
diagnostics

Article

Monitoring of B Cell in Kidney Transplantation: Development
of a Novel Clusters Analysis and Role of Transitional B Cells in
Transplant Outcome

Rafael Alfaro 1,†, Isabel Legaz 2,† , Gema González-Martínez 2, Víctor Jimenez-Coll 1,
Helios Martínez-Banaclocha 1, José Antonio Galián 1, Carmen Botella 1, Jesús de la Peña-Moral 3,
María Rosa Moya-Quiles 1, José Antonio Campillo 1, Alfredo Minguela 1 , Santiago Llorente 4

and Manuel Muro 1,*

����������
�������

Citation: Alfaro, R.; Legaz, I.;

González-Martínez, G.; Jimenez-Coll,

V.; Martínez-Banaclocha, H.; Galián,

J.A.; Botella, C.; de la Peña-Moral, J.;

Moya-Quiles, M.R.; Campillo, J.A.;

et al. Monitoring of B Cell in Kidney

Transplantation: Development of a

Novel Clusters Analysis and Role of

Transitional B Cells in Transplant

Outcome. Diagnostics 2021, 11, 641.

https://doi.org/10.3390/

diagnostics11040641

Academic Editors:

Ludmilla Morozova-Roche, Cornelis

F.M. Sier and Luca Morelli

Received: 6 February 2021

Accepted: 27 March 2021

Published: 1 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of
Murcia (IMIB), 30120 Murcia, Spain; raf.hellin@gmail.com (R.A.); victorjcoll@gmail.com (V.J.-C.);
heliosmar@live.com (H.M.-B.); diegoarmandogalian@hotmail.com (J.A.G.);
carmen.botellam@gmail.com (C.B.); rosa.moya2@carm.es (M.R.M.-Q.); josea.campillo@carm.es (J.A.C.);
alfredo.minguela@carm.es (A.M.)

2 Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), Regional Campus of
International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia,
30100 Murcia, Spain; isalegaz@um.es (I.L.); gemagm89@gmail.com (G.G.-M.)

3 Pathology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of
Murcia (IMIB), 30120 Murcia, Spain; jmpc1@um.es

4 Nephrology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of
Murcia (IMIB), 30120 Murcia, Spain; sllorentev@telefonica.net

* Correspondence: manuel.muro@carm.es; Tel.: +34-968-369599; Fax: +34-968-349678
† Contribution of these authors is equal and the order is arbitrary.

Abstract: Background: B lymphocytes (BL) seem to play an important role in transplantation,
although the and role of different subpopulations in monitoring and outcome is not clear. Our aim
was to monitoring immunological profiles based on BL subpopulations in kidney recipients (KR) with
the risk of acute rejection (AR). Methods: Monitoring of BL subpopulations was performed by flow
cytometry in PBLs before transplantation and three and six months after transplantation (PTX). We
used two methodological approaches, a traditional analysis, and a novel cluster analysis, to determine
the association between BL subpopulations, AR incidence, and graft function. Results: After three
months of PTX, KRs with a B phenotype enriched in transitional BL and plasmablasts had better
kidney function and lower AR incidence. KRs with decreased transitional BL and plasmablasts were
associated with lower kidney function and higher AR PTX. KRs that had an increase in transitional
BL PTX had a better clinical outcome. The increase in transitory BL during PTX was also associated
with an increase in Tregs. Indeed, KRs receiving thymoglobulin as induction therapy showed a slight
decrease in the relative frequency of naive BLs after three months of PTX. Conclusion: The monitoring
of BL subpopulations may serve as a non-invasive tool to improve immunological follow-up of
patients after kidney transplantation. However, further studies are needed to confirm the obtained
results, define cut-off values, and standardize more optimal and even custom/customized protocols.

Keywords: acute rejection; B cell clusters; kidney transplant; forensic pathology

1. Introduction

B lymphocytes (BL) play an essential role in the biological processes mediating renal
graft rejection and tolerance through various effector mechanisms, mainly through the
production of antibodies and the presentation of antigens to T cells, as well as the secretion
of cytokines [1]. In the early stages, the still immature B cells that have just been released
from the bone marrow are called transitional B cells [1,2]. These BLs are characterized
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by IgM and IgD expression, by the surface markers CD24++ CD38++ and the absence of
the memory marker CD27. Already in the periphery, BLs mature into naive cells with the
phenotype CD24+CD38+CD27−. In response to stimulation with specific antigens, BLs
differentiate into plasmablasts, plasma cells, or memory BLs [1]. The main types of B cells
are shown in Table 1.

Table 1. Main B cells types, functions, and expression biomarkers.

Type of B Cells Functions Markers

Transitional B Cells

These cells link immature B cells in the
bone marrow and mature B cells in
lymphoid organs. These cells have

differentiated into B cells from typical
myeloid progenitor cells in the bone

marrow; however, they are not yet mature.

These are characterized by
IgM and IgD expression,
by the high expression of
CD24 and CD38, and by

the absence of the memory
marker CD27.

Naïve B Cells

Naïve B cells are located in the secondary
lymphoid organs. They are mature but not

yet activated. Naive B lymphocytes can
differentiate into plasmablasts and plasma

or memory B cells in response to
stimulation by specific antigens.

These cells have
phenotypic markers

CD24+CD38+CD27−.

Plasmablasts and
Plasma Cells

Plasma cells are long-lived differentiated
cells whose function is the production of

antibodies. Plasmablasts are also
antibody-producing cells, but unlike

plasma cells, they are short-lived. Plasma
cells migrate to the bone marrow, where
they continue to produce antibodies to

protect against re-infection.

Phenotypically,
plasmablasts and plasma
cells are characterized by

the absence of CD20
expression and the high

expression of CD38.

Memory B Cells

Memory B cells continually recirculate
around the periphery and rapidly

differentiate into antibody-producing
plasmablasts upon interaction with T cells

after specific antigen recognition. This
memory B response is characterized by

being more potent towards antigens than
the primary B responses and producing
responses with greater affinity and the
isotype change of immunoglobulins.

These cells phenotypically
express CD20+, CD27+,

CD38−.

Plasma cells are long-lived differentiated cells whose function is antibody produc-
tion. These migrate to the bone marrow, where they continue to produce antibodies to
protect against re-infection. The memory B response is more potent to antigens than the
primary B responses and produces responses with greater affinity and immunoglobulin
recombination [1,3,4].

BLs can also secrete cytokines that are pro- and anti-inflammatory, modulating the T
cell response [3]. Animal studies have shown that naive BLs can differentiate into different
cytokine-producing effector subpopulations depending on Th1 or Th2 cells [1].

Recent studies have also shown that BLs are not mere plasma cell precursors but that
their impact on tolerance and graft rejection processes being much more complicated [1,4].
Specific subpopulations of BLs with immunosuppressive capabilities called regulatory B
cells (Breg) have been shown to play an important role in tolerance by inhibiting effector
responses.

Breg cells are a minority population that can arise at various stages of BLs matura-
tional development being abundant within the transitional B, memory B, and plasmablast
subpopulations [4].
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As there is no consensus on their definition and classification, Bregs are defined from
a functional perspective as IL-10 producing B cells, as this cytokine plays a central role in
immunosuppressive functions. Despite this definition, Bregs may also exert their function
through other mechanisms independent of IL-10, such as secretion of IL-35, TGF-β, or
through cell–cell contacts.

