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1  |  INTRODUC TION

Semen quality is an important determinant of reproductive success 
in cattle herds, whether AI or natural service are used. (Barth, 2018) 
Reduced bull fertility is a major cause of poor reproductive per-
formance of herds worldwide. Studies indicate that 20%–40% of 
bulls are subfertile. (Khatun et al., 2013; Kastelic, 2013) Apart from 
economic implications, bull subfertilty leads to reduced animal wel-
fare through an increased need for breeding and culling of repeat 
breeder cows. (Kastelic,  2013) Thus, a good understanding of the 
molecular mechanisms underlying testes function and spermatogen-
esis, and how these determine the production of high-quality sperm, 

is essential to achieve high levels of productivity in the cattle indus-
try. (Taylor et al., 2018; Rexroad et al., 2019)

Spermatogenesis is a highly organized process within the sem-
iniferous tubules in the testes. Sertoli cells and Leydig cells play a 
pivotal role in the initiation and maintenance of sperm develop-
ment as well as in regulation of male hormone production. (Phillips 
et al., 2010) Spermatogenesis involves three main events, spermato-
cytogenesis, meiosis and spermiogenesis. During spermatocytogen-
esis, germ cells differentiate and give rise to spermatogonial stem 
cells, which actively undergo mitotic division to generate two set of 
diploid primary spermatocytes. These then undergo meiosis I to pro-
duce two haploid secondary spermatocytes. Each haploid secondary 
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Abstract
Bull fertility is pivotal to the prosperity of the cattle industry worldwide. miR-202 has 
been shown to be gonad specific and to have key roles in gonad function in differ-
ent species. To further understand the involvement of miR-202 in bull reproduction, 
this study aimed to establish its localization in bovine testicular tissue and to iden-
tify putative biological functions using bioinformatics approaches. We assessed the 
miR-202 expression in paraffin-embedded tissue samples collected form an abattoir 
using in situ hybridization. miR-202 was present in Sertoli cells and in germ cells at 
different stages of development. Using available databases, a total of 466 predicted 
gene targets of miR-202 were identified. Functional annotation revealed that miR-202 
target genes were mainly associated with protein modification and phosphorylation 
processes as well as longevity regulating pathway. Moreover, genes in the longevity 
regulating pathway mapped to PI3K/Akt/mTOR pathway which is involved in pro-
moting proliferation of testicular cells and spermatogenesis. These findings suggest 
that miR-202 plays important roles in regulating proliferation and viability of testicular 
cells including somatic and germ cells.
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spermatocyte differentiates into two haploid spermatids via meiotic 
cell division II, resulting in production of four haploid spermatids. 
During spermiogenesis, spermatids differentiate and become sper-
matozoa which migrate into the lumen of seminiferous tubules in a 
process called spermiation. (Staub & Johnson, 2018; Valli et al., 2015)

Testicular development and function are tightly regulated by 
microRNAs (miRNAs), which act by modulating the expression of a 
wide range of protein-coding genes involved in cell differentiation 
processes within the male reproductive system.(Barbu et al., 2021; 
Fernández-Pérez et al., 2018; Papaioannou, 2010) Mammalian tes-
tes express a large set of miRNAs including several tissue-specific 
sequences.(Gao et al., 2020; Rakoczy et al., 2013; Yang et al., 2013) 
Expression of the gonad-specific miRNA, miR-202, is highly con-
served across species including mouse, human, bovine, boars, 
chicken, Zebra fish and salamander.(Wainwright et al., 2013; Dabaja 
et al.,  2015; Bannister et al.,  2011; Chen et al.,  2017; Presslauer 
et al., 2017; Sontakke et al., 2014; Revay et al., 2015) miR-202 is ex-
pressed in the testicular somatic cell compartment(Chen et al., 2017) 
as well as in germ cells at different stages of development.(Chen 
et al., 2017; Jia et al., 2015) Studies showed that miR-202 was lo-
calized in Sertoli cells of mouse testes and that it mediated some of 
the effects of the testis-determining factor SOX9, involved in early 
gonad development.(Wainwright et al., 2013) A recent study showed 
that miR-202 was robustly expressed in Sertoli cells of fertile men 
but was absent in sterile men.(Dabaja et al., 2015) Moreover, Chen 
et al showed that miR-202 was expressed at high levels in mouse 
spermatogonial stem cells, and that CRISPR-Cas9-mediated miR-202 
knockout resulted in premature cell differentiation with loss of stem-
ness, as well as increased mitosis and apoptosis.(Chen et al., 2017) 
As regards to bovine, a recent study showed that miR-202 was highly 
enriched in sperm, and that sperm-borne miRNA regulates the first 
cleavage in bovine embryos.(Wang et al., 2021) The aim of this study 
was to determine the expression pattern of miR-202 in the bull tes-
tes, as well as to identify broader potential roles of this miRNA by 
using in silico target prediction.

