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Abstract

The objective of this study was to explore trajectories of lung function decline with age in the

general population, and to study the effect of sociodemographic and life style related risk

factors, in particular smoking and BMI. For this purpose, we used data from the Doetinchem

Cohort Study (DCS) of men and women, selected randomly from the general population

and aged 20–59 years at inclusion in 1987–1991, and followed until the present. Participants

in the DCS are assessed every five years. Spirometry has been performed as part of this

assessment from 1994 onwards. Participants were included in this study if spirometric mea-

surement of FEV1, which in this study was the main parameter of interest, was acceptable

and reproducible on at least one measurement round, leading to the inclusion of 5727 indi-

viduals (3008 females). Statistical analysis revealed three typical trajectories. The majority

of participants followed a trajectory that closely adhered to the Global Lung Initiative Refer-

ence values (94.9% of men and 96.4% of women). Two other trajectories showed a more

pronounced decline. Smoking and the presence of respiratory complaints were the best pre-

dictors of a trajectory with stronger decline. A greater BMI over the follow-up period was

associated with a more unfavorable FEV1 course both in men (β = -0.027 (SD = 0.002); P <
0.001) and in women (β = -0.008 (SD = 0.001); P < 0.001). Smokers at baseline who quit the

habit during follow-up, showed smaller decline in FEV1 in comparison to persistent smokers,

independent of BMI change (In men β = -0.074 (SD = 0.020); P < 0.001. In women β =

-0.277 (SD = 0.068); P < 0.001). In conclusion, three typical trajectories of age-related FEV1

decline could be distinguished. Change in the lifestyle related risk factors, BMI and smoking,

significantly impact aging-related decline of lung function. Identifying deviant trajectories

may help in early recognition of those at risk of a diagnosis of lung disease later in life.
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Introduction

Chronic respiratory diseases rank high as cause of morbidity and mortality worldwide.[1, 2]

As age is the most important risk factor for COPD, besides smoking, the disease burden due to

chronic respiratory disease is likely to increase, especially in countries with aging populations.

Much of the morbidity from chronic lung disease is due to failing lung function. Decline of

lung function often progresses insidiously and once symptoms become manifest, the accumu-

lated damage has become irreversible. Measurement of lung function by means of spirometry

has therefore become a mainstay in the diagnosis of chronic lung disease and in the monitor-

ing of treatment effect. As lung function declines with aging, the effect of age needs to be taken

into account.[3, 4] Indeed, understanding the impact of age on the development of airflow lim-

itation is considered a research priority in current respiratory medicine.[5] Existing spiromet-

ric reference values have been derived from cross-sectional studies of healthy individuals of

various ages [6, 7]. However, in order to gain a more accurate insight into the change of lung

function over the life course, longitudinal studies with sufficiently long follow up of spiromet-

ric parameters are indispensable. In particular, such studies offer a clearer view on interindi-

vidual variation in lung function trajectories, which might help in distinguishing pathological

decline from ‘normal’ aging.

The study we present analyzed lung function change during aging in the general popula-

tion. We used data from the population-based Doetinchem Cohort Study[8] of men and

women aged 20 to 59 years at baseline (1987–1991). The data included spirometric measure-

ments, performed four times in a row, at five-year intervals. We aimed to identify typical

aging-related trajectories of lung function as measured by forced expiratory volume in one sec-

ond (FEV1).[9, 10] The hypothesis was that ‘latent’ heterogeneity of lung function in the popu-

lation can be revealed by statistical analysis, using a powerful ‘data-driven’ method. After

having characterized a number of distinct trajectories, we investigated to what extent baseline

sociodemographic and lifestyle characteristics determine the likelihood of following a particu-

lar trajectory. We also studied the effect of changes in BMI and of quitting with smoking on

the course of lung function during follow-up.

Materials and methods

Study population

The study design of the Doetinchem Cohort study has been described elsewhere.[8] Partici-

pants were selected randomly by age- and sex-stratified sampling from the civil registries of

Doetinchem, a small town in the Netherlands. Inclusion started in the period 1987–1991.