Experimental data suggest that the Breg development can be induced in the periphery
in response to various signals, such as BCR signaling, cytokines, or costimulatory signals [5].
Other stimuli, such as proliferation-inducing ligand (APRIL), have also shown their ability
to induce Breg through its binding to its receptor.

Similarly, stimulation by CD40 has been shown to increase the immunosuppressive
capacity of transitional B cells in vitro [6]. On the other hand, signaling mediated by
Toll-like receptors (TLR) induces the production of IL-10 producing BLs. Mice deficient in
TLRs signaling pathway proteins, such as MYD88, cause chronic inflammation due to the
inability of Breg to control T cell-mediated responses [7].

The effector mechanisms by which Breg mediates immune suppression can be divided
into two broad groups, IL-10 dependent or independent mechanisms. These mechanisms
can act directly by inhibiting Th1 and Th17 cell responses and indirectly by promoting
Treg proliferation, by increasing expression of the transcription factor FOXP3 [6]. Breg
appears to play an essential role in transplant tolerance. Bregs have been associated with
beneficial graft function and a lower risk of donor-specific antibody (DSA) production.
In this sense, operational tolerant patients show an increase in IL-10 producing B cells,
and tolerant recipients show an increase in granzyme B producing B cells, which inhibit
T cell activation and suppress proliferation via apoptosis through mechanisms that are
dependent on granzyme B and independent of soluble factors such as IL-10 or TGF-β [8]. In
non-tolerant transplant recipients, increased Bregs levels were associated with prolonged
graft survival and fewer rejection episodes [9,10]. These results suggest that these cells can
be used as prognostic biomarkers of good kidney function. Breg cells are also capable of
secreting pro-inflammatory cytokines such as TNF-α [1]. It was observed that transplant
patients with stable renal function have higher IL-10: TNF-α ratios than those with chronic
rejection. Lower IL-10:TNF-α ratios are correlated with poorer long-term outcomes as they
are functionally less effective in suppressing Th1 responses [10].

Thus, we aimed to investigate Breg and the BL subpopulations in which it is enriched,
such as transitional BLs, as a potential tool for monitoring kidney transplants.

2. Material and Methods
2.1. Demographic Data, Clinical Characteristics, and Study Design

A total of 269 consecutive adult renal transplant patients (KT) were studied and
retrospectively analyzed at University Clinic Hospital “Virgen de la Arrixaca” (Spain)
(Figure 1). Only those whose kidney transplant was in operation for at least one month
after transplantation (PTX) and who had all DSA Luminex determinations for detecting anti-
HLA antibodies and all follow-up samples were enrolled. Allograft loss was estimated as a
return to dialysis. Thus, the specific B-cell monitoring study was finally performed on 41
renal transplant recipients (RTRs), whose specific clinical and demographic characteristics
are shown in Table 2.

The RTRs were classified according to the presence (AR group) or absence (NAR group)
of AR during the first year of PTX. Of the 41 total RTRs studied, five (12.2%) experienced
acute graft rejection during the first year PTX compared with 36 (87.8%) who maintained
stable renal function without rejection during the same period. Of the RTRs with AR, four
were classified as acute cellular rejection and one as acute humoral rejection. Five patients
in the NAR group had non-DSA anti-HLA antibodies before transplantation, in contrast to
the AR group, in which none had performed anti-HLA antibodies. Maintenance therapy
consisted of tacrolimus, methylprednisone, and mycophenolic acid. In addition, 19 KTRs
(46.3%) received induction therapy (12 Thymoglobulin-Tim and 5 Basiliximab-Bas), with
no significant differences between the NAR and AR groups. Within the NAR group,
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12 KTRs (33.3%) suffered delayed graft function compared with one in the AR group
(20%). No significant differences were observed in age, gender, HLA incompatibilities, and
donor type.

Figure 1. Flow chart of the design and study populations. Abbreviations: AR, Acute rejection; KT, Kid-
ney Transplantation; NAR, Non-acute rejection; PTX, Posttransplant; RTR, Renal Transplant Recipients.

Table 2. Demographic data and clinical characteristics of the transplanted patients included in the B
lymphocyte monitoring study.

RTR (n = 41)
n (%)

NAR (n = 36)
n (%)

AR (n = 5)
n (%) p a

Age (years; mean ± SEM) 56.6 ± 2.5 57.7 ± 1.6 51 ± 7.9 0.449
Gender (Male/Female) (28/13) (23/13) 5 (5/0) 0.104
IncompatibilitiesHLA b 3.9 ± 0.4 3.8 ± 0.2 4.0 ± 1.1 0.548

Live Donor (%) 2 (4.8) 2 (5.5) 0 (0) 0.589
Preformed anti-HLA antibodies (%) 5 (12.2) 5 (13.8) 0 (0) 0.374

Induction Therapy (Tim/Bas) 19 (14/5) 17 (12/5) 2 (2/0) 1.000
Delayed graft function (%) 13 (29.3) 12 (33.3) 1 (20) 1.000

Type of rejection (Cellular/Humoral) 5 (4/1) - 5 (4/1) -
NRA, No Acute Rejection; RA, Acute Rejection; RTR, Renal transplant recipient; SEM, standard error of the
mean. Tim, Thymoglobulin; Bas, Basiliximab. Quantitative data expressed as the mean ± standard error of the
mean (SEM). a Comparisons were made using Fisher’s exact test or X2 for qualitative variables and using the
nonparametric Mann-Whitney U test for quantitative variables. Values of p < 0.05 were considered statistically
significant. b Total differences between donor and recipient concerning the HLA-A. HLA-B and HLA-DRB1 genes.

2.2. Immunosuppressive Treatment

All included recipients received similar triple immunosuppressive therapy, consisting
of oral tacrolimus (Prograf, Astellas, Ireland), mycophenolatemofetil (MMF; CellCept,
Roche, Switzerland), and prednisolone (Dacortin, Merck, Spain). The tacrolimus (FK)
based protocol was started at a dose of (0.10–0.15 mg/kg/day) and the dose was adjusted
to maintain a trough level of F.K. in whole blood between 8 and 12 ng/mL during the
first-month after-surgery, between 7 and 10 ng/mL at 2–3 months after transplantation and
between 5 and 8 ng/mL thereafter. MMF was started at a dose of 2000 mg/day, decreasing
to 1000–1500 mg/day during the first month PTX, depending on the white blood cell count.
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Methylprednisolone was administered intravenously in doses of 500, 250, and 125 mg/day
at transplantation, on days 1–2, and on days 3–4 after surgery. Oral prednisolone was
started on the fifth day after surgery at the dose of 20 mg, and then tapered to 5–10 mg/day
within 2–3 months of PTX. Some cases were treated with induction therapy based on
thymoglobulin or basiliximab, depending on the immune risk before transplantation.

2.3. Kidney Rejection Diagnosis

Protocol biopsies were not classically performed in our clinical hospital. The indica-
tion for biopsy was the increase in creatinine levels and/or the presence of DSA antibodies
on routine evaluation. Acute cellular rejection (ACR) was defined as an increase in serum
creatinine of at least 20% above baseline serum creatinine and biopsy-proven rejection
(specimens were evaluated by light microscopy and immunofluorescence staining with
a marker of classical complement activation (C4d) and classified according to the Banff
classification updated in 2017. The diagnosis of acute antibody-mediated rejection (AMR)
requires the presence of distinguishable histopathological findings, positive C4d staining
in peritubular capillaries, and the concomitant presence of DSA [9]. For the kidney, a con-
sensus was reached that the diagnosis of AMR requires the simultaneous presence of DSA,
distinguishable histopathological findings, and deposition of C4d in peritubular capillaries.

