between EEG and
motion information by training the recorded trajectory from
the initial point to the fixed point or any target point and the
features of EEG in the spatial and time-frequency domain
through the support vector machine (SVM) [22]. However,
the researches above are limited to the decoding of specific
limb trajectory. In 2011, Presacco et al. proposed a method
that decoded unconstrained treadmill walking fromEEG [16]
and successfully obtained the linear and angular kinematics
of the ankle, knee, and hip joints during walking.

During research on motion information extraction from
EEG, most researchers have used a multiple linear regression
decoding model based on a neural decoding method from
invasive signals. Antelis et al. pointed out that the use of
a linear regression model implies that the relevant EEG
component has to be in the same frequency range as the
signal to be decoded and suggested that a nonlinear model
should be used to relate the limb kinematics to EEG temporal
sequences [23]. Because EEG is a recording of electrical
activity along the scalp, which comes from the neurons via
the skull, the conductivity of the skull is nonlinear. The
multiple linear regression model cannot reflect the nonlinear
component of EEG.

Some nonlinear invasive neural decoding methods such
as neural networks, support vector machines, and particle
filter [24] for the movement decoding from EEG provide a
reference. Particle filter is a technique for implementing a
recursive Bayesian filter byMonte Carlo simulations.The key
idea is to represent the required density function by set of
random samples (particles) with associated weights. Particle
filtering algorithm has been successfully applied in invasive
neural decoding. For example, Wood et al. used particle
filtering to recursively infer hand kinematics and attentional

state conditioned on neural firing rates with a monkey [25].
Kelly and Lee decoded the V1 neuronal activity using particle
filtering with Volterra kernels [26]. Gao et al. described the
Bayesian decoding of hand motion from firing activity using
a particle filter [27].

This paper proposes a nonlinear decoding model based
on a particle filter. The multiple linear regression model and
particle filter model are evaluated and compared using two-
and three-dimensional hand motion decoding experiments.

2. Decoding Methods

2.1. Decoding Model by Multiple Linear Regression. The mul-
tiple linear regression model assumes that the kinematics
of the hand are related to the EEG signals at present and
the EEG signals at the previous moment and assumes that
the relationship between the EEG signals of each channel
is linear. The corresponding weight of each EEG channel
can be obtained through multiple linear regression, and the
decoding model is given by
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where 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) are, respectively, the horizontal,
vertical, and depth position of the hand at time sample 𝑡, 𝑁
is the number of EEG channels, 𝐿 is the number of time lags,
𝑆
𝑛
(𝑡 − 𝑘) is the voltage measured at EEG channel 𝑛 at time

lag 𝑘, and the 𝑎 and 𝑏 variables are weights obtained through
multiple linear regression.

2.2. Decoding Model by Particle Filter. We have implemented
a particle filtering method for reconstructing hand move-
ment information from EEG signals. And, in particle filter
decoding (or Bayesian decoding), the object is to find, for
each time 𝑡, the distribution of the unobserved signal 𝐶

𝑡

(where 𝐶
𝑡
= [𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)] has been used to represent

the position of hand at time step 𝑡, with two- or three-
dimensional vector) that is the key position information,
given observations 𝑆

1:𝑡
, while the observation 𝑆

𝑡
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the vector of EEG. Hence, we view the decoding problem
as a statistical inference problem in which we could get a
Bayesian estimate of the posterior 𝑝(𝐶

𝑡
| 𝑆
1:𝑡
) at every time

step. Making certain independence and first-order Markov
assumptions leads to a recursive estimate of the posterior:
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where 1/𝜆 is a normalizing constant.
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Particle filter decoding consists of two statistical models:
(1) a statemotionmodel (or temporal prior), 𝑝(𝐶

𝑡
| 𝐶
𝑡−1
), for

a process𝐶
𝑡
describing the evolution of the state we are trying

to predict (here, position of hand) and (2) a measurement
model (or an observation model, or likelihood), 𝑝(𝑆

𝑡
| 𝐶
𝑡
),

specifying the probability distribution of the data 𝑆
𝑡
given the

underlying state 𝐶
𝑡
.