Almost all participants are white, and ethnically native. From the participants in the first mea-

surement round (n = 12,405, participation rate 62%), a random sample of 7,768 were invited

for a second measurement round (1993–1997). This last random sample was invited again in

1998–2002 (round 3), 2003–2007 (round 4), and 2008–2012 (round 5). The response rates for

all follow-up measurements varied between 75% and 80%, resulting in 6113, 4916, 4520, and

4017 participants for rounds 2, 3, 4, and 5, respectively. Lung function measurements were

included from the first half of 1994 onwards. Therefore, for the present analyses data from the

period 1994 to 2012 were used and round 2 was considered as baseline.

The study was conducted according to the principles of the World Medical Association

Declaration of Helsinki and its amendments since 1964, and in accordance with the Medical

Research Involving Human Subject Act (WMO). The protocols for subsequent rounds were

approved by the Medical Ethical Committee (Medisch Ethische Commissie) of TNO (rounds 2
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and 3), respectively the Medical Ethical Committee (Medisch-Ethische Toetsingscommissie) of

University Medical Center Utrecht (rounds 4 and 5).

All participants gave written informed consent.

Spirometry

Lung function (without bronchodilation) was measured by trained paramedics using a heated

pneumotachometer (E Jaeger, Wurzburg, Germany), with the examined person in a seated

upright position. FEV1 was recorded as the greatest FEV1 of�3 technically acceptable mea-

surements (out of a maximum of 8 trials), with the requirement that the highest and second

highest value matched within 5% (Quality grade A as described in Enright et al.[11]). Partici-

pants were included in the analyses if their FEV1 was acceptable and reproducible on at least

one measurement round (N = 5727: 2719 males and 3008 females). For participants who were

included in the analyses, measurements on other rounds that were not acceptable or non-

reproducible, were excluded (i.e. considered as ‘missing’). We excluded 904 examinations that

did not meet the quality requirements. In addition, pregnant women were excluded for the

round that took place during their pregnancy (n = 65).

Sociodemographic, lifestyle and respiratory health characteristics

Measured height and body weight were used to calculate body mass index, which was used as

a continuous measure, or categorized as normal (BMI lower than 25 kg/m2), overweight

(BMI� 25 and< 30 kg/m2), and obese (BMI 30 kg/m2 or above). Education was categorized

into three levels (low, moderate, and high). Work status was defined as having a paying job or

not, and household composition as living alone or not. Smoking status was categorized as cur-

rent smoker, ex-smoker, and never-smoker. Also numbers of pack-years at baseline were esti-

mated. Physical activity was assessed with a self-administered questionnaire designed for the

international European Prospective Investigation Into Cancer and Nutrition study, to which a

question was added on sports and other strenuous leisure-time physical activities.[12] Being

physically active were considered those who spent at least 3.5 hours on moderate-to-vigorous

leisure-time physical activities and heavy work, in conformity with international guidelines.

[13] Questionnaire assessment of COPD and asthma symptoms was based on the Dutch com-

ponent of the European Community Respiratory Health Survey.[14] COPD symptoms were:

chronic (occurring on most days for at least 3 months a year) cough, chronic sputum produc-

tion or breathlessness. Breathlessness was defined as shortness of breath when walking on level

ground with people of the same age. Asthma symptoms were wheezing in the past 12 months,

shortness of breath at night in the past 12 months, or a self-reported physician’s diagnosis of

asthma. All participants were asked whether they used medication for respiratory symptoms

in the preceding 24 hours.

Statistical analyses

Our primary aim was to model within-person change of FEV1 as observed at four different

time points. We used latent class mixture modeling (LCMM) that allows identifying a number

of ‘typical’ trajectories in order to verify the hypothesis that the population is made up of het-

erogeneous subgroups, making as few a priori assumptions as seemed reasonable. That is, first

we derived a best fitting model (see further below), separately for men and women, using the

complete dataset and including only age (centered and scaled) as the independent variable,

adjusting for body length (centered and scaled).[15]

We briefly summarize how we arrived at the best-fitting models for men (N = 2719) and

women (N = 3008).

Long-term trajectories in respiratory function
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For each latent class the mean trajectory of FEV1 was modeled as a smooth function of

age at examination and length. The deviation of individuals from the mean class trajectories

was modeled by the addition of random intercepts and slopes of age. A ‘best’ model was

selected by optimizing over different smoothness parameters, numbers of classes, and ‘link

functions’. As criterion for optimization we used the Bayesian Information Criterion (BIC).