Mild acute cellular rejection (Banff grade I) was treated with pulse steroids (500 mg
methylprednisolone bolus) and increased maintenance immunosuppression. All other
ACR were treated with anti-thymocyteglobulin (ATG) treatment.

AR episodes were further classified as steroid-sensitive rejections (ACR Banff grade I)
or steroid-insensitive rejections (ACR Banff grades II and III) and AMR.

AMR was also treated with pulsed steroids and intravenous immunoglobulin (0.25 gr/kg
and the last session 1 gr/kg, (maximum 140 g) divided into two doses in combination
with plasmapheresis (3 sessions per day, every five days). Later, we administered 500 mg
of anti-CD20 (Rituximab, Roche pharmaceuticals) intravenously. Two patients receiving
the anti-proteasome inhibitor Bortezomib (Velcade®, formerly PS-341) also received anti-
AMR treatment.

2.4. Monitoring of Subpopulations of B Cells by Flow Cytometry

Monitoring of BL subpopulations was performed by flow cytometryin peripheral
blood samples collected before and three and six months after PTX. Pretransplant samples
were collected at the transplant center and processed within 24 h. T cells were also
monitored, similar to our previous articles [11].

Peripheral blood samples were labeled with the monoclonal antibodies listed in
Table 3, using the standard flow cytometry labeling technique.

Table 3. Antibodies panel to monitoring T and B cells subtypes by flow cytometry.

Fluorocromes
Tube 1: Lymphocytes B Tube 2: Lymphocytes T

Antibody (Clon) Manufacter Antibody (Clon) Manufacter

FITC CD19 (HIB19) BD Biosciences CD19 (HIB19)
CD4 (RPA-T4) BD Biosciences

PE IgM (G20-127) BD Biosciences CD25 (2A3) BD Biosciences
PE-Cy7 CD27 (M-T271) BD Biosciences CD45RO (UCHL1) BD Biosciences

APC CD38 (HB7) BD Biosciences - BD Biosciences
APC-Cy7 CD24 (ML5) BD Biosciences HLA-DR (L243) BD Biosciences

PerCP CD45 (HI30) BioLegend CD8 (SK1) BD Biosciences
V450 IgD (IA6-2) BD Biosciences CD127 (BV421) BD Biosciences
V500 CD3 (UCHT1) BD Biosciences CD3 (UCHT1) BD Biosciences

Briefly, 50 µL of peripheral blood was incubated with 5 µL of each monoclonal antibody
for 10 min in the dark. Samples were then lysed with 3 mL of BD FACS Lysing Solution
(Becton Dickinson B.D., Bioscience, San Jose, CA, USA) and incubated for 7 min at room
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temperature. After lysis, samples were centrifuged at 1800 revolutions per minute (rpm) for
5 min and washed with PBS (Phosphate Buffered Saline), as previously published [11,12].

After the labeling procedure, samples were acquired on a FACS Canto II flow cytome-
ter (Becton Dickinson B.D., San Jose, CA, USA). Analysis of the results was performed in
the FACS. Diva software (Becton Dickinson B.D., San Jose, CA, USA) evaluated. The abso-
lute number of the different cell subpopulations was determined by applying the relative
abundances obtained by flow cytometry to the absolute lymphocyte count obtained in a
Medtronic cell counter M16 (Boule Medical, Stockholm, Sweden).

The phenotype of the lymphocyte subpopulations and the visual analysis strategies
are shown in Table 4 and Figures S3 and S4. The phenotype of the T and B lymphocyte
subpopulations are based on panels from a consortium of studies [13].

Table 4. The phenotype of lymphocyte subpopulations.

Subpopulation Phenotype Subpopulation Phenotype

B Lymphocytes CD45++ CD19+ CD3− Class-Switched BL CD19+ CD27+ CD38+ IgD− IgM−
BL Naive CD19+ CD27− IgD+ No Class-Switched BL CD19+ CD27+ CD38+ IgM+

BL Memory CD19+ CD27+ CD38+ BL Transitional CD19+ CD27- CD24+ CD38++ IgM+
BL MZ CD19+ CD27+ IgD+ Plasmablasts CD19+ CD27++ CD38++ IgD− IgM−

T Lymphocytes SSC/FSC low CD3+ T Lymphocytes Memory CD3+ CD45RO+
T CD4 Lymphocytes CD3+ CD4+ T Lymphocytes Activated CD3+ HLA-DR+
T CD8 Lymphocytes CD3+ CD8+ T regs Lymphocytes CD3+ CD4+ CD127low CD25++

BL, B Lymphocytes; MZ, Marginal zone; T regs; T regulatory.

2.5. Statistical Analysis

Results were expressed as mean ±standard error of the mean (S.E.M.) for quantitative
data or as percentages for categorical data. The χ2 test or Fisher’s exact test was used for
comparison of categorical variables. The verification of data was performed using the
Kolmogorov–Smirnov test. For comparison of two groups with variables that do not adjust
to normality, Mann–Whitney U test was used. For the comparison of three or more groups,
the Kruskal–Wallis test and Dunn’s post hoc test with Bonferroni correction for multiple
comparisons were used, and the correlation analyzes were performed using the Spearman
index, as previously published [9].

For longitudinal comparison of two related groups, the non-parametric Wilcoxon test
for related samples was used. Friedman test with Wilcoxon post hoc was used [11,14].

Evaluation of sensitivity and specificity of a biomarker was performed by generat-
ing ROC curves. Discriminatory ability was evaluated by measuring the Area Under
Curve (AUC). The Youden index was used to obtain the optimal cut-off value that maxi-
mizes sensitivity and specificity [11,14]. To correct the p-value multiple comparisons, the
Benjamini–Hochberg or Bonferroni method was used. Values of p < 0.05 were considered
statistically significant in all cases.

The graphs and statistical analyzes were performed in the software Statistical Package
for the Social Sciences (SPSS, version 22, Chicago, IL, USA) and GraphPad Prism (version
6, San Diego, CA, USA) and in the programming language R, using for this last R Studio
Integrated Development Environment version 3.4.

Before cluster analysis, the relative frequencies obtained for each subpopulation
were normalized. Then, the data obtained from the B subpopulations analyzed by flow
cytometry were represented/as a matrix, where the columns represent the subpopulations
and the rows representing the samples analyzed. To group kidney recipients based on their
immunological profiles, Ward’s method was used as the grouping method, using Euclidean
distance to measure the degree of similarity between patients. Then, the creatinine levels
estimated glomerular filtration rate and frequency of AR of the patients assigned to each
cluster were compared using the U-Mann–Whitney test and Fisher’s test, respectively, as
previously published [11].
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3. Results
3.1. Monitoring of B Cells Subpopulations in Kidney Recipients

Figure S1 shows the values of subpopulations expressed in relative frequencies and
in absolute values of BL subpopulations detected by flow cytometry in peripheral blood
samples collected before transplantation and after three and six months PTX.

First, we investigated whether there were significant changes in the levels of the differ-
ent BL subpopulations during PTX with respect to the baseline values before transplantation.

