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Abstract

Dysregulation of collagen production and secretion contributes to aging and tissue fibrosis

of major organs. How procollagen proteins in the endoplasmic reticulum (ER) route as spe-

cialized cargos for secretion remains to be fully elucidated. Here, we report that TMEM39,

an ER-localized transmembrane protein, regulates production and secretory cargo traffick-

ing of procollagen. We identify the C. elegans ortholog TMEM-39 from an unbiased RNAi

screen and show that deficiency of tmem-39 leads to striking defects in cuticle collagen pro-

duction and constitutively high ER stress response. RNAi knockdown of the tmem-39 ortho-

log in Drosophila causes similar defects in collagen secretion from fat body cells. The

cytosolic domain of human TMEM39A binds to Sec23A, a vesicle coat protein that drives

collagen secretion and vesicular trafficking. TMEM-39 regulation of collagen secretion is

independent of ER stress response and autophagy. We propose that the roles of TMEM-39

in collagen secretion and ER homeostasis are likely evolutionarily conserved.

Author summary

As the most abundant protein in animals, collagen plays diverse roles and its dysregula-

tion impacts aging and many fibrotic disorders. It is important to understand how prema-

ture collagen proteins in the ER are processed and secreted, as many other aspects of

collagen regulation have been elucidated in mechanistic detail. In this paper, we have

characterized a novel conserved family of TMEM39 proteins, including human

TMEM39A and C. elegans tmem-39 that regulates ER stress response and collagen secre-

tion. Human TMEM39A directly interacts with SEC23A, a core component of the COPII

vesicle coating complex responsible for vesicular cargo secretion to the Golgi apparatus.
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The function of TMEM-39 proteins in collagen secretion appears highly conserved and

independent to the ER stress response and the autophagy pathway. Our results provide

insights into functions and mechanisms of TMEM39 proteins in collagen secretion and

suggest it as a plausible target for tissue fibrotic diseases.

Introduction

Collagen is the major molecular component of connective tissues, and the most abundant pro-

tein in animals [1]. Collagen dysregulation causes many human disorders, including autoim-

mune diseases, brittle bone diseases (too little collagen), tissue fibrosis (too much collagen)

and aging-related disorders [2–7]. The multi-step biosynthesis of mature collagen by the cell is

a complex process and involves procollagen gene transcription and protein translation, post-

translational modification, assembly into procollagen trimers inside the endoplasmic reticu-

lum (ER), vesicular secretion from ER, extracellular peptide cleavage and cross-linking into

collagen fibers [1,8].

Specific mechanisms underlying the secretion of procollagen still remain poorly under-

stood. In general, specialized intracellular vesicles defined by the coat protein complex II

(COPII) transport most secreted proteins, including procollagen, from the ER to the Golgi

apparatus [9,10]. Sec23, Sec24, Sec13 and Sec31 comprise COPII coat proteins, while the trans-

port protein particle (TRAPP) complex acts a key tethering factor for COPII vesicles en route

to the Golgi [11–13]. Typical COPII vesicles are 60 to 80 nm in diameter, which is not suffi-

cient for transporting procollagen trimers with up to 300 to 400 nm in length [14]. In mam-

mals, large-size COPII-coated vesicles may transport procollagen from the ER to the Golgi

apparatus. TANGO1, a transmembrane protein at the ER exit site, mediates formation of spe-

cialized collagen-transporting vesicle and recruitment of procollagen [14–16]. The N-terminal

SH3-like domain of TANGO1 binds to the collagen chaperone HSP47 in the ER lumen,

recruiting procollagens to the ER exit site [17]. Its C-terminal proline-rich domain (PRD) serv-

ers as a COPII receptor by interacting with the inner shell proteins Sec23/Sec24 [18]. The coil-

coil domain of TANGO1 forms a stable complex with cTAE5 and SEC12, which is particularly

enriched around large COPII carriers for procollagen [19]. Through its membrane helices,

TANGO1 organizes ER exit sites by creating a lipid diffusion barrier and an export conduit for

collagen [20].