Uncertainty was incorporated by estimating the individuals’ (posterior) probability of mem-

bership for each of the identified trajectories. Mean predicted FEV1 values over the life

course were plotted for each trajectory (assigning individuals to the class with highest poste-

rior probability). Curves were truncated to avoid extrapolation beyond the observations.

Similar curves were plotted of FVC trajectories for the same classes as were identified based

on the FEV1 analyses.

All LCMM analyses were done using statistical software R and the package lcmm.[16, 17]

To compare our longitudinal trajectories with spirometric reference values we also graphed

in the figures the FEV1 and FVC reference values, using the equations developed by the Global

Lung Initiative (GLI) (http://www.lungfunction.org, accessed 1 July 2016).

Determinants of class (trajectory) membership. After having determined the optimum

number of classes and growth parameters, we assigned each individual to the class for which

posterior probability was highest, resulting in a distribution over classes. Differences between

classes for a number of baseline characteristics (sociodemographic and lifestyle characteristics)

were tabulated. In addition, differences in baseline FEV1, and absolute and relative decline in

FEV1 were reported.

Next, the influence of baseline socio-demographic and lifestyle characteristics on trajectory

probability was explored using multivariable weighted multinomial logistic regression.

Assigned FEV1 trajectory membership was taken as the dependent variable, weighted for the

maximum posterior probability over the trajectories. The trajectory to which the highest num-

ber of subjects were assigned was taken as the reference category.

All of these latter analyses were performed in SAS version 9.3 (SAS Institute, Cary, NC,

USA).

BMI change and smoking behavior during follow-up. In order to study the influence of

potentially modifiable life style related risk factors on FEV1 decline, we assessed the effect of

change during follow-up in smoking behavior (smoking cessation) and in BMI on FEV1. The

effect of BMI change was evaluated by incorporating BMI as time-varying variable in the

LCMM model. That is, the value of BMI at each consecutive round, corresponding to the age

of the participant at that particular investigation, was entered into the model. The relation

between BMI and FEV1 was adjusted for several variables, apart from age and length, including

baseline FVC.

In order to have sufficient power to detect an effect of smoking cessation, we analyzed a

reduced dataset consisting of individuals who smoked at baseline, using mixed linear model-

ling (R package lme4), in which we compared persistent smokers with quitters. Smoking cessa-

tion was defined based on smoking status at each round. If there was a change in smoking

status from ‘current smoker’ to ‘former smoker’ from one round to the next, and this changed

status persisted at subsequent rounds, this was taken to signify that this participant had quit

smoking during follow up. For adjustment, the following baseline variables were included in

the model: length, exposure to passive smoking, number of pack-years, COPD-like symptoms,

and asthma-like symptoms.

P-values smaller than 0.05 were considered statistically significant. Hypothesis tests were

2-sided.
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Results

Table 1 shows baseline characteristics. The mean age was 46 years, with range 26 to 65 years.

Almost one third of men and women were current smokers. Mean FEV1 was 4.0 L for men

and 3.0 L for women.

Trajectories

All measurements meeting quality requirements were included in modeling trajectories. Num-

bers of participants with 1, 2, 3, or 4 valid measurements were: 451 (16.6%), 428(15.8%), 765

(28.1%) and 1075 (39.5%), for men, and 555 (18.4%), 464 (15.4%), 811 (27.0%), and 1178

(39.2%) for women. In the first year of round 2 (1993) spirometry was not included, implying

that 423 men and 475 women had a maximum of 3 available FEV1 measurements.

With these measurements as input, latent class mixture modelling identified three distinct

trajectories both in men and in women. These are shown in Figs 1 and 2. Also shown are the

FVC trajectories for the same groups, as well as the individual FEV1 curves of the members of

each group separately.

The majority of participants followed a FEV1 trajectory that closely adhered to the Global

Lung Initiative Reference values (95.0% of men and 96.4% of women), characterized by steady

moderate decline from an age of approximately 30 years onwards (upper left panels Figs 1 and

2). We labeled this the ‘reference’ trajectory. Two other trajectories could be distinguished

Table 1. Baseline sociodemographic, respiratory health, and lifestyle characteristics of men and women in the

Doetinchem Cohort Study.