2.2.1. The State Motion Model. The state motion model
describes the distribution of the unobserved signal one step in
the future,𝐶

𝑡+1
, given the current value of the signal𝐶

𝑡
. Here,

we use a second-order model, and the state motion model is
as follows:

𝐶
𝑡+1
= 𝐴𝐶
𝑡
+𝑊, (3)

where 𝐶
𝑡
= [𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)] is the key position information,

𝐴 is the transfer matrix, and𝑊 is the Gaussian noise.

2.2.2. The Measurement Model. The measurement model
specifies the relationship between the unobserved signal 𝐶

𝑡

and the observation 𝑆
𝑡
. We assume the conditional indepen-

dence of the EEG channels where the likelihood for the EEG
signals is taken to be a Gaussian distribution. So, with some
other usual assumption [23], the measurement model can be
expressed as
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where the 𝑚-dimensional vector 𝜇 is the mean and the
covariance is the positive definite matrix ∑. The main steps
of the particle filter decoding model are as follows.
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The least mean-square estimate of the unknown
parameter 𝑥 at time 𝑘 can be obtained from
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(3) Resampling. Get a new particle collection {𝑐𝑖
∗

0:𝑘
, 𝑖 =

0, 1, 2, . . . , 𝑁
𝑠
}.

(4) Prediction. Use the state equation to predict the
unknown parameter 𝑐𝑖

𝑘+1
.

(5) At time 𝑘 = 𝑘 + 1, return to step (2).

We use one set of experimental data to train the particle
filter model and another experimental data set to verify the
model. The Pearson correlation coefficient (𝑟) between the
measured and reconstructed hand positions was computed.

3. Experimental Design

After giving informed consent, six healthy, right-handed
subjects, aged 20–25 (4 men and 2 women) and with no his-
tory of neurological disease, participated in the experiments.
The experiments included two- and three-dimensional hand
motions. To verify the applicability of the two decoding
methods, we first tested their validity in two-dimensional
hand motion, and then we further tested their validity in
three-dimensional hand motion.

3.1. Two-Dimensional Hand Motion Experiment. As shown
in Figure 1, participants sat upright in a chair in front of
the computer screen; the chair could be adjusted to obtain
an appropriate height. During the experiment, participants
were instructed to move their right arm/finger to track a
computer-controlled cursor that moved along a spiral line in
two dimensions on the computer screen. Meanwhile, EEG
of participants was acquired. Participants were asked to keep
other parts of their body except the right arm still and not to
blink to reduce EMG and ocular artifacts. The most frontal
electrodes (FP1, FP2) were removed offline from participants,
as they are usually contaminated by eye blinks.

3.2. Three-Dimensional Hand Motion Experiment. As
Figure 2 shows, while wearing an EEG cap, participants held
a target object whose three-dimensional motion was tracked
by the optical tracking system. Participants swung their
hands within a certain range in space slowly and freely. The
body of participants remained still except for hand motions
to minimize interference from EMG during the experiment,
avoiding blinks to reduce ocular artifacts. The EEG signals
from the FP1 and FP2 channels were also removed in the
three-dimensional motion decoding. The optical tracking
system was a PST IRIS motion capture device (PS-tech,
Amsterdam, The Netherlands) with acquisition frequency of
120Hz.

A Neuroscan NuAmps Express system (Compumedics
Ltd., VIC, Australia) was used to acquire EEG signals with
the reference on the right mastoid process behind the right
ear.Thenumber of EEG channels, collection frequency, notch
frequency, and low-pass cut-off frequency were 30, 500Hz,
50Hz, and 100Hz, respectively. The location of 30 electrodes
according to the extended international 10–20 system is
shown in Figure 3.

In the two experiments, the hand movement and EEG
signals were both acquired with timestamps. And they can
be synchronized according to the timestamps.

3.3. Preprocessing. Vertical electroocular signals (VEOG)
were measured with two electrodes attached superior and
inferior to the orbital fossa of the left eye. And horizontal
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Figure 1: In the two-dimensional experiment, the participant moved his finger to track a computer-controlled cursor along the spiral line.