2  |  METHODS

2.1  |  In situ hybridization

Testes from three healthy, 9-month-old bulls were obtained at an abat-
toir and transported in phosphate-buffered saline (PBS) at 4°C within 
an hour of collection. Once in the laboratory, the testes were dissected 
into small pieces and fixed in 4% PFA treated with diethylpyrocarbonate 
(DEPC) (Sigma-Aldrich,). After overnight fixation, tissue sections were 
cut at 6 μm and denatured with 5 μg/ml of proteinase K in 75 ml PBS 
then fixed in 4% PFA for 10 min and rinsed with 0.2% Glycine in PBS. 
The tissues were incubated with freshly prepared imidazole buffer then 
slides were placed in a humid chamber and freshly prepared 1-ethyl-3
-(3-dimethylaminopropyl) carbodiimide (EDC) was added to each slide 
for 1 hr at RT followed by 2 hr of pre-hybridization with 50% formamide 
and 5x SSC buffer at 25°C. Sections were then incubated overnight 

with Double Digoxigenin labelled LNA modified oligonucleotide probes 
(Exiqon,) against either bta-miR-202 (100% homologous sequence to 
human miR-202-5p; 80 nM), U6snRNA (positive control, 3 nM) or a 
scrambled sequence (negative control, 80 nM) in hybridization buffer. 
After the application of probe, slides were covered with gel bond film 
and heated to 60°C for 5 min, then placed in humidifying chamber at 
50°C. After overnight incubation, slides were sequentially washed with 
4x, 2x and 0.2x SSC post-hybridization buffer for 10 min at 50°C to 
avoid unspecific binding and then rinsed with 1x Tris-buffered saline 
(TBS). Slides were then incubated with blocking solution for 1 hr at RT. 
Anti-digoxigenin antibody (1:200) was added to slides for 2 hr at RT fol-
lowed by colour development with NBT/BCIP at 4°C for up to 16 hr. The 
signal was analysed with a light microscope. Independent analyses were 
performed using three different testicular sections from each animal.

2.2  |  Target prediction and gene enrichment  
analysis

miRNA target prediction was performed using three different algo-
rithms, miRMap (v1.1), TargetScan 7.2 and miRWalk (v3.0). (Agarwal 
et al., 2015; Vejnar & Zdobnov, 2012) ClueGO (v2.5.7) plus Cluepedia 
(v1.5.7) software were used to identify Gene Ontology (GO) terms 
and Kyoto Encyclopedia of Gene and Genome (KEGG) pathways. 
ClueGO enables analysis of gene sets from organisms including bo-
vine and considers many identifier types subtracted from a variety of 
sources including NCBI, UniPrtKB and Ensembl. (Bindea et al., 2009) 
Two-sided hypergeometric tests were used for enrichment analyses, 
Benjamini–Hochberg correction was used for p value correction and 
Kappa coefficient of 0.4 was used to indicate the resemblance of GO 
terms for associated genes. The resulting GO terms with p < .01 and 
KEGG pathways with p < .05 were considered significant. Furthermore, 
the results were visualized using Cytoscape (v3.8.2).

3  |  RESULTS

3.1  |  Localization of miR-202 in bull testes

Testes from three bulls were examined using ISH to establish the 
cellular location of miR-202. Different testicular cell types were 
identified based on position, size and shape. miR-202 was detected 
in both Sertoli and spermatogenic cells (Figure 1a,b). Staining of miR-
202 was most pronounced in the cytoplasm of Sertoli cells, whereas 
staining in spermatogenic cells was localized mostly to the nucleus 
(Figure 1c). In germ cells, miR-202 signal was particularly strong in 
spermatogonia and primary spermatocytes located near the basal 
compartment of the seminiferous tubule, as compared to second-
ary spermatocyte and spermatids (Figure  1b). These results sug-
gest changes in miR-202 expression at different developmental 
stages during spermatogenesis. No miR-202 signal was detected in 
blood vessels and interstitial cells (Figure 1c). In addition, whereas 
the positive control, RnU6, displayed a strong nuclear localization 
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F I G U R E  1  Representative images of 
in situ hybridization detection of miR-202 
in sections of bull testes (n = 3 animals). 
Sertoli cells (St), spermatogonia (sg), 
primary spermatocytes (Ps), secondary 
spermatocytes (ss) and spermatids (S) 
are indicated by white arrows. Blood 
vessels (Bv) and interstitial cells (ins) are 
also shown. Sections hybridized with 
probes against miR-202 (a, b, c), U6B (d, e) 
and scrambled sequence controls (f) are 
shown. Original magnification 200x,400x 
and 1,000x. Scale bar, 100 μm

F I G U R E  2  Functional GO terms enriched for target genes of miR-202 identified using ClueGO and CluePedia (p ≤ .01). Different 
functional groups are represented by colours. Each node represents a GO term, and node size represents level of significance for term 
enrichment. Terms are connected based on shared genes. Enriched biological processes (a), cellular components (b) and molecular functions 
(c) of miR-202 targets
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in all sections (Figure.1d,e), the negative control showed no signal 
(Figure 1f).