Men Women

N = 2719 N = 3008

Age in years (mean (SD)) 46.6 (9.9) 46.1 (10.0)

Age categories

26–34 yr (N (%)) 391 (14 462 (15)

35–44 yr 831 (31) 985 (33)

45–54 yr 885 (33) 894 (30)

55–66 yr 612 (23) 667 (22)

Educational level

Low (%) 1060 (39) 1681 (56)

Medium 932 (34) 759 (25)

Height in cms (mean (SD)) 179.0 (6.7) 166.1 (6.3)

Job (N (%)) 2084 (79) 1352 (47)

Living alone (N (%)) 158 (7) 212 (8)

FEV1 in Liters (mean (SD)) 4.0 (0.8) 3.0 (0.5)

FVC in Liters (mean (SD) 5.3 (1.0) 3.9 (0.6)

FEV1/FVC 0.76 (0.08) 0.78 (0.07)

COPD symptoms (N (%)) 339 (12) 346 (12)

Asthma symptoms (N (%)) 356 (13) 387 (13)

Respiratory medication in 24 hrs preceding spirometry (N (%)) 30 (1) 36 (1)

BMI in kg/m2 (mean (SD)) 25.8 (3.1) 25.2 (4.2)

Overweight (N (%)) 1300 (48) 1015 (34)

Obese 248 (9) 346 (12)

Smoker (N (%)) 844 (31) 907 (30)

Ex-smoker 1140 (42) 1036 (34)

Physically active (N (%)) 1291 (56) 1405 (56)

https://doi.org/10.1371/journal.pone.0197250.t001
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with a more pronounced decline. One ‘accelerating decline’ trajectory had a relatively high ini-

tial level followed by a rate of decline that increased with age (2.1% of men; 0.6% of women).

Another ‘decelerating decline’ trajectory showed an initial level not far from the reference

level, followed by a relatively strong initial decline returning to more moderate rates with

increasing age (3.0% of men; 3.0% of women). The FVC curves show very similar shapes of the

trajectories for the three groups (upper right panels in Figs 1 and 2).

Characteristics of trajectory groups

Mean (SD) baseline FEV1 and FVC values for the three male and female trajectories, as well as

the mean Z-scores, are shown in Table 2. The table also displays absolute and relative changes

in FEV1 and FVC per group.

Men reporting asthma (2.42 (1.17 5.02)) or COPD symptoms (2.34 (1.13 4.81)) at baseline

were more likely to be in the ‘accelerated decline’ group than those not reporting such symp-

toms (Table 3), as were smokers (3.29 (1.06 10.19)).

The most conspicuous group differences at baseline for women were also mainly related to

smoking, and the presence of respiratory symptoms: smokers had a greater risk of being in the

‘accelerating decline’ group (10.98 (1.22 98.49)) or in the ‘decelerating decline’ group (3.17

(1.33 7.56)), compared to non-smokers. Those reporting COPD or asthma symptoms were

Fig 1. Trajectories of FEV1 (Liters) for men. The curves in the upper left panels of the figure represent the ‘average’ FEV1 trajectory for the individuals

in each group, after classification into groups based on the greatest probability of class membership. The upper right panels show the FVC trajectories

for these groups. The bottom panels display the individual FEV1 curves of the members of each group separately.

https://doi.org/10.1371/journal.pone.0197250.g001
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more likely to be in the ‘decelerating decline’ group than those not reporting respiratory symp-

toms. (Table 4).

The effect of BMI change during follow-up and smoking cessation on the

course of FEV1 decline

The effect of these lifestyle related risk factors was studied on a reduced dataset, due to missing

values in the added variables. The effect of BMI change during follow-up was studied in the

three-class model derived on the full dataset, but excluding observations with missing values

in one or more of the included covariates. As missingness was selective, with smokers and

those with respiratory symptoms at baseline being more likely to be excluded due to missing

values (S1 Table), this reduced data set of 2084 men and 2260 women therefore is not entirely

representative of the full dataset.

BMI change. Table 5 displays the effect of BMI change over the follow up period on

FEV1, and of the baseline covariates that were included for adjustment. Two multivariable

models were compared, one including an interaction term between BMI and baseline FVC

and one without.