In terms of relative frequencies, we observe that after six months of PTX, there is a
statistically significant decrease from BL to the total number of lymphocytes (Figure S1A;
7.97 ± 0.73% vs. 6.48 ± 0.68%; p = 0.049). Within the BL, we observe a significant decrease
in BL naive after three (Figure S1B; 68.48 ± 2.50% vs. 62.37 ± 2.03%; p = 0.013) and six
months of PTX (Figure S1B; 68.48 ± 2.50% vs. 62.65 ± 2.31%; p = 0.007). A significant
decrease in transitional BL is observed during the period, although only at six months
was significant (Figure S1H; 1.89 ± 0.65% vs. 0.71 ± 0.23%; p = 0.003). Regarding memory
phenotypes (No Class-Switched, Class-Switched, and marginal zone), slight increases
were observed during PTX in all of them, but only in the case of the No Class-Switched
subpopulation significance was reached after three months PTX (Figure S1E; 8.44 ± 0.99%
vs.10.77 ± 0.94%; p = 0.037).

In absolute terms, there is a clear trend towards a decrease in total BL during PTX,
although the differences with respect to the time before transplantation were not signifi-
cant. With respect to the BL subpopulations, decrease in the absolute levels of naive BL
(Figure S1B; 105.4 ± 17.6 vs. 71.3 ± 9.2 cells/µL; p = 0.035) and transitional BL (Figure S1H;
2.79 ± 1.31 vs. 0.59 ± 0.19 cells/µL; p < 0.001) was observed after six months of PTX. In
memory phenotype B populations, absolute levels remain relatively stable during the PTX
period and no significant differences were observed.

3.2. Immunological Profile of B Cells in Renal Transplant Patients with Acute Rejection

Two different statistical approaches were used to assess the association of BL with AR
and graft function during the first year. First, we used a traditional approach in which the
BL subpopulations were evaluated independently and compared separately between the
AR and NAR groups. Second, we used a novel approach in which all BL subpopulations
were studied together to establish a phenotypic profile and renal transplant recipients
(RTRs) were grouped on this basis by cluster analysis to later assess the association of these
clusters with the incidence of AR and allograft function.

3.3. Association of B-Cells Subpopulations with the Development of Acute Rejection

Comparing the relative frequencies of B subpopulations in the NAR group with the AR
group, we find that after six months of PTX, the proportion of BL within total lymphocytes
significantly decreased in the AR group (Figure S2A; 6.92 ± 0.76% vs. 3.67 ± 0.53%;
p = 0.041). The absolute BL values decreased in both groups during the PTX period, but
there were no significant differences.

Regarding the BL of the marginal zone, a decrease in relative frequencies was observed
under PTX. In absolute terms, a decrease in this subpopulation was also observed in the AR
group, but the differences were not significant. No significant differences were observed
between the NAR and AR groups for the other BL subpopulations studied.

3.4. Association of B Cells with a Kidney Function of the Graft

BL subpopulations with graft function, we divided the RTRs into three groups based
on the tertiles obtained for each subpopulation. In this way, the RTRs assigned to tertile 1
would be those with the lowest values for a given subpopulation, those assigned to tertile
2 would be in the middle range, and those assigned to the tertile 3 would be in the higher
levels. We then compared the estimated glomerular filtration rate and serum creatinine
obtained during the first year of PTX between tertiles. The results show that after three
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months of PTX, BL transitional (BLT) and Class-Switched BL (CSBL) were correlated with
serum creatinine levels and graft function (Figure 2).

Figure 2. Estimated glomerular filtration and serum creatinine levels of RTRs according to the
transitional and Class-Switched B lymphocyte levels at 12 months post-transplantation. Renal
recipients were grouped into tertiles based on transitional B lymphocytes’ relative frequencies (TBL)
and Class-Switched (BLCS). At each post-transplant time, the estimated glomerular filtration rate
(GFR) (A,C) and serum creatinine (Cre) (B,D) of the two groups were compared using the U-Mann–
Whitney test. Fisher’s exact test (E) was used to compare delayed graft function incidence (DGF).
Values are represented as the mean ± SEM. Values of p < 0.05 were considered statistically significant.
* p < 0.05. ** p < 0.01.

RTRs assigned to tertile 3 according to BLT values (BLT ≥ 0.54%) have significantly
lower serum creatinine levels than the RTRs tertiles 1 and 2 at six (p = 0.030), nine (p = 0.026)
and twelve months (p = 0.023) (Figure 2B). Although a slight trend was observed at three
months, it did not become significant (Figure 2A, p = 0.091). However, when comparing
the estimated glomerular filtration levels, no PTX significant differences were observed at
any time point.

RTRs according to CSBL levels, we find that those assigned to tertile 3 (CSBL ≥13.3%)
had significantly lower renal function throughout the first year PTX than those RTRs
assigned to tertiles 1 and 2 (CSBL < 13.3%). Regarding estimated glomerular filtration
rate, we observed significant differences at one month (p = 0.005), three months (p = 0.003),
six months (p = 0.001), nine months (p = 0.005) and twelve months of PTX (p = 0.047)
(Figure 2C). Regarding serum creatinine levels, significantly higher values were observed
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in tertile three at one month (p = 0.009), three months (p = 0.004), six months (p = 0.003),
and nine months PTX (p = 0.004) (Figure 2D).

Because significant differences were observed from the first month of PTX, we won-
dered whether CSBL levels might reflect clinical events during the first days of PTX other
than rejection. To this end, we compared the incidence of infections, delayed graft function
(DGF), or use of induction therapies between tertiles 3 and tertiles 1 + 2. Figure 2E shows
that the incidence DGF, defined as the need for dialysis during the first week of PTX was
significantly higher in recipients assigned to tertile 3 (p = 0.024). Regarding induction
therapies, the proportion of RTR from tertile 3 who was administered thymoglobulin or
basiliximab was higher than in tertiles 1 and 2, but the differences were not significant
(66.6% vs.45%; p = 0.291).

3.5. Analysis of the Clusters of B Subpopulations

Prior to cluster analysis, the relative frequencies of each subpopulation were normal-
ized. The values obtained from the normalization (Z score) were used to perform a cluster
analysis, which we used to group the RTRs based on the phenotypic profile of BL. Next,
we compare the incidence of AR and graft function during the first year PTX between the
previous analysis clusters.

Figure 3A shows that three major clusters were obtained at pre-transplantation (clus-
ters A1, A2, and A3). Cluster A1 was characterized by having the highest ratio of memory
to naïve B lymphocytes compared, with the other clusters, with a high proportion of mem-
ory B lymphocytes (33.7 ± 12.5%) and a low proportions of naive BL (52.6 ± 13.9%). It also
had high levels of plasmablasts (3.02 ± 1.47%) and LBT (1.42 ± 2.53%). Cluster A3 had an
opposite phenotype to A1, with a decreased ratio of memory/naïve, a low proportion of
memory BL (7.76 ± 3.15%), and a high proportion of naive BL (84.6 ± 6.74%). It had a low
proportion of plasmablasts (0.27 ± 0.17%) and a high proportion of LBT (4.29 ± 7.06%).
Cluster A2 had an intermediate phenotype between clusters A1 and A3, with an intermedi-
ate memory/naive ratio, with a frequency of 70.2 ± 5.62% of naive BL and 18.3 ± 3.85% of
memory BL The frequencies of plasmablasts and LBT of cluster A2 were 1.12 ± 0.74%, and
0.85 ± 0.74%, respectively. No significant differences were observed when comparing AR
and graft function frequency between A1, A2, and A3 (Figure 3B,C; Table S1).