Caenorhabditis elegans produces over 180 collagen members that constitute the cuticle and

basement membranes, encodes conserved homologs of COPII/TRAPP proteins, yet lacks

apparent TANGO1 homologs [21–24]. This indicates that evolutionarily conserved and TAN-

GO1-independent mechanisms may exist in C. elegans to regulate procollagen secretion. From

a genome-wide RNAi screen for genes affecting stress response, we previously identified

tmem-131 that defines a broadly conserved family of proteins important for procollagen

assembly and secretion [25]. Mutations in specific collagen genes, conserved COPII/TRAPP-

encoding homologs, and impairment of collagen biosynthetic pathway components are

known to result in a range of phenotypes including ER stress response, abnormal cuticle-asso-

ciated morphology (Blister and Dumpy), and early death or growth arrest [21]. tmem-131
mutants exhibit such phenotypes typical for genes required for collagen secretion [25], while

many other evolutionarily conserved genes of similar phenotype but unknown functions from

our initial screen remain uncharacterized.

Here, we characterize the C. elegans gene tmem-39 that encodes a multipass transmembrane

protein and is essential for cuticle collagen production. The deficiency of TMEM-39 protein in
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C. elegans impairs cuticle integrity and secretion of COL-19, an adult-specific cuticle collagen

protein [26]. We show that the Drosophila ortholog of tmem-39, CG13016 is also essential for

collagen secretion. From yeast-two-hybrid (Y2H) screen, we find that the cytoplasmic loop

domain of human TMEM39A binds to Sec23A, the inner-shell component of the COPII coat-

ing complex. We demonstrate that SEC-23 and other COPII proteins are also essential for col-

lagen secretion in C. elegans. Our findings suggest that TMEM-39 coordinates with TMEM-

131 and COPII transport machineries in the ER, and its roles in collagen secretion and pre-

venting ER stress are likely evolutionarily conserved in multicellular animals.

Results

Genome-wide RNAi screen identifies tmem-39 regulating ER stress

response in C. elegans
We identified D1007.5, the sole tmem-39 homolog in C. elegans, from a genome-wide RNAi

screen for genes affecting the abundance of transgenic reporter asp-17p::GFP, which is up-reg-

ulated by temperature stress and down-regulated by ER stress [25]. RNAi against tmem-39
fully suppressed the asp-17p::GFP reporter expression (Fig 1A). Amino acid sequence

Fig 1. TMEM-39 regulates ER stress response in C. elegans. (A) Exemplar fluorescence images for asp-17p::GFP with

control and tmem-39 RNAi. Scale bars: 20 μm. (B-C) Exemplar fluorescence and bright-field images for the UPR

reporter hsp-4p::GFP with control and tmem-39 RNAi in wild type (B) and ire-1(C) mutants. Scale bars: 20 μm. (D)

Schematic of tmem-39 gene structure with the dma258 deletion generated by CRISPR-Cas9. Bold and underlined are

sgRNA target sequences from tmem-39. Deletion boundary sites of tmem-39 are marked with “^”. (E) qRT-PCR

measurements of hsp-4p::GFP mRNA levels in wild-type and dma258 mutants. ���P< 0.001 (n� 3 biological

replicates). (F-G) Animal body lengths in wild-type and dma258 mutants at L4 stage with bright-field images (F) and

quantification by ImageJ (G). ���P< 0.001 (n�10 for each group).

https://doi.org/10.1371/journal.pgen.1009317.g001
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alignment shows that TMEM39 family proteins are broadly evolutionarily conserved from C.

elegans to humans (S1 Fig). Recent studies reported that human TMEM39A is an ER-localized

transmembrane protein that regulates autophagy by controlling the trafficking of the PtdIns

(4)P Phosphatase SAC1 from the ER [27,28]. How TMEM-39 regulates ER stress response in

C. elegans remains unknown.

In this work, we first confirmed that RNAi against tmem-39 in C. elegans caused a fully pen-

etrant and strong up-regulation of hsp-4p::GFP in the hypoderm (Fig 1B). hsp-4p::GFP is a

well-established reporter for unfolded protein response (UPR) caused by ER stress in C. ele-
gans [29]. Loss-of-function of IRE-1, an ER stress-sensing protein, abolished hsp-4p::GFP

induction in tmem-39 RNAi treated animals (Fig 1C). To verify the tmem-39 RNAi phenotype,

we used CRISPR/Cas9 to generate a C. elegans null allele dma258 carrying a 2750 bp deletion

of the entire coding sequence (Fig 1D and S1 and S2 Tables). dma258 mutants exhibited an

abnormally elevated level of hsp-4p::GFP (Fig 1E). Besides constitutively activated hsp-4p::GFP

transcription, TMEM-39 deficient animals by RNAi or dma258 were shorter in size and

dumpy (Fig 1F and 1G).