Greater BMI during follow-up was significantly associated with stronger FEV1 decline

(P< 0.001, both in men and in women, model 1). The models also show that baseline FVC is

strongly correlated with FEV1 levels during follow-up. Both in men and women there was a

Fig 2. Trajectories of FEV1 (Liters) for women.

https://doi.org/10.1371/journal.pone.0197250.g002
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highly significant interaction between BMI and baseline FVC: the negative effect of BMI on

FEV1 increases with larger values of FVC on baseline.

Smoking cessation. The dataset used to assess the effect of smoking cessation consisted of

492 men, all smokers at baseline, of whom 184 stopped smoking during follow-up and 308 per-

sisted with the habit, and 525 women (201 versus 324). Table 6 shows the estimated effect of

smoking cessation and the variables included in the model for adjustment. Smoking cessation

was associated with a highly significantly greater FEV1 in comparison with persistent smoking,

both in men and in women, independent of BMI. In women, the positive effect of smoking

cessation was lesser at greater BMI’s, as shown by a significant negative interaction between

the two.

Discussion

The findings of this study confirm that change of lung function with age in the vast majority of

adults follows a course that closely adheres to (GLI) reference values. Two deviant trajectories

marked by increased rates of decline are seen in a minority of cases. In one of these trajectories,

the rate of decline seems to accelerate with increasing age, whereas in the second there appears

to be a return to a more moderate rate at older ages. Baseline determinants of the likelihood of

following an unfavorable trajectory were the presence of respiratory complaints and smoking.

Smoking was especially a predictor of a deviant course in women. Increases in BMI during

Table 2. Baseline FEV1, absolute and relative change in FEV1 for men and women in each of the FEV1 trajectories.

Men Trajectories according to rate of decline

Decelerating decline Reference trajectory Accelerating decline

Baseline FEV1

mean (SD), L 4.0 (1.2) 4.0 (0.7) 2.8 (1.0)

Z score (mean) -0.11 -0.22 -2.43

Absolute change in FEV1 (mL/yr)a -111.4 (36.1) -31.1 (28.6) -59.5 (42.4)

Relative change in FEV1 (%/yr)a -3.0 (1.5) -0.8 (0.8) -1.9 (1.6)

Baseline FVC

mean (SD), L 5.5 (1.2) 5.2 (0.9 4.5 (1.1))

Z score (mean) 0.61 0.08 -1.09

Absolute change in FVC (mL/yr)a -115.4 (59.9) 32.9 (45.5) -60.9 (38.7))

Relative change in FVC (%/yr)a 2.2 (1.3) -0.6 (1.3) 1.3 (0.9)

Women Trajectories according to rate of decline

Decelerating decline Reference trajectory Accelerating decline

Baseline FEV1

mean (SD), L 2.2 (0.5) 3.0 (0.5) 2.8 (0.7)

Z score (mean) -2.19 -0.01 -0.77

Absolute change in FEV1 (mL/yr)a -32.3 (30.9) -25.9 (21.0) -97.7 (23.4)

Relative change in FEV1 (%/yr)a -1.3 (1.5) -0.9 (0.8) -3.5 (1.2)

Baseline FVC

mean (SD), L 3.2 (0.6) 3.8 (0.6) 3.8 (0.8)

Z score (mean) -1.14 0.21 -0.21

Absolute change in FVC (mL/yr)a -32.3 (29.0) -27.6 (34.9) -75.2 (37.9)

Relative change in FVC (%/yr)a -1.0 (0.9) 0.7 (0.9) -2.1 (1.3)

a Absolute and relative change in FEV1 are determined over the longest available period, for most respondents a period of 15 years.

https://doi.org/10.1371/journal.pone.0197250.t002
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Table 3. Baseline sociodemographic and lifestyle determinants of the trajectories for men compared to the most common FEV1 trajectory (reference trajectory).

Men Trajectories according to rate of decline

Decelerating decline Reference trajectory Accelerating decline

Educational level

Low 0.48 (0.20 1.18) REF 1.65 (0.61 4.43)

Medium 1.08 (0.49 2.37) REF 2.05 (0.77 5.50)

High - REF -

No paid job 1.08 (0.46 2.56) REF 0.97 (0.44 2.14)

Living alone 0.92 (0.26 3.28) REF 1.11 (0.38 3.25)

COPD symptoms 2.14 (0.94 4.84) REF 2.34 (1.13 4.81)

Asthma symptoms 1.62 (0.70 3.74) REF 2.42 (1.17 5.02)