After three months of PTX (Figure 4A), cluster B1 was characterized by a high BL
memory/naive ratio, cluster B2 by an intermediate ratio, while cluster B3 showed a high-
grade phenotype of LB naive. The number of plasmablasts was decreased in cluster B3
compared to clusters B1 and B2. As for LBTs, cluster B2 was the one with the highest values.
Within the memory phenotype, cluster B1 had increased levels of both CSBL and BL No
Class-Switched (LBNCS). Between clusters B2 and B3, both had similar levels of CSBL, but
cluster B2 had a higher number of LBNCS. As for the BLs of the marginal zone, cluster B3
had lower values compared to the other clusters.

In the association between the clusters obtained after three months of PTX and renal
function, we observed that cluster B2 had significantly lower serum creatinine levels
(Figure 4C) and higher estimated glomerular filtration rate (Figure 4B) than the RTRs
assigned to clusters B1 and B3 (Table S2).

Regarding AR incidence, patients in cluster B3 had a higher incidence during the first
year PTX than clusters B1 and B2 (p = 0.020). Further, 27.3% of cluster B3 (5/18) suffered
AR during the first year PTX, while none of the clusters B1 and B2 had an AR.

Finally, to check whether a clinical variable could influence our results, clusters B1, B2
and B3 were compared with the incidence of DGF, which according to the literature, is a
risk factor for rejection and worse PTX renal function. However, there were no significant
differences in these variables between the two groups when induction therapies were used,
which could have an impact.

Based on these results, we can conclude that cluster B2 has a protective phenotype
against AR and adequate renal function, characterized by high LBT and plasmablasts
levels. Cluster B1, with a high memory/naive ratio and intermediate LBT level, showed
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an intermediate clinical prognosis, with a low risk of rejection but worse renal function
than cluster B2. At the same time, cluster B3 had the worst prognosis with low LBT and
plasmablasts levels, with a high risk of rejection and poor renal function.

On the other hand, Figure 5A shows that three large clusters are obtained six months
PTX (clusters C1, C2, andC3). Clusters C1 was characterized by having the highest mem-
ory/naïve ratio, with equal BL memory levels (36.6 ± 10.1%) and LB naive (48.9 ± 13.0%).
It had mean values of LBT (0.56 ± 0.72%) and plasmablasts (1.93 ± 2.70%). Cluster C2 was
characterized by a lower ratio of memory/naive than cluster C1, with LB naive levels of
57.4 ± 9.36% and LB memory of 23.3 ± 4.87%. It had high levels of LBT (2.76 ± 1.46%)
and plasmablasts (1.56 ± 2.47%) and was the cluster with the highest levels of CSBL
(16.1 ± 5.06%). Cluster C3 had the lowest memory/naive ratio, with 72.0 ± 8.13% naive
BL and low levels of LBT and plasmablasts. When comparing the incidence of AR and
graft function, differences between clusters C1 and C2 were only observed in glomerular
filtration rate estimated after one month of PTX (p = 0.025), but at later times the differences
disappeared (Table S3).

Figure 3. Analysis of BL clusters at pre-transplantation and evolution of the estimated glomerular
filtration rate and Cre. (A) Heatmap, where they represent a matrix in which the rows are the BL
subpopulations and the columns the RTRs. The color grading represents the normalized values
(Z-Score) obtained for each subpopulation. Evolution of the estimated glomerular filtration levels
(GFR) (B) and serum creatinine (Cre) (C) during the first year after transplantation of each cluster.
The FG and Cre values at each time were compared between the clusters using the Kruskal–Wallis
test and Dunn’s posthoc test with Bonferroni correction for multiple comparisons. p < 0.05 were
statistically significant. Abbreviations: NBL, Naive B Lymphocytes; TBL, Transitional B Lymphocytes;
MBL, Memory B Lymphocytes, CSBL, Class-Switched B Lymphocytes; PLAS, Plasmablasts; NCSBL,
No Class-Switched B Lymphocytes, ZBL, Zone B Lymphocytes.
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Figure 4. Analysis of the BL clusters at three months post-transplantation. (A) Heatmap represents a
matrix in which the rows are the BL subpopulations and the columns the RTRs. The color grading
represents the normalized values (Z-Score) obtained for each subpopulation. Evolution of the
estimated glomerular filtration levels (FG) (B) and serum creatinine (Cre) (C) during the first year
after transplantation of each cluster. In figure (D), the numbers on the bars’ black background
indicate the percentage of RTRs free of rejection of each group. Data are represented as the mean
± SEM. Statistical analyses were performed using the Kruskal–Wallis test and Dunn’s posthoc test
with Bonferroni correction for multiple comparisons. Values p < 0.05 were considered statistically
significant. Abbreviations: NBL, Naive B Lymphocytes; TBL, Transitional B Lymphocytes; MBL,
Memory B Lymphocytes, CSBL, Class-Switched B Lymphocytes; PLAS, Plasmablasts; NCSBL, No
Class-Switched B Lymphocytes, ZBL, Zone B Lymphocytes. * p < 0.05. ** p < 0.01.
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Figure 5. Analysis of BL clusters at six months post-transplantation. (A) Heatmap represents a
matrix in which the rows are the BL subpopulations and the columns the RTRs. The color grading
represents the normalized values (Z-Score) obtained for each subpopulation. Evolution of the
estimated glomerular filtration levels (GFR) (B) and serum creatinine (Cre) (C) during the first year
after transplantation of each cluster. The FG and Cre values at each time were compared between
the clusters using the Kruskal–Wallis test and Dunn’s posthoc test with Bonferroni correction for
multiple comparisons. Values of p < 0.05 were considered statistically significant. Abbreviations:
NBL, Naive B Lymphocytes; TLB, Transitional B Lymphocytes; MBL, Memory B Lymphocytes, CSBL,
Class-Switched B Lymphocytes; NCSBL, Non-Class-Switched B Lymphocytes, MZBL, Marginal Zone
B Lymphocytes; PLAS, Plasmablasts. GF, glomerular filtration. * p < 0.05 between clusters C1 and C2.

3.6. Cluster B2 Patients Have Increased Levels of HLA-DR+ Regulatory T (Treg) and Activated
T Cells

Following the results of the cluster analysis, we explored whether there were also
differences in the major subpopulations of T lymphocytes in the RTRs assigned to cluster
B2. Using flow cytometry, we analyzed the naïve CD4 and CD8 memory and activated
HLA-DR+ populations, as well as the levels of Tregs, as previously published [13].

The data show that the cluster B2 recipients had increased levels of activated CD4
HLA-DR+ (p = 0.005) and activated CD8HLA-DR+, after three months of PTX, although
this was not statistically significant in the latter (p = 0.091) (Figure 6A). On the other hand,
recipients in cluster B2 had a lower number of naive CD8 (CD8+CD45RO-) than recipients
assigned to clusters B1 and B3 (Figure 6A, p = 0.023). A significant increase was observed
in Tregs lymphocytes after three months of PTX (p = 0.038), which correlate positively with
transitional B lymphocyte levels (Figure 6B, r = 0.362, p = 0.042). When examining the
variations in the percentage of transitional B lymphocytes and Tregs after three months
of PTX for pre-transplant baseline values (Figure 6C). Our data show that the recipients
of cluster B2, with a good clinical prognosis, were the recipients with the highest LBT
and Treg increase. The increase in LBT levels in cluster B2 was significant with respect
toclusterB1 (p = 0.034) and B3 (p = 0.018). Regarding Tregs, the difference between pre-and
post-transplantation was also significant when comparing clusters B1 and B2 (p = 0.015).
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Figure 6. T cell phenotype of clusters B1, B2, and B3. (A) Relative frequencies of activated HLA-DR+,
naive and regulatory T lymphocytes (Tregs) at three months post-transplantation of clusters B1 +
B3 and B2. Comparisons made using the Mann–Whitney U test. (B) Correlation between levels of
Treg and transitional B lymphocytes (TBL). Analysis performed using the Spearman index. The r
corresponds to the correlation coefficient, and the shaded area indicates the 95% confidence interval.
(C) Percentage variation of the levels of TBL and Treg between pre-transplantation and three months
after-transplant. Comparisons made using the Kruskal–Wallis test and Dunn’s post hoc test with
Bonferroni correction for multiple comparisons. Values expressed as the mean ± SEM. p values < 0.05
were considered statistically significant for all analyses. * p < 0.05; ** p < 0.01.