Loss of tmem-39 impairs cuticle collagen secretion in C. elegans
To identify potential protein clients regulated by TMEM-39, we examined 24 various transla-

tional reporters of ER-transiting secreted and transmembrane proteins (S2 Fig and S3 Table).

We found that tmem-39 RNAi knock-down strongly reduced abundance of the COL-19::GFP

reporter (Fig 2A), but not other secreted protein reporters, including EFF-1(secreted glycopro-

tein), LRP-1 (sterol transporter), HIM-4 (secreted ECM protein hemicentin), T19D2.1

(secreted metalloprotease), SPON-1 (endocytose extracellular protein), EGL-20 (secreted Wnt

protein), RFP::SP12 (ER secreted protein reporter) and EMB-9 (Collagen IV). COL-19 is a C.

elegans exoskeleton collagen that is secreted by the underlying hypoderm and required for

integral structure of the cuticle [21]. The C-terminal GFP-tagged COL-19 reporter enables

robust and tractable visualization of the cuticle morphology and to identify defects in the colla-

gen production machinery [26]

Using confocal microscopy to characterize the structure of hypodermal cuticle, we found

that in control RNAi animals, COL-19::GFP is enriched in the hypodermal extracellular

matrix, constituting regular annular furrows and lateral alae of the cuticle (Fig 2B). In tmem-
39 RNAi animals, COL-19::GFP appeared to be clustered in the intracellular region of hypo-

derm, and largely absent in the extracellular cuticle (Fig 2B). Mature cuticle collagens includ-

ing COL-19 covalently cross-linked with unusual di- and tri- tryrosine cross-links increase the

strength and integrity of the cuticle in worms [21]. We further analyzed the abundance and

composition of COL-19::GFP proteins by Western blot (Figs 2C and S3A–S3C). tmem-39
RNAi led to strong reduction of overall COL-19::GFP abundance (Fig 2C), accompanied by

markedly decreased abundance of cross-linked multimers and “mature” processed/cleaved

monomers of COL-19::GFP relative to monomeric COL-19::GFP procollagens (Figs 2C and

S3A–S3C).

To examine possible involvement of tmem-39 in collagen gene transcription, we used RNAi

to knock-down tmem-39 in animals with the col-19p::GFP transcriptional reporter in which

GFP expression is driven by the promoter of col-19. In contrast to the striking decrease of over-

all COL-19::GFP protein abundance, the transcriptional activity of the col-19 promoter was

not affected by tmem-39 (Fig 2B and 2D). We also evaluated the mRNA level of endogneous

col-19 by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and found

that the dma258 mutant displayed a mild increase of col-19 mRNA level, likely caused by com-

pensatory feedback regulation of col-19 given defective COL-19 secretion (Fig 2E). Indeed,
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dma258 mutants fully recapitulated the tmem-39 RNAi phenotype in defective COL-19::GFP

secretion (Fig 2F).

There are two main collagen-enriched tissues in C. elegans, the cuticle (exoskeleton) and

basement membranes. We found that tmem-39 loss-of-function (by either RNAi or dma258)

had no apparent effect on either mCherry-tagged (overexpression) and mNeonGreen-tagged

(CRISPR knock-ins) EMB-9 [30,31], a Collagen IV α1 on basement membranes (S2U–S2W

Fig and S3 Table). Loss of tmem-39 specifically affected collagens in cuticle, as exemplified by

COL-101::GFP and LON-3::GFP (Figs 2G and 2H and S4A–S4C). Furthermore, electron

microscopy (EM) analysis revealed striking reduction of cuticle thickness in dma258 mutants

than wild type (Fig 2I).