BMI

Normal - REF -

Overweight 1.68 (0.82 3.45) REF 1.34 (0.67 2.69)

Obese 1.48 (0.47 4.66) REF 1.83 (0.73 4.62)

Smoking

Smoker 2.23 (0.81 6.14) REF 3.29 (1.06 10.19)

Ex-smoker 1.42 (0.57 3.58) REF 2.17 (0.72 6.56)

Never-smoker - REF -

Tobacco exposure at home/work 1.15 (0.52 2.55) REF 1.66 (0.72 3.85)

Physically inactive 1.05 (0.55 2.00) REF 1.08 (0.58 2.01)

The table presents odds ratios and 95% confidence intervals. Odds ratios are reported as obtained in the multivariable model. In addition, all odds ratios were adjusted

for age, length at baseline, and the use of respiratory medication.

https://doi.org/10.1371/journal.pone.0197250.t003

Table 4. Baseline sociodemographic and lifestyle determinants of the trajectories for women compared to the most common FEV1 trajectory (reference trajectory).

Women Trajectories according to rate of decline

Decelerating decline Reference trajectory Accelerating decline

Educational level

Low 1.98 (0.74 5.29) REF 4.95 (0.37 67.17)

Medium 1.98 (0.70 5.57) REF 3.11 (0.20 47.85)

High - REF -

No paid job 1.28 (0.70 2.34) REF 0.58 (0.16 2.02)

Living alone 1.17 (0.49 2.78) REF 0.78 (0.07 8.15)

COPD symptoms 3.29 (1.78 6.10) REF 1.43 (0.31 6.58)

Asthma symptoms 2.23 (1.18 4.24) REF 3.16 (0.80 12.47)

BMI

Normal - REF -

Overweight 0.73 (0.38 1.39) REF 1.27 (0.34 4.83)

Obese 0.96 (0.41 2.25) REF 1.32 (0.19 9.16)

Smoking

Smoker 3.17 (1.33 7.56) REF 10.98 (1.22 98.49)

Ex-smoker 1.00 (0.40 2.50) REF 1.09 (0.11 10.52)

Never-smoker - REF -

Tobacco exposure at home/work 1.92 (0.83 4.43) REF 0.49 (0.08 3.08)

Physically inactive 1.21 (0.70 2.09) REF 0.39 (0.10 1.52)

The table presents odds ratios and 95% confidence intervals. Odds ratios are reported as obtained in the multivariable model. In addition, all odds ratios were adjusted

for age, length at baseline, and the use of respiratory medication.

https://doi.org/10.1371/journal.pone.0197250.t004
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follow-up were associated with stronger FEV1 decline, both in men and women. Smokers who

persisted smoking showed a greater decline than those who quit smoking during follow-up.

The hypothesis that spirometric parameters of individuals in a population sample may fol-

low distinct trajectories of decline, depending on the presence of risk factors, was proposed by

Fletcher and Peto in 1977. This notion has since then been explored in several population-

based studies. In most of these, the aging-related lung function change was analyzed with the

Table 5. The effects of BMI change during follow-up, adjusted for baseline variables.

Variables Coefficients (SE) p-value

Men

Model 1: Interaction FVC x BMI not included
Smoking at baseline -0.095 (0.031) 0.002

Pack-years at baseline -0.001 (0.001) 0.293

Passive smoking -0.011 (0.018) 0.566

COPD symptoms at baseline -0.011 (0.028) 0.711

Asthma symptoms at baseline -0.159 (0.027) < 0.001

Baseline FVC 0.546 (0.0123) < 0.001

BMI -0.027 (0.002) < 0.001

Model 2: Interaction FVC x BMI included
Smoking at baseline -0.085 (0.031) 0.001

Pack-years at baseline -0.002 (0.001) 0.172

Passive smoking -0.012 (0.018) 0.535

COPD symptoms at baseline -0.011 (0.029) 0.691

Asthma symptoms at baseline -0.159 (0.027) < 0.001

Baseline FVC 0.804 (0.052) < 0.001

BMI -0.023 (0.010) 0.022

BMI x baseline FVC -0.00970 (0.002) < 0.001

Women

Model 1: Interaction FVC x BMI not included
Smoking at baseline -0.052 (0.021) 0.012