Therefore, cluster B2 recipients with a good prognosis had a large increase in LBT and
Tregs during the first months of PTX. The RTRs assigned to cluster B1, with an intermediate
prognosis, also showed an increase in LBT and Tregs, but this increase was less pronounced
in cluster B2. Finally, the RTRs of cluster B3, with a poor prognosis, showed a decrease in
LBT and Tregs values.

3.7. Effect of Thymoglobulin on B Cell Subpopulations

Given the relevant role attributed to transitional BLs in the clinical status of RTRs, we
decided to explore whether thymoglobulin, a drug commonly used as induction therapy,
could affect the absolute and relative levels of this subpopulation during the PTX period.
To do this, we compared the change in transition BL to the pre-transplantat period in RTR
administered thymoglobulin (n = 12) and a group without induction therapy (n = 19). To
avoid possible confounding factors that could influence the results, we included only RTR
without AR.

Figure 7 shows that the relative frequencies of BL of RTRs treated with thymoglobulin
were altered at PTX compared to pre-transplant values. Initially, the total B cell frequency
was not significant (Figure 7A). However, the relative frequency of naive BL (Figure 7B)
showed a decrease after three months of PTX (71.2 ± 12.6% vs.58.6 ± 11.7%, p = 0.038)
and after six months of PTX (71.2 ± 12.6% vs.62.5.6 ± 7.7%, p = 0.086), although it was not
significant in the latter case. The decrease in naive BL was also contrasted with an increase
in BL in the marginal zone (Figure 7D) both at three months (6.9 ± 6.2% vs. 13.5 ± 6.2%,
p = 0.015) and at six months PTX (6.9 ± 6.2% vs. 10.9 ± 5.1%, p = 0.038). No Class-Switched
Lymphocytes (Figure 7E) also increased in the thymoglobulin-treated both three (6.7 ± 5.4%
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vs. 13.2 ± 6.3%, p = 0.008) and six months PTX (6.7 ± 5.4% vs. 10.3 ± 5.5%, p = 0.011).
Regarding plasmablasts (Figure 7G), an increase was also observed at three (0.83 ± 0.6%
vs. 2.43 ± 1.9%, p = 0.028) and six months of PTX (0.83 ± 0.6% vs. 1.47 ± 0.9%, p = 0.066),
although it was not significant after six months. No significant differences were observed in
BL memory, Class-Switched, and transition scores in the traditional or classical approach.

Figure 7. Effect of thymoglobulin on B lymphocyte subpopulations in pre- and post-transplant. The
figure shows the relative frequencies of the BL subpopulations in RTR administered thymoglobulin
(Blue bars, n = 12) and did not receive induction therapy (Black bars, n = 19). The values show mean
± SEM. The comparison within each group between pre-transplant and post-transplant values was
performed using the Wilcoxon test for related samples. The comparison at each time between the
group without induction and the thymoglobulin group was carried out using the Mann–Whitney U
test. Values of p < 0.05 were considered statistically significant. * p < 0.05; ** p < 0.01. Abbreviations:
NBL, Naive B Lymphocytes; TLB, Transitional B Lymphocytes; MBL, Memory B Lymphocytes, CSBL,
Class-Switched B Lymphocytes; NCSBL, Non-Class-Switched B Lymphocytes, MZBL, Marginal Zone
B Lymphocytes; PLAS, Plasmablasts. GF, glomerular filtration.
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In the RTR group without induction therapy, no significant differences were observed
in any BL subpopulation except for transitional BLs (Figure 7H), where a significant
decrease was observed after six months of PTX compared to pre-transplant (1.51 ± 2.3% vs.
0.31 ± 0.3%, p = 0.033). Next, we compared the BL levels between both groups at each PTX
time point, but we found no significant differences for any subpopulation.

In terms of absolute levels (data not shown), we found no significant differences in the
thymoglobulin treated group. In the group without induction therapy, we observed that
six months of PTX, resulted in a significant decrease in transitional BL (1.61 ± 1.7 cells/µL
vs.0.34 ± 0.4 cells/µL, p = 0.003).

In our study, no differences were also observed when comparing at any time point
between the groups with thymoglobulin and without induction therapy.

4. Discussion

B lymphocytes have gained importance in the field of renal transplantation in recent
years [2,15,16]. The discovery of regulatory BLs (Bregs), a B subpopulation with immuno-
suppressive capabilities, has prompted the scientific community to rethink the role of BLs
in allospecific responses. BLs are no longer considered as mere producers of antibodies,
but have gained great importance in transplantation due to their newly discovered im-
munoregulatory capabilities [15]. Although several studies have been published on the
dynamics of BL in renal transplantation, data on their impact on AR and graft function are
still minimal [16].

In the present work, we used flow cytometry to monitor the major subpopulations
of BL in kidney transplant patients in samples collected before and after transplantation.
To establish the relationship between BL subpopulations, the incidence of AR, and graft
function, we used two methodological approaches, traditional statistical analysis, and
cluster analysis. Our results show that, after three months of PTX, patients with a B
phenotype enriched with transitional BL and plasmablasts have a better renal function and
a low incidence of AR. We also studied the effect of thymoglobulin, one of the drugs most
commonly used as induction therapy, on B subpopulations, and showed that this drug
causes a decrease in the relative frequency of naive BLs.

Primarily, we study the PTX evolution of BLs. Our results show that the absolute
values and relative frequencies of BL exhibit decreasing PTX periods. Although some
studies are consistent with our findings [17], others [18] observed an increase in BL at one
week PTX, and recovery of pre-transplant levels at three months PTX. All patients included
in this study [19] received induction therapies, so the rapid recovery of basal levels of
BL may be associated with homeostatic lymphoproliferative processes after lymphocyte
depletion. Examining the BL subpopulations, we see that the decline of BL is mainly due to
the naive and transitional subpopulations, while the BL with memory phenotype remains
relatively stable in the PTX period. Schlößer et al. [17] also observed the maintenance of
BL memory levels throughout the first year PTX. Other studies also reported a decrease in
immature phenotypes without affecting the mature/memory phenotypes. Chung et al. [12]
also showed in in vitro cultures that tacrolimus and mycophenolatemofetil significantly
reduced immature LB levels, while mature and memory phenotypes were not affected,
which may explain the effect observed in our cohort.

When analyzing the relationship between AR and the BL subpopulations, we observed
a clear tendency in RTR with AR, relative memory BL levels lower than those of the NAR
group. However, the differences did not reach statistical significance. These data confirm
the observations of Zarkhin et al. [20], in whose study the decrease in naive/memory ratio
was associated with AR. Instead, Newel et al. [8] showed that tolerant RTRs had a higher
frequency of naive and transitional BL and a lower number of memory B lymphocytes
than non-tolerant RTRs. On the other hand, several studies show the association between
transient BL and transplant tolerance and AR prevention [21,22].