Fig 2. TMEM-39 is essential for collagen secretion and cuticle formation in C. elegans. (A) Epifluorescence image

of col-19::GFP with control and tmem-39 RNAi. Three to four animals were shown to indicate representative reporter

expression with around 50 animals observed. (B) Exemplar confocal fluorescence images of COL-19::GFP with

indicated phenotypic penetrance of control RNAi and tmem-39 RNAi in wild-type animals. Scale bars: 20 μm. (C)

Exemplar Western blot analysis of COL-19::GFP proteins from total lysates of wild type animals with control and

tmem-39 RNAi. IB, immunoblotting. The arrow indicates procollagen monomers; triangles indicate mature

monomers and cross-linked COL-19::GFP. (D) Exemplar fluorescence images of col-19 transcriptional reporter (col-19
promoter-driven GFP) with indicated phenotypic penetrance of control RNAi and tmem-39 RNAi in wild-type

animals, indicating no significant difference in GFP expression. Scale bars: 20 μm. (E) qRT-PCR quantification of

endogenous col-19 mRNA levels in wild-type and dma258 mutants. ���P< 0.001 (n� 3 biological replicates). (F)

Exemplar confocal fluorescence images of COL-19::GFP with indicated phenotypic penetrance in wild-type and tmem-
39 mutant animals. (G-H) Exemplar images of COL-101::GFP in wild-type and tmem-39(dma258) animals for

confocal fluorescence images with two independent repeats for each strain (G) and Western blot analysis with 7%

SDS-PAGE (H), H3: histone 3, Scale bars: 20 μm. (I) Electron microscopy of adult C. elegans cross sections in wild type

and tmem-39 mutants. Five young adult-stage worms of each group were analyzed. C, cuticle. Scale bar: 2 μm.

https://doi.org/10.1371/journal.pgen.1009317.g002
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Consistent with a defect in cuticle collagen secretion, TMEM-39 deficient animals were

smaller in length and also more sensitive to cuticle-disrupting osmotic stresses (S4D Fig). Fur-

thermore, we observed that RNAi against each of cup-2, sel-1, sel-11 and cdc-48.1, genes

required for ER-associated degradation (ERAD) [32,33], caused synthetic lethality in tmem-39
(dma258) mutants (S4E Fig). Strong genetic interaction of tmem-39 with ERAD pathway

genes indicates that ERAD may promote degradation of abnormally accumulated COL-19

procollagen in tmem-39(dma258) mutants, leading to its decreased overall abundance. Taken

together, these results indicate essential roles of TMEM-39 in cuticle collagen secretion, proper

cuticle formation and preventing ER stress induced by procollagen accumulation in C. elegans.

Evolutionarily conserved roles of TMEM39 family proteins for collagen

secretion

TMEM39 family proteins are evolutionarily conserved among multicellular animals, and the

invertebrate model organisms C. elegans and Drosophila have one ortholog each, named

D1007.5 and CG13016, respectively. We determined whether the function of TMEM39 family

proteins in collagen secretion is evolutionarily conserved in Drosophila. We visualized collagen

secretion in fat body cells of the Lsp2> Col4a1:RFP transgenic fly [34,35], and generated trans-

genic RNAi to knock-down Drosophila CG13016, the sole TMEM39 ortholog (Fig 3A). The

Fig 3. Evolutionarily conserved roles of TMEM39 family proteins for collagen secretion in Drosophila. (A) Schematic of generating fat

body cell specific CG13016 knock-down strains in Drosophila. Lsp2-Gal4 specifically expresses in the fat body. Wandering third instar stage

larvae were picked out for imaging analysis. The Drosophila images are created by BioRender.com. (B) Exemplar confocal images of

transgenic Drosophila fat body cells showing collagen COL4A1 secretion is normal with control RNAi (left), and intracellular procollagen

accumulation with tmem39/CG13016 RNAi. scale bar, 100 μm.

https://doi.org/10.1371/journal.pgen.1009317.g003
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physiological function of Drosophila fat body cells is to secrete collagen to the insect blood,

hemolymph. Confocal microscopy analysis of COL4A1::RFP revealed that the Collagen type

IV alpha 1::RFP proteins were strikingly accumulated in fat body cells of CG13016 knock-

down flies but not in control (Fig 3B). Further analysis is needed to better understand the role

of CG13016 in collagen secretion. Although intracellular procollagen accumulation caused by

CG13016 RNAi did not appear to result in its decreased abundance by ERAD as for C. elegans
COL-19::GFP, these results indicate that the role of TMEM39 family proteins in promoting

collagen secretion is likely evolutionarily conserved also in Drosophila.