(a) (b)

Figure 2: In the three-dimensional experiment, the participant swung his hand in space and his hand movement was tracked by the PST
IRIS optical tracking system.

electroocular signals (HEOG) were measured with two elec-
trodes attached to external canthi. In EEG signals recorded by
a DC amplifier, baseline drift can occur artificially and simul-
taneously. First, the effects of baseline drift were removed.
And the eye movements were removed from the EEG using
a regression analysis. Then, the EEG signals were filtered
with a 5th-order, low-pass Butterworth filter with a cut-off
frequency of 2Hz.Themovement time of the small ball along
the spiral line was 48 s in the two-dimensional experiment,
and the number of coordinate positions of the small ball
was 3079, so the ball movement sampling frequency (i.e.,
the sampling frequency of the hand motion) was about
64Hz. Subsequently, the signals from each EEG channel
were resampled from 500Hz to 64Hz, to ensure the same
sampling frequency as that of the handmotion.The sampling
frequency of the hand motion was 120Hz in the three-
dimensional experiment, so the EEG signals needed to be

resampled from 500Hz to 120Hz.Then, the signals from each
EEG channel were standardized according to the following:

normalize (EEG) = (EEG −mean (EEG))
std (EEG)

, (8)

where normalize(EEG) is the normalized EEG signals,
mean(EEG) is the mean of EEG signals, and std(EEG) is the
standard deviation of EEG signals.

The 𝑋, 𝑌, and 𝑍 coordinates of the hand position during
the hand movement were also standardized using the same
equation. Finally, the hand position was decoded from EEG
signals using the multiple linear regression and particle filter
models. The entire process is shown in Figure 4.

4. Results

4.1. Multiple Linear Regression Model. For each subject, data
of 10 trials was collected under each experimental condition
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Table 1: The Pearson correlation coefficient (𝑟) using the multiple linear regression model for Subject 1.

Two-dimensional Test Data 1 Test Data 2 Test Data 3 Test Data 4 Test Data 5 Test Data 6
𝑅
𝑋

0.6736 0.7875 0.8733 0.8586 0.6895 0.7408
𝑅
𝑌

0.8824 0.6723 0.7870 0.5195 0.8544 0.9019
Three-dimensional Test Data 1 Test Data 2 Test Data 3 Test Data 4 Test Data 5 Test Data 6
𝑅
𝑋

0.4214 0.4354 0.5385 0.6813 0.5339 0.4097
𝑅
𝑌

0.4558 0.3772 0.5237 0.6784 0.4995 0.3745
𝑅
𝑍

0.4656 0.3708 0.5028 0.6674 0.4918 0.3672

Table 2: The Pearson correlation coefficient (𝑟) using the particle filter model for Subject 1.

Two-dimensional Test Data 2 Test Data 3 Test Data 4 Test Data 5 Test Data 6
𝑅
𝑋

0.6416 0.9248 0.7025 0.8658 0.8071
𝑅
𝑌

0.6884 0.8561 0.6761 0.7820 0.7532
Three-dimensional Test Data 1 Test Data 2 Test Data 3
𝑅
𝑋

0.4512 0.5073 0.1390
𝑅
𝑌

0.4635 0.5941 0.1569
𝑅
𝑍

0.4687 0.3452 0.2849
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Figure 3: The location of 30 electrodes is an extended international
10–20 system.

(2D, 3D (data length: 8 s, 15 s, and 30 s)). And 6 trials were
selected from all the 10 trials according to the state of
the subjects (concentration, movement of the body, etc.)
during the trial. A 6 × 6-fold cross-validation procedure was
employed to assess the reconstruction accuracy of the hand
position from the EEG signals. In this procedure, the data
of 5 trials was used for training; the remaining 1 trial data
was used for testing. Figures 5(a) and 5(b) show, respectively,
examples of the measured (red) and reconstructed (blue)
hand positions in two and three dimensions in terms of
decoding accuracy. The lengths of the data in the three-
dimensional experiment include 8 s, 15 s, and 30 s. The 6 ×
6-fold cross-validation procedure was used for every data

length. In Figure 5(b), Test Data 1 and Test Data 4 are the
results for data lengths of 8 s, Test Data 2 and Test Data 5 are
the results for data lengths of 15 s, and Test Data 3 and Test
Data 6 are the results for data length of 30 s. Table 1 reports
the Pearson correlation coefficients (𝑟) in the two- and three-
dimensional experiments for Subject 1.