Transitional BL is a population commonly studied in kidney transplantation because
it is enriched in Bregs with immunosuppressive capacities. However, in our study, we did



Diagnostics 2021, 11, 641 16 of 20

not observe any differences between the NAR and AR groups in the study of transitional
BL. In our study, we did not examine the expression of IL-10 within the BL transitions,
which may explain the absence of differences between groups. However, there is still
controversy about the best way to analyze transitional BLs for their use as a biomarker.
While Svachova et al. [23] show the usefulness of analyzing the total transitional BL to
determine the risk of AR, other authors, such as Cherukuri et al. [2], indicate that the
analysis of IL-10 expression is necessary in this subpopulation. In addition, the low
incidence of rejection in our cohort during the surveillance and follow-up period is a
critical limiting factor. Therefore, future studies with longer cohorts will be necessary to
confirm the results obtained.

We grouped RTRs based on the relative tertile frequencies of each BLs subpopulation
to examine the relationship between BLs subpopulations and graft function. Our results
show that the RTRs with high levels tertile 3 of transitional and Class-Switched BL showed
a relationship with renal function. Kidney graft rejecting recipients (TKRs) with high
transitional BL reflected significantly lower creatinine levels from six months PTX onwards,
although no statistical differences in estimated glomerular filtration rate were observed.
Along these lines, the association between transitional BL levels and renal function has
already been reported previously [10] and transitional BL with graft dysfunction. Thus, RTR
with high levels of T1-type transitional BLs, with a greater capacity for IL-10 expression,
exhibited better PTX evolution [23].

Regarding the Class-Switched BLs, we observed that the RTRs with high levels of this
subpopulation had worse renal function already in the first month of PTX. The differences
found in the early stages of transplantation led us to wonder if any clinical event could be
behind these abnormally high BL Class-Switched levels. Elevated memory levels BL are
associated with allospecific reactions and other clinical contexts, such as CMV viremia.

After evaluating different clinical scenarios—infections, medications, and delayed
graft function (DGF), we found that BLs. Class-Switched tertil 3 patients had a higher
incidence of DGF and a higher proportion of TKR treated with induction therapies. Patients
with DGF tended to have lower renal function levels and a higher rejection rate [24]. The
decrease in naive phenotype due to pharmacological causes would explain the accumu-
lation of BLs. Class-Switched in this group. In this sense, Svachova et al. [23] already
observed how in the THRs with thymoglobulin induction, the proportion of BLs. Class-
Switched one week of PTX increased. On the other hand, dialysis patients have defects in B
differentiation leading o marked B lymphopenia [24], and it is likely that in addition to the
effects of induction therapies, the additional dialysis sessions, that patients must undergo
negatively affect the reconstitution of naive BL during the first months of PTX in patients
with RFI/DGF. However, there are few studies on the effect of DGF in B subpopulations,
so our hypotheses need to be confirmed in subsequent studies and with a larger number
of patients.

On the other hand, the immune system is an interconnected network where valuable
information can be lost by studying its parts in isolation. Therefore, we decided to use
cluster analysis to establish a phenotypic pattern of BL, considering all subpopulations as a
whole, in order to establish relationships with the main adverse events of transplantation.
This methodology has been used in other melanoma and hematopoietic transplantation
studies, including [25,26]. Our data reveal that RTRs can be classified into three clusters
after three months of PTX, based on BL and the phenotypic profile of BL, and that these are
correlated with the clinical evolution of PTX. TKRs with good PTX evolution, good renal
function, and AR absence are characterized by a higher frequency of transitional BL and
plasmablasts than those grafts with poorer evolution. Zarkhin et al. [20] observed that the
naive/memory ratio was decreased in RTRs with AR. However, we did not obtain these
results, as they were similar in both groups with excellent and poor PTX evolution. The
discrepancies between our study and this one may be due to the differences between the
study cohorts and the time taken to collect the samples. While our cohort includes adult
patients, Zarkhin et al. [20] consist entirely of pediatric patients administered rituximab,
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which depletes BLs. In addition, the sampling of this study occurred at the time of rejection,
whereas our study performed e monitoring, so it is likely that the change in naive/memory
ratio occurs weeks or days before clinically apparent graft damage. Svachova et al. [23]
observed that a decreased transitional BL levels after three months PTX is associated with
a greater likelihood of developing AR.

Studies with intolerant patients show that they have increased transitory and naive BL
levels and reciprocally decreased with a memory phenotype. However, as we previously
argued, this effect may be due to progressive withdrawal of immunosuppression [8,27].
In addition to transitional BL, plasmablasts are another population that differentiates
RTRs with good and poor prognosis, with an increased group with good PTX evolution.
Plasmablasts have also been reported to exert immunosuppressive functions through the
secretion of IL-10. Therefore, the increase of RTRs with a good prognosis could affect
transplant tolerance’s subpopulation [28,29]. However, histological findings in rejection
specimens also show the relationship of plasmablasts to allospecific humoral responses [26].
Therefore, our data suggest a dual role of plasmablasts, and how to target them to immuno-
suppressive functions requires further but represents a new therapeutic tool that would
favor the induction of graft tolerance. We extended our results of the cluster analysis after
three months of PTX, with further analysis evaluating different T subpopulations. The
group’s RTRs of the good PTX prognosis group had significantly more CD4+HLA-DR+
cells, naïve CD8 cells and Tregs than those of the low prognosis group. We found the high
levels of HLA-DR+ activated T cells striking as they tend to correlate with rejection events
and poor prognosis [14,30]; however, this was not the case in our cohort. It was observed
that activated HLA-DR+ T cells increase in situations such as infections or inflammatory
processes, but we did not observe any differences in our cohort for these reasons [9].

On the other hand, we observed that RTRs with a good prognosis had significantly
more Tregs. Moreover, we observed that Tregs levels were positively correlated with
transitional BL levels. As we mentioned earlier, transitional BLs are enriched in Bregs. Bregs
are able to synthesize numerous cytokines such as IL-10 and TGF-β which are able to induce
the differentiation of T cells towards Tregs, which would explain the positive correlation
between these subpopulations found in our study [31]. When analyzing the PTX evolution
of transitional Tregs and BL for the pre-transplant period, we observed that those RTRs
with a good prognosis had the highest increases in these subpopulations. These results
suggest that a relative increase in subpopulations with immunosuppressive capacities such
as Tregs and transitional BLs in the early stages of transplantation increases graft tolerance
and contributes to a better PTX evolution, as shown in numerous studies [30,32,33].

In our study, we also investigated the effect of thymoglobulin on BL subpopulations,
as this drug is widely used in renal transplantation. Our data show that RTRs receiving
thymoglobulin have a PTX reduction in the frequency of naive BL associated with a
relative increase in memory BL levels; however, when comparing BL levels between RTR
with and without thymoglobulin, we did not obtain statistically significant differences.
Although Zand et al. [11] showed the in vitro anti-B effect of thymoglobulin by activating
apoptotic pathways, several studies suggest a small in vivo effect on BL, even at high
concentrations [34]. Gurkan et al. [35] observed no differences in the absolute levels of BL
of RTR treated with thymoglobulin. However, unlike us, they observed a decrease in the
relative frequency of memory BL. This study suggests that depletion of T lymphocytes
may disrupt T-B cooperation and alter the proper differentiation of naive BLs to memory
BLs. Svachova et al. [23] compared the absolute levels between transplanted patients with
thymoglobulin and basiliximab PTX in the group treated with thymoglobulin, confirming
the slight effect of thymoglobulin on BL. However, our data confirm the observations made
in other studies. The effect on BL was evaluated several months after treatment. Therefore,
we do not know what happens in the first days after treatment. This limitation also applies
to other studies [34], where the first sample had a month after treatment. It is likely that
the effect of thymoglobulin is only observable in the short term and that the subsequent
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homeostatic lymphoproliferation of BL makes it difficult to detect differences in samples
collected several months after drug administration.