Since the sequence and function of TMEM39 family proteins appear to be highly conserved,

we next characterized the localization and protein interactors of human TMEM39A. The ver-

tebrate TMEM39 family consists of two paralogs, TMEM39A and TMEM39B [36]. The

TMEM39B gene appears only conserved in vertebrates and is likely produced by the duplica-

tion of an ancestral form of TMEM39A [37]. Consistent with a recent study [27], our confocal

imaging of Hela cells transiently transfected with reporters of GFP::TMEM39A and mCherry-

tagged ER markers indicates that TMEM39A localized to the ER (Fig 4A).

Human TMEM39A cytoplasmic loop domain interacts with Sec23A

Predicted by the TOPCONS program, TMEM39A contains putatively eight transmembrane

segments and two large cytoplasmic loops (Fig 4B). We further used the Y2H screen to search

for human proteins that could interact with the conserved first loop domain (198–298 a.a.) and

the second loop domain (337–420 a.a.) of TMEM39A (Fig 4B and 4C). We identified 73 inde-

pendent clones from the Y2H screen. Among the prey cDNA clones identified from the Y2H

screen, full-length DCTN6 (1–190 a.a.) and Sec23A (583–765 a.a.) were confirmed to interact

with the second loop domain of TMEM39A (Fig 4D). DCTN6 is a subunit of the dynactin pro-

tein complex [38] that acts as an essential cofactor of the cytoplasmic dynein motor to transport

a variety of cargos and organelles along the microtubule-based cytoskeleton [39,40].

The cDNA clone from the Y2H library encodes the C-terminal 583–765 a.a. of Sec23A,

encompassing the Gelsolin repeat and C-terminal actin depolymerization factor-homology

domain (Fig 4C). Sec23A is a core component of the COPII vesicle coating complex, which

forms SEC23-SEC24 heterodimers in the inner shell of the COPII coat to select specific cargo

molecules [41,42]. Mutations in human Sec23A cause an autosomal recessive disease, named

Cranio-lenticulo-sutural dysplasia (CLSD) [41]. The disease manifests with skeletal abnormali-

ties, dysmorphic facial features and calvarial hypomineralization, features thought to result

from defects in collagen secretion [43]. Consistent with recent studies using the CoIP assay to

demonstrate association between TMEM39A and Sec23A [27], we found that TMEM39A

interacted with Sec23A but not Sec24D in Y2H assays (Figs 4D and 4E and S5A and S5B).

These results indicate that the TMEM39A cytoplasmic loop domain interacts specifically with

Sec23A, which forms an inner-shell heterodimer with Sec24 to drive procollagen secretion.

We next examined the loss-of-function phenotype of sec-23, the C. elegans homolog of

Sec23A in collagen secretion. We found that RNAi knock-down of sec-23 strongly reduced

COL-19::GFP secretion to the extracellular cuticle and increased its aggregation in the intracel-

lular region of hypoderm (Fig 4F). RNAi of sec-23 also led to strong hsp-4p::GFP induction,

indicating constitutively activated ER stress response (Fig 4G). RNAi against genes encoding

many other components of COPII but not the C. elegans homolog of DCTN6 also recapitulated

the COL-19::GFP defect and hsp-4p::GFP induction phenotype (Figs 4F and 4G, S6–S8 and

Table 1).

ER, hsp-4p::gfp induction for ER stress; collagen, col-19::gfp defect; + and -, indicate degrees

of fluorescent reporter induction and reduction, respectively. N.E., no effect observed. Dpy
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(Dumpy), shorter and stouter than control animals at the same developmental stage; Sma

(Small), shorter and thinner than control animals at the same developmental stage; Lva (larval

arrest), halted development at larval stages (L1-L4); Rup (exploded through vulva), ruptured at

the vulva with extrusion of internal organs at the site of rupture; Ste (sterile), animals are

unable to produce progeny.

Fig 4. TMEM39A interacts with Sec23A to regulate collagen secretion in C. elegans. (A) Exemplar confocal

fluorescence images of HeLa cells co-transfected with GFP-tagged TMEM39A and mCherry-tagged ER marker (ER3).