3.2  |  miRNA target prediction and enrichment 
functional analysis

In order to gain insight into the roles of bta-miR-202 in bovine tes-
tis, miRNA target prediction tools were used. A total of 466 target 
genes were identified using miRMap, TargetScan 7.0 and miRWalk 
databases (Table S1). Gene ontology (GO) analysis using all identi-
fied targets showed that target genes were significantly enriched for 
several biological processes (BP), cellular components (CC) and mo-
lecular functions (MF) (Figure 2a–c). The most significant GO terms 
were protein modification process (GO:0036211, p < 1.09E-08), 
nucleoplasm (GO:0005654, p < 5.04E-07) and phosphotransferase 
activity, alcohol group as acceptor (GO:0016773, p < 4.49E-05), 
in BP, CC and MF categories respectively. Kyoto Encyclopedia of 
Genes and Genomics (KEGG) pathway enrichment showed a sub-
set of significantly enriched pathways for bta-miR-202 target genes, 
the most significant of which was the longevity regulating pathway 
(KEGG:04211, p  < .0043) (Figure  3). This pathway includes genes 
such as CREB1, EIF4E, PIK3CA, PIK3CB, PIK3R1, PRKAA1, RB1CC1 
and RPS6KB1 which are involved in PI3K/Akt/mTOR signalling.

4  |  DISCUSSION

The primary aim of the present study was to characterize the expres-
sion pattern of miR-202-5p in the bovine testis. The results indicate 
cell-type-dependent expression of miR-202 during spermatogenesis. 
miR-202 was localized in the cytosol of Sertoli cells, consistent with 
its involvement in post-transcriptional target gene regulation in those 

cells. In humans, miR-202-5p was highly enriched in Sertoli cells, its 
expression differed between fertile and sterile men, and a role was 
suggested in mediating the interaction between somatic and germ 
cells during spermatogenesis. (Dabaja et al., 2015) A different study re-
ported that miR-202-5p was highly expressed in Sertoli cells in mouse 
and chicken embryonic gonads. (Bannister et al.,  2011; Wainwright 
et al., 2013) We also showed that miR-202 was present in germ cells at 
all stages of development. In agreement with this finding, miR-202-5p 
was expressed throughout spermatogenesis in Medaka, demonstrat-
ing its involvement in male gamete development and differentiation. 
(Qiu et al., 2018) Another study demonstrated that miR-202-5p was 
significantly enriched in spermatozoa and developing male germ cells 
at different stages in zebrafish, (Jia et al., 2015) all together suggesting 
a conserved role in male germ cell function.

Our analyses identified ‘protein-modification process’ as a top 
predicted function of miR-202 target genes. In addition, the target 
genes of bta-miR-202 were significantly enriched in several molec-
ular functions (GO terms) related to phosphotransferase and kinase 
activity which have a role in phosphorylation of many signalling 
proteins that are involved in regulation of mitochondrial activity, 
motility and apoptosis of testicular cells. (Gervasi & Visconti, 2017; 
Jankovičová et al.,  2018; Silva et al.,  2015) Furthermore, the top 
significant KEGG term enriched for miR-202 target genes was 
longevity-regulating pathway. The genes in the longevity regula-
tory pathway, including CREB1, EIF4E, PIK3CA, PIK3CB, PIK3R1, 
PRKAA1, RB1CC1 and RPS6KB1 are associated with several sig-
nalling pathways including PI3K/Akt/mTOR signalling. (Salas-Pérez 
et al., 2019) PI3K/Akt /mTOR pathway is implicated in many cellular 
processes such as cell growth, survival, metabolism and autophagy. 
(Deng et al., 2021) The proliferation of Sertoli cells, which play a key 
role during spermatogenesis by facilitating adjacent germ cells with 
access to nutrients and growth factors, (Deng et al., 2021; Kimmins 
et al., 2004) is stimulated by FSH signalling through PI3k/Akt/mTOR. 

F I G U R E  3  Functional KEGG pathways 
enriched for target genes of miR-202 
identified using ClueGO and CluePedia 
(p ≤ .05). Different functional groups 
are represented by colours. Each node 
represents a GO term, and node size 
represents level of significance for term 
enrichment. Pathways are connected 
based on shared genes
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(Riera et al., 2012) Moreover, hyperactivation of phosphatidylinosi-
tol 3-kinase (PI3K)/Akt/mTOR signalling is linked to different forms 
of cancer including testicular cancer. (Xu et al., 2017)

5  |  CONCLUSION

Our findings demonstrate that miR-202 is expressed in Sertoli cells 
and, at varying levels, in different developmental stages of germ cells 
in bull testes. We also provide evidence suggesting the involvement 
of miR-202 in multiple protein regulation, metabolism and longevity 
regulating pathways in the testes. Overall, these findings are consist-
ent with critical roles of miR-202 in regulating maturation and viability 
of testicular somatic and germ cells in bull testes.
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