Our results support previous observations that increased PTX graft levels BL are
associated with a better prognosis, and exert a protective effect against rejection. KTRs,
free of rejection and better renal function, show a phenotypic profile of BL subpopulations
distinct from those with poorer PTX evolution; therefore, cluster analysis allows the for-
mation of prognostic groups as early as three months of PTX. Moreover, an increase in
transitional BL PTX correlates with an increase in Tregs’ levels, confirming that RTR with
good evolution has a more significant increase in subpopulations with an immunosuppres-
sive capacity [27].

In any case, this study has important limitations that could affect the observed results,
and should be considered in future studies. The limited number of patients monitored,
the scarcity of clinical information about the patients could also mean that it is not clear
whether the changes in the observed lymphocyte subpopulations could be an effect of
time, different clinical events (e.g., infections), or differences in therapeutic options for
subclinical rejections. Another limitation is that biopsies, the lymphocyte populations that
may infiltrate the graft, may not match those found in the periphery. The number and type
of lymphocyte subpopulations present in the peripheral blood may not necessarily match
the transplanted organ.

On the other hand, certain patients’ belonging to a group and different cluster groups
were carried out. In each case, no statistically significant differences were obtained, or they
could not even be calculated because of the small subgroups of patients that appeared, and
no conclusion can be drawn, but in any case, they will be considered in future studies.

In conclusion, monitoring BL subpopulations may serve as a non-invasive tool to
improve the immunological follow-up of patients after renal transplantation. However,
further studies are needed to confirm the obtained results o, define cut-off values, and
standardize more optimal and even tailored protocols.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/diagnostics11040641/s1, Figure S1. Monitoring of subtypes of B lymphocytes in kidney trans-
plant patients. The relative frequencies (black) and the absolute values (blue) of the B lymphocyte
subpopulations were represented at pre-transplant, 3 m, and 6 m and compared at three months
(3 m) and six months (6 m) post-transplantation to pre-transplantation (pre) using the Wilcoxon test
for paired samples. Values of p < 0.05 were considered statistically significant. * p < 0.05; ** p < 0.01;
*** p < 0.001. Figure S2. Monitoring of B lymphocytes in RTRs suffering acute rejection. The relative
frequencies (left axis) and the absolute values (right axis) of the B lymphocyte subpopulations were
compared between the NRA (black) and AR (red) groups. The Mann–Whitney U test was used
to compare both groups for each follow-up time. Values of p < 0.05 were considered statistically
significant. * p < 0.05. Figure S3. Analysis strategy of B lymphocyte subpopulations. First, lympho-
cytes were selected from the intersection between the FSC/SSC low and SSC low/CD45++ region. B
lymphocytes were defined as those lymphocytes with a CD3− CD19+ phenotype. The different B
lymphocyte subpopulations were then defined using CD24, CD27, CD38, IgD, and IgM. Abbrevia-
tions: NCS, No Class-Switched; CS, Class-switched; MZ, Marginal zone. Figure S4. T-lymphocyte
subpopulation analysis strategy. Lymphocytes were selected in the FSC/SSC low region (Not shown
in the figure). T lymphocytes were defined as those lymphocytes with a CD3+ CD19- phenotype. The
T lymphocytes were then selected based on the expression of CD4 or CD8. Regulatory T lymphocytes
(Treg) were selected as those CD4 T lymphocytes with a CD127lowCD25++ phenotype. Memory and
activated T cells were selected based on the expression of CD45RO and HLA-DR, respectively. Table
S1. Cluster B lymphocyte levels at pre-transplantation. Table S2. Cluster B lymphocyte levels at three
months post-transplant. Table S3. Cluster B lymphocyte levels at six months post-transplant.
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34. Krajewska, M.; Kościelska-Kasprzak, K.; Kamińska, D.; Żabińska, M.; Myszka-Kozłowska, M.; Gomułkiewicz, A.; Dzięgiel,
P.; Klinger, M. Kidney transplant outcome is associated with regulatory T cell population and gene expression early after
transplantation. J. Immunol. Res. 2019, 2019, 1–14. [CrossRef] [PubMed]

35. Gurkan, S.; Luan, Y.; Dhillon, N.; Allam, S.R.; Montague, T.; Bromberg, J.S.; Ames, S.; Lerner, S.; Ebcioglu, Z.; Nair, V.; et al.
Immune reconstitution following rabbit antithymocyte globulin. Am. J. Transpl. 2010, 10, 2132–2141. [CrossRef] [PubMed]

http://doi.org/10.1038/s41581-018-0074-7
http://www.ncbi.nlm.nih.gov/pubmed/30443016
http://doi.org/10.1111/j.1365-2567.2012.03570.x
http://doi.org/10.5604/01.3001.0010.3811
http://doi.org/10.1038/ki.2014.395
http://doi.org/10.1097/TP.0b013e318213df29
http://doi.org/10.1111/ajt.14013
http://www.ncbi.nlm.nih.gov/pubmed/27529836
http://doi.org/10.1371/journal.pone.0112658
http://www.ncbi.nlm.nih.gov/pubmed/25393622
http://doi.org/10.1111/tri.12751
http://www.ncbi.nlm.nih.gov/pubmed/26839984
http://doi.org/10.5500/wjt.v5.i4.196
http://doi.org/10.1681/ASN.2013080837
http://doi.org/10.1159/000351643
http://doi.org/10.1158/0008-5472.CAN-12-3450
http://doi.org/10.4049/jimmunol.1501434
http://doi.org/10.4049/jimmunol.1600875
http://doi.org/10.1089/dna.2017.3814
http://doi.org/10.1038/s41419-017-0152-y
http://doi.org/10.1038/ki.2008.249
http://www.ncbi.nlm.nih.gov/pubmed/18547992
http://doi.org/10.1111/j.1600-6143.2007.02109.x
http://www.ncbi.nlm.nih.gov/pubmed/18294156
http://doi.org/10.1155/2019/7452019
http://www.ncbi.nlm.nih.gov/pubmed/30729139
http://doi.org/10.1111/j.1600-6143.2010.03210.x
http://www.ncbi.nlm.nih.gov/pubmed/20883548

	Introduction 
	Material and Methods 
	Demographic Data, Clinical Characteristics, and Study Design 
	Immunosuppressive Treatment 
	Kidney Rejection Diagnosis 
	Monitoring of Subpopulations of B Cells by Flow Cytometry 
	Statistical Analysis 

	Results 
	Monitoring of B Cells Subpopulations in Kidney Recipients 
	Immunological Profile of B Cells in Renal Transplant Patients with Acute Rejection 
	Association of B-Cells Subpopulations with the Development of Acute Rejection 
	Association of B Cells with a Kidney Function of the Graft 
	Analysis of the Clusters of B Subpopulations 
	Cluster B2 Patients Have Increased Levels of HLA-DR+ Regulatory T (Treg) and Activated T Cells 
	Effect of Thymoglobulin on B Cell Subpopulations 

	Discussion 
	References