Scale bars, 5 μm. (B) Schematic of human TMEM39A transmembrane domain predicted by the TOPCONS program,

with cytosolic localization in red (two long cytoplasmic loop domains labeled with rectangles, loop1 in green and loop2

in blue) and ER localization in blue. (C) Schematic of Y2H screens identifying the human Sec23A C-terminal domain

as a binder of the second cytoplasmic loop domain of TMEM39A. (D) Y2H assays of yeast colony growth after prey

and bait vectors retransformation to verify the interaction of human Sec23A C-termini (a.a. 583–765), Sec24D full

length (a.a. 1–1032) and Dctn6 full length (a.a. 1–190) with TMEM39A loop1 (a.a. 198–298) and loop2 (a.a. 337–420).

(E) Coimmunoprecipitation and Western blot of mCherry-labeled TMEM39A cytoplasmic loop domain and GFP-

labeled Sec23A Ct fragment in human embryonic kidney (HEK) 293 cells. Cells were transfected with expression

vectors, lysed for immunoprecipitation by GFP-TRAP, and blotted by antibodies against GFP and mCherry. (F-G)

Exemplar confocal fluorescence images of COL-19::GFP (F) and hsp-4p::GFP (G) with indicated phenotypic

penetrance of wild-type with control RNAi and COPII components sec-23 and trpp-3 RNAi. Scale bars: 20 μm. (H)

Y2H assays of yeast colony growth to examine the interaction between human Sec23A C-termini with human wild-

type, WS or YR mutant cytoplasmic loop domains of TMEM39A.

https://doi.org/10.1371/journal.pgen.1009317.g004

PLOS GENETICS The TMEM39 protein family is essential for collagen secretion

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009317 February 1, 2021 8 / 21

https://doi.org/10.1371/journal.pgen.1009317.g004
https://doi.org/10.1371/journal.pgen.1009317


By amino acid sequence alignment, we identified two Tryptophan-Serine (WS) and Tyro-

sine-Arginine (YR) residues in the second cytoplasmic loop domain of TMEM39A that are

highly evolutionarily conserved among most species from invertebrates to vertebrates (S1B

Fig). To test whether the conserved WS and YR motifs are important for interaction with

Sec23A, we substituted either WS or YR motif of TMEM39A into Alanine-Alanine (AA).

Using Y2H assays, we found that such substitution in TMEM39A strongly attenuated its inter-

action with Sec23A (Fig 4H). These results indicate that the second cytoplasmic loop domain

of TMEM39A likely binds to the COPII inner-shell component Sec23A directly and its C. ele-
gans homolog sec-23 is also essential for cuticle collagen production in vivo.

The collagen secretion phenotype of tmem-39 is independent of ER stress

and autophagy

We identified both tmem-39 and tmem-131 from the genome-wide screen for RNAi clones

affecting the abundance of asp-17p::GFP, which is downregulated by ER stress [25]. We exam-

ined collagen secretion phenotypes of other genes involved in protein modification and

homeostasis in the ER identified from the asp-17p::GFP screen, including ostb-1, nus-1, stt-3,

dlst-1, ost-3 and uggt-1 (Fig 5A and S4 Table). RNAi against these genes, similarly as tmem-39
and tmem-131, caused marked suppression of asp-17p::GFP and induction of hsp-4p::GFP (Fig

5A and 5B). By contrast, RNAi knock-down of these genes did not cause COL-19::GFP colla-

gen secretion defects (Figs 5C and 5D and S9A–S9E). We also examined additional genes that

are not from the asp-17p::GFP screen but affect the ER stress response, including xbp-1, ire-1,

cdc-48.1, manf-1 and sdf-2 in C. elegans [32,44–47]. RNAi against these genes induced hsp-4p::

GFP (Fig 5E), but did not result in collagen secretion defects (Figs 5F and 5G and S9F–S9J).

These results indicate that induction of the ER stress response does not apparently cause cuti-

cle secretion defects in C. elegans.
A recent study reported that mammalian TMEM39A regulates autophagy by controlling

the trafficking of the PtdIns(4)P Phosphatase SAC1 from ER to Golgi [27]. The SAC1 protein

family is evolutionarily conserved among eukaryotes, while C. elegans has two paralogs,

named SAC-1 and SAC-2 (S10A Fig). We next examined whether dysregulation of SAC-1 and

Table 1. RNAi of COPII-related genes for phenotypic analysis of ER stress and collagen secretion.