4.2. Particle Filter Model. As a nonlinear decoding model,
the particle filter model can reflect the nonlinear components
of EEG signals and only needs one set of experimental data
to train the model. For the two-dimensional experiment,
we used Test Data 1 to train the particle filter model and
the other five sets of experimental data to verify the model.
The measured (red) and reconstructed (blue) hand positions
in two dimensions are shown in Figure 6(a). For the three-
dimensional experiment, we used the particle filter model
for data of lengths 8 s, 15 s, and 30 s; the measured (red) and
reconstructed (blue) hand positions in three dimensions are
shown in Figure 6(b).The Pearson correlation coefficients (𝑟)
of Subject 1 in the two-dimensional and three-dimensional
experiments are reported in Table 2.

The measured positions and decoded positions of hand
movement in 2- and 3-dimensional spaces are shown in
Figure 7. In order to avoidmess, we only selected a part of the
hand trajectory in 3-dimensional space. As can be seen from
Figure 7, the reconstructed position curve fits the measured
position curve well.

With the multiple linear regression model, the mean
and SD of the correlation coefficients across cross-validation
procedure for all subjects are reported in Table 3, while the
results of the particle filter model are shown in Table 4.

In the two-dimensional experiment, multiple linear
regression model and particle filter model have sim-
ilar decoding accuracy (Figure 8). However, the three-
dimensional decoding results of themultiple linear regression
model are a little bit better than those of the particle filter
model. The standard deviation of 𝑟 from particle filter model
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Figure 4: Experimental procedure. EEG and hand position information were recorded when subjects were conducting the experiment. After
preprocessing, they were used to train and test the decoder.

Table 3: Decoding accuracy using multiple linear regression model for all six subjects.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6
Two-dimensional
𝑅
𝑋

0.77 ± 0.08 0.43 ± 0.13 0.67 ± 0.12 0.56 ± 0.09 0.61 ± 0.06 0.49 ± 0.07

𝑅
𝑌

0.77 ± 0.15 0.48 ± 0.09 0.71 ± 0.09 0.63 ± 0.12 0.58 ± 0.15 0.41 ± 0.11

Three-dimensional
𝑅
𝑋

0.5 ± 0.1 0.36 ± 0.07 0.42 ± 0.09 0.41 ± 0.1 0.37 ± 0.11 0.35 ± 0.08

𝑅
𝑌

0.48 ± 0.11 0.39 ± 0.05 0.44 ± 0.11 0.42 ± 0.08 0.35 ± 0.09 0.33 ± 0.02

𝑅
𝑍

0.48 ± 0.11 0.38 ± 0.05 0.45 ± 0.08 0.40 ± 0.13 0.34 ± 0.1 0.33 ± 0.05

Table 4: Decoding accuracy using particle filter model for all six subjects.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6
Two-dimensional
𝑅
𝑋

0.79 ± 0.12 0.46 ± 0.07 0.65 ± 0.07 0.59 ± 0.05 0.6 ± 0.04 0.52 ± 0.05

𝑅
𝑌

0.75 ± 0.07 0.48 ± 0.1 0.63 ± 0.1 0.64 ± 0.03 0.57 ± 0.1 0.46 ± 0.08

Three-dimensional
𝑅
𝑋

0.37 ± 0.13 0.33 ± 0.03 0.36 ± 0.03 0.35 ± 0.02 0.39 ± 0.07 0.33 ± 0.03

𝑅
𝑌

0.39 ± 0.08 0.31 ± 0.07 0.37 ± 0.04 0.32 ± 0.05 0.34 ± 0.06 0.29 ± 0.06

𝑅
𝑍

0.47 ± 0.09 0.4 ± 0.08 0.40 ± 0.07 0.33 ± 0.08 0.37 ± 0.08 0.35 ± 0.04

is smaller, which means that it is more stable. It is evident
that the decoding accuracy among subjects is variable. The
results of Subject 1 are the best because he has conducted the
experiments many times and became more adaptive.