Pack-years at baseline -0.004 (0.001) < 0.001

Passive smoking -0.001 (0.013) 0.929

COPD symptoms at baseline -0.026 (0.019) 0.180

Asthma symptoms at baseline -0.078 (0.017) < 0.001

Baseline FVC 0.488 (0.011) < 0.001

BMI -0.008(0.001) < 0.001

Model 2: Interaction FVC x BMI included
Smoking at baseline -0.055 (0.021) 0.009

Pack-years at baseline -0.004 (0.001) < 0.001

Passive smoking -0.003 (0.013) 0.823

COPD symptoms at baseline -0.029 (0.019) 0.134

Asthma symptoms at baseline -0.080 (0.017) < 0.001

Baseline FVC 0.659 (0.039) < 0.001

BMI 0.016 (0.005) 0.003

BMI x baseline FVC -0.007 (0.001) < 0.001

The table displays the estimated effects of varying BMI on FEV1 during follow-up. In addition to the covariates

shown, the models were adjusted for age and length. Due to missing values for some variables, the numbers of

subjects included were substantially lower than in the original model (male: N = 2084; female: N = 2260)

https://doi.org/10.1371/journal.pone.0197250.t005
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aim of revealing different courses in subgroups of individuals defined by a prespecified crite-

rion, such as smoking status.[18–22] In this study, we used methods of statistical clustering

analysis to ascertain the existence of subgroups in lung function change in the general popula-

tion without a priori classification of individuals on the basis of risk factors. Although admit-

tedly exploratory and experimental, this approach is in line with the increasing recognition

that chronic lung disease has a heterogeneous pathogenesis.[18, 23–25] Considering that

chronic lung disease develops gradually over time, distinguishing distinct patterns (trajecto-

ries) in the evolvement of lung function with age could help in gaining more insight into the

various phenotypes of chronic lung disease.[23] Different trajectories may result from ‘normal’

aging mechanisms complicated by the development of pathologic processes.[26–29] Imaging

studies, for instance, have shown that pathological patterns are present in a substantial propor-

tion of asymptomatic individuals.[30–33]

Even ‘normal’ rates of lung function decline may lead to COPD.[34] This shows that a tra-

jectory reflects the life course as a whole.[35] FEV1 is determined by the maximally attained

level in early adulthood, the age at onset of decline, and the (also age-dependent) rate of

decline [36]; it is influenced by genetics, lifestyle and environmental exposures.[37, 38]

As the initial cohort was a random sample from the ‘healthy’ population, it is not surprising

that the vast majority followed a course (our reference trajectory) largely in line with that of

the GLI reference values as a function of age. These reference values, or predicted values given

sex, height, ethnicity and age, were derived from cross-sectional studies.[6, 7, 39] In several

earlier studies, discrepancies were noted when average decline with age was estimated from

cross-sectional data compared to longitudinal data.[20, 40–43] These discrepancies have been

attributed to cohort or period effects, or to ‘attrition’ bias. A recent large scale study, however,

found no indication for secular trends.[44] Our study confirms the absence of substantial

cohort effects (data not shown).

Almost 5% of the participants followed one of two trajectories characterized by a stronger

rate of decline, and thus may be at increased risk of a diagnosis of airflow limitation, or

Table 6. The effects of smoking cessation during follow-up, adjusted for baseline variables and for BMI.

Variables� Coefficients (95% CI) p-value

Men

Pack-years at baseline -0.008 (0.002) < 0.001

COPD symptoms at baseline -0.210 (0.061) 0.001

Asthma symptoms at baseline -0.104 (0.067) 0.119

Baseline length 0.040 (0.004) < 0.001

BMI -0.027 (0.004) < 0.001

Quit smoking during follow-up 0.074 (0.020) < 0.001

Women

Pack-years at baseline -0.010 (0.002) < 0.001

COPD symptoms at baseline -0.035 (0.049) 0.474

Asthma symptoms at baseline -0.124 (0.048) 0.011

Baseline length 0.030 (0.003) < 0.001

BMI -0.003 (0.002) 0.146

Quit smoking during follow-up 0.277 (0.068) < 0.001

Interaction smoking cessation x BMI� -0.008 (0.003) 0.001

�In men the interaction was not significant, and therefore not included in the model.