Gene Function ER/UPR Collagen Other phenotype

tmem-39 Recruit Sec23A +++ —— Dpy, Sma, Rup

tmem-131 Recruit TRAPPC8, procollagen +++ —— Dpy, Sma, Rup

sec-23 COPII component +++ —— Lva (L1-L2)

sec-24.1 COPII component +++ —— Lva (L1-L2)

sec-24.2 COPII component N.E. N.E. N.E.

npp-20 Sec13, COP II component +++ N.E. Lva (L4), Rup

sec-31 COPII component + N.E. N.E.

sar-1 GTPase +++ – Lva (L4), Rup

sec-12 Regulate Sar1 +++ N.E. Lva (L1-L2)

rab-1 GTPase +++ —— Lva (L1-L2)

trpp-3 TRAPPIII component ++ —— N.E.

trpp-6 TRAPPIII component N.E. —— N.E.

trpp-8 TRAPPIII component N.E. —— Ste

uso-1 Vesicular transport +++ N.E. N.E.

dnc-6 Dynactin component N.E. N.E. N.E.

https://doi.org/10.1371/journal.pgen.1009317.t001
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autophagy might contribute to the defective collagen secretion phenotype in tmem-39
mutants. We first confirmed that sac-1 or tmem-39 RNAi, but not sac-2 RNAi, caused a

marked up-regulation of the autophagy transcriptional reporter tts-1p::GFP (Fig 6A). tts-1 is a

long non-coding RNA that represses protein synthesis and is activated by HLH-30/TFEB, a

master transcriptional regulator of autophagy [48,49]. However, sac-1 RNAi did not affect the

ER stress response reporter hsp-4p::GFP (Fig 6B) or COL-19::GFP (Figs 6C and 6D and S10B

and S10C). We also examined RNAi phenotypes of let-363 and atg-5. let-363 encodes an ortho-

log of human mTOR (mechanistic target of rapamycin kinase) and regulates autophagy in C.

elegans [50,51]. Similarly as sac-1 RNAi, let-363 knock-down in C. elegans showed a marked

induction of tts-1p::GFP but has no apparent effects on collagen secretion (Figs 6E–6G and

S10D). atg-5 encodes the ortholog of human ATG5 (autophagy related 5) required for autop-

hagosome assembly [52,53]. atg-5 RNAi in either wild type or tmem-39 mutants had no appar-

ent effects on COL-19::GFP (Figs 6H–6J and S10E and S10F). Together, these findings

indicate that roles of C. elegans TMEM-39 in collagen secretion are independent of ER stress

response and autophagy regulation.

Fig 5. RNAi knock-down of ER stress response-related genes does not cause defects in collagen secretion. (A)

Table listing ER proteostasis genes whose RNAi also suppressed rrf-3; asp-17p::GFP (n� 20 for each group). (B)

Exemplar fluorescence and bright-field images for the UPR reporter hsp-4p::GFP with control and ostb-1 RNAi in wild

type animals. Scale bars: 20 μm. (C-D) Exemplar confocal fluorescence images of COL-19::GFP in control RNAi and

ER proteostasis gene in wild-type animals (C), scale bars: 20 μm, and Western blot analysis (D). Arrows indicate

procollagen monomers; triangles indicate mature monomers and cross-linked COL-19::GFP. (E) Exemplar

fluorescence images for the UPR reporter hsp-4p::GFP with control and manf-1 RNAi in wild type animals. Scale bars:

20 μm. (F-G) Exemplar confocal fluorescence images (F) and Western blot analysis (G) of COL-19::GFP with control

and ER stress response gene RNAi in wild-type animals. Arrows indicate procollagen monomers; triangles indicate

mature monomers and cross-linked COL-19::GFP. Scale bars: 20 μm.

https://doi.org/10.1371/journal.pgen.1009317.g005
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Discussion

Our study identifies an ER-transmembrane protein TMEM-39 in C. elegans with essential roles

in collagen secretion. Such roles are likely evolutionarily conserved in animals. We propose that

the conserved TMEM39 cytoplasmic loop domain binds to the Sec23 component of COPII-

coating complex to facilitate ER-to-Golgi procollagen transport. Phenotypic similarities of losses

of TMEM-39 and TMEM-131, another ER transmembrane protein we recently identified [25],

suggest that both proteins cooperate in collagen secretion by assembling procollagen