The topographies of the contribution of each electrode
in the multiple linear regression model (at the best lag) and
in the particle filter model were plotted in Figure 9. For
the particle filter model, we used EEG signals of only one
electrode to decode hand movement each time. And the
correlation coefficient got from one electrode decoding was
used to represent the contribution of this electrode. After
the one electrode decoding procedure was used in all 30
electrodes, we can get the contribution of each electrode in
the particle filter model. The topography of multiple linear
regression model shows contributions from primary motor
sensory area and occipital region. For the particle filtermodel,
electrode locations at F4, Fc4, P3, P6, and TP8 are relevant for
decoding right handmovement. It can be inferred that neural

information about right handmovement is distributed across
both hemispheres and the areas contributing to decoding are
different in two decoding models.

5. Discussion

As can be seen from Figure 5, the reconstructed curves in
the 𝑋 and 𝑌 directions in the two-dimensional experiment
and the reconstructed curves in the 𝑋, 𝑌, and 𝑍 directions
in the three-dimensional experiment fit the measured curves
well, showing the validity of the multiple linear regression
model in the extraction of motion information from the
EEG. However, there are high-frequency fluctuations in the
reconstructed curves. One reason may be that the cut-off
frequency of the low-pass filter during preprocessing is too
high. As can be seen from Figure 10, the reconstructed
curve with the cut-off frequency of 4Hz has more frequent
fluctuations than the one with the cut-off frequency of 2Hz.
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(b) The results of the three-dimensional experiment

Figure 5: The measured and reconstructed hand position using the multiple linear regression model for Subject 1.
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(b) The results of the three-dimensional experiment

Figure 6: The measured and reconstructed hand positions using the particle filter model for Subject 1.

It indicates that the cut-off frequency has an impact on
the reconstructed curve. Reducing the cut-off frequency of
the low-pass filter during preprocessing, or smoothing the
reconstructed curve with a low-pass Butterworth filter, can
effectively reduce these high-frequency fluctuations. Com-
pared with the results in the two-dimensional experiment,
the decoding accuracy in the three-dimensional experiment

is low.The increased movement complexity may increase the
difficulty of decoding.

In Figure 6(a), the reconstructed curves from the five sets
of test data using the particle filter model fit the measured
curves well in the trend. However, the decoding accuracies
for Test Data 2 and Test Data 4 were relatively low, and
the corresponding Pearson correlation coefficients are small.
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means the starting point.
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Figure 8: The mean value (𝑛 = 6) and standard deviation of correlation coefficients between measured and reconstructed hand positions
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This may have been caused by inattention, eye blinks, or the
movements of other parts of the body that introduced noise
in the EEG data acquisition process for Test Data 2 and Test
Data 4. The decoding accuracy for the three-dimensional
experiment is smaller than that of the two-dimensional

experiment, and Table 2 shows that the Pearson correlation
coefficients for the data of lengths 8 s and 30 s in the three-
dimensional experiment are smaller than that of the 15 s
data. The same phenomenon exists when we analyze a large
amount of data offline. Thus, the particle filter model may
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Figure 9: Spatial distribution of the contribution of each electrode for Subject 1 in multiple linear regression model (left) and particle filter
model (right).
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Figure 10: The decoding results using the multiple linear decoding model at different cut-off frequency of the low-pass filter.

have an optimal data length. When the data length is shorter
than the optimal data length, the number of iterations is small
and leads to a lowdecoding accuracy.However, when the data
length is longer than the optimal data length, the difference
between the training data and test data becomes bigger, which
also leads to a low decoding accuracy. Compared with the
multiple linear regression model, the reconstructed curves
from the particle filter model are smoother and have no high-
frequency fluctuations. The Pearson correlation coefficients
of the results—except Test Data 2 and Test Data 4 in the two-
dimensional experiment—are above 0.7, showing a strong
positive correlation. The reconstructed curves in the three-
dimensional experiments, except TestData 3, fit themeasured
curves well in the trend, showing the validity of the particle
filter model.

Compared with the multiple linear regression model, the
particle filter model uses less training data. Figure 11 shows
the decoding results using the multiple linear regression
model when the number of the training data sets increases
from 1 to 5. Table 5 reports the corresponding Pearson
correlation coefficients. Figure 12 shows how the Pearson
correlation coefficient changes with the number of training
data sets in the𝑋 and 𝑌 directions, respectively.