The table displays the estimated effects for 492 men, 184 quitters versus 308 persistent smokers, and 525 women, 201

quitters versus 324 persistent smokers. The variables displayed were adjusted for age (spline coefficients not shown)

https://doi.org/10.1371/journal.pone.0197250.t006
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COPD, at some point in life. Especially the trajectory with accelerating decline, is likely to be

associated with an increased risk of future overt airflow limitation.[33, 45, 46] However, as

those with missing values were more likely to have more unfavorable risk profiles (S1 Table),

we might have underestimated the number of participants having trajectories with a stronger

decline.

Baseline factors associated with the probability of a trajectory of increased decline were, not

surprisingly, being a smoker and having respiratory symptoms. Being a current smoker is the

most well-known risk factor for a low FEV1 as well as an accelerated decline. Also BMI is a

modifiable risk factor for poor lung function.[47] Negative correlations have been reported

between BMI and several spirometric parameters, including FEV1 and FVC, both in cross-sec-

tional and in longitudinal studies.[48–51] Of note, FVC seems to be more affected than FEV1,

with the result that the FEV1/FVC ratio might even increase, which would be interpreted as an

absence of ‘obstructive’ airflow limitation.

We did not find a significantly higher risk for adults who were obese at baseline for a poor

FEV1 trajectory over the life course. However, we did find that a higher BMI over the follow-

up period was significantly associated with a stronger decline in FEV1, while baseline FVC was

positively correlated with FEV1. In addition, there was a strong interaction between BMI

change and baseline FVC in their effect on FEV1. We interpret this as an indication that the

effect of BMI on FEV1 is largely mediated via a negative impact on FVC, but more research is

needed to further disentangle this relation.

An important advantage of the long follow-up of this study was the ability to assess the ben-

efits of quitting with smoking. Those who stopped smoking during follow-up ended up with

higher FEV1 values than those who persisted in the habit. This finding corroborates the results

of several other studies.[19, 42, 52]) As smoking cessation often leads to weight gain and this,

in turn, may partly offset the positive effect of quitting smoking, we included BMI in our

model.[53] The beneficial effects of smoking we found are thus adjusted for possible changes

in BMI. In women, the positive effects of smoking cessation appeared to be reduced at greater

BMI’s.

The practical relevance of gaining insight into these trajectories is the potential ability to

recognize an ‘at risk’ pattern at an early stage, which, in turn, would allow early intervention.

Moreover, the identified trajectories account for ‘hidden heterogeneity’, which may help in

developing better prediction models. Although it is unlikely that spirometric screening in the

general population would ever be a feasible or cost-effective approach, screening of individuals

fulfilling a risk profile, for instance in general practice, could result in important health bene-

fits. [54, 55]

Strengths and limitations

The data for this study came from a long-running population-based study, providing insight

into the evolution of lung function over the life course. Particular strengths of this study are

the prospective data collection, the long duration of the follow-up, the high participation rates,

and the consistent methodology applied for the spirometry measurements. We further applied

relatively novel and powerful software, in exploring a ‘data-driven’ approach.[10] However,

applying statistical methods of clustering analysis to longitudinal data also has its limitations.

The selection of the optimal model is not always straightforward. There is no consensus on

definite criteria for determining the number of classes or subgroups. Furthermore, the

approach assumes a priori that distinct developmental trajectories in lung function exist.[9]

Our findings of the existence of three distinct trajectories therefore will certainly need to be

validated in other cohort studies. Also, in order to be able to study more in detail the
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determinants of the trajectories and the potential for prediction and interventions, larger data

sets, for instance created by combining existing ones, are needed.

A further limitation inherent in most prospective cohort studies is selective attrition, in this

case a greater propensity of more respiratory healthy participants to remain in the study dur-

ing extended follow-ups. Those who were completely lost to follow-up, were excluded from

our analyses. Moreover, in studying the effects of covariates on the course of lung function

during follow-up, those with missing values in the covariates had to be excluded. In addition,

the lack of ethnic subgroups in the cohort might be considered a limitation.

Conclusion

This is the first time group-based trajectory modelling was applied to explore age-related tra-

jectories in FEV1 in the general population. Future studies in large prospective population-

based cohorts should confirm the existence of these trajectories, and the utility of distinguish-

ing a number of (pheno)typical trajectories in early recognition of those at increased risk of

developing chronic lung disease.
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