As can be seen from Figure 12, the decoding accuracy
of the multiple linear regression model in the 𝑋 and 𝑌
directions increases as the number of training data sets
increases. When the number of training data sets is small,
the decoding accuracy increases rapidly with the increase
in training data sets, and when the number of training data
sets is large, the decoding accuracy increases slowly with
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0.65

0.7

0.75

0.8

0.85

0.9

1 2 3 4 5

R
X

The number of training data sets

(a)

1 2 3 4 5

The number of training data sets

0

0.2

0.4

0.6

0.8

1

R
Y

(b)

Figure 12: The changes in the Pearson correlation coefficient in the𝑋 direction (a) and the 𝑌 direction (b) with the number of training data
sets.

Table 5: The Pearson correlation coefficients in the𝑋 and 𝑌 directions at different number of training data sets.

The number of data sets 𝑁 = 1 𝑁 = 2 𝑁 = 3 𝑁 = 4 𝑁 = 5

𝑅
𝑋

0.751 0.7853 0.8389 0.8576 0.8733
𝑅
𝑌

0.5225 0.6488 0.7577 0.7838 0.787
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Figure 13: The two methods’ processing capacities for high-frequency components of the EEG. The reconstructed positions from multiple
linear regression model have fluctuations while the reconstructed positions from particle filter model are much smoother.

the increase in training data sets. This is because when the
number of training data sets is small, the influence of random
interference factors, such as noise, in the training data is big.
The influence of the random interference factors decreases
with the increase of training data sets, as they can cancel
each other out. As a result, a large training data set leads to a
high decoding accuracy.When training data sets increase to a
certain number, the impact of increasing the training data sets
on the improvement of decoding accuracy becomes weaker.
Thus, the decoding accuracy tends to stabilize. The decoding
results in two dimensions in Table 2 show that the particle
filter model can achieve high decoding accuracy using only
one training data set. So when the number of experimental
data is small, it is easier for the particle filter model to achieve
high decoding accuracy.

The high-frequency EEG components will cause high-
frequency fluctuations in the reconstructed curves in the
multiple linear regression model and lower its decoding
accuracy. However, the particle filter model can process the
high-frequency components of the EEG directly and use the
information in a wide range of frequencies. Both the training
data and test data are not low-pass filtered and are then used
to decode the EEG using themultiple linear regressionmodel
and particle filter model. The decoding results are shown in
Figure 13.

Figure 13 shows the two different methods’ processing
capacities for high-frequency components with the same
EEG signal as an input. In Figure 13(a), for multiple linear
regression, the Pearson correlation coefficients for the 𝑋
and 𝑌 directions are 0.7228 and 0.6927, respectively, lower
than the decoding accuracy of the results after low-pass
filtering in Table 1, and have a bad denoising ability. Only
when the EEG signal frequency is consistent with the hand-
moving frequency can a high decoding accuracy be achieved.

In experiments, the hand-moving frequency is below 2Hz;
hence, the EEG signals need to be processed by a low-pass
filter with a cut-off frequency of 2Hz. In Figure 13(b), for
the particle filter decoding results, the Pearson correlation
coefficients for the𝑋 and 𝑌 directions are 0.9044 and 0.8421,
respectively, little different from the results after low-pass
filtering in Table 2. Furthermore, it has a good effect on
the processing of the high-frequency components. This is
because the particle filter can process the high-frequency
components of EEG in its algorithm, so the low-pass filter is
not necessary. Moreover, the high-frequency components of
the EEGmay containmotion information; hence, the particle
filter model can make use of more extensive frequency
information, which may improve the decoding accuracy.

6. Conclusion

This paper used the multiple linear regression model and the
particle filter model to decode the hand motion information
in two and three dimensions from EEG signals and analyzed
the decoding results and the factors that influenced it to
compare the decoding features of the two methods and their
usability. The experimental results showed that the multiple
linear regression model needed multiple sets of training data
to train and only worked well for low-frequency decoding.
Conversely, for the particle filter model, only one set of
training data was necessary, and the model could process
EEGs containing high-frequency components, which means
a more extensive utilization of frequency information. Nev-
ertheless, the length of the EEG data affected the decoding
accuracy. With this in mind, the decoding model should be
carefully chosen in accordance with the model features and
its application scenario.
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Our future work is to research the influence of other
factors on the decoding, optimize the particle filter method
to improve its decoding accuracy, and try to perform online
decoding and manipulator control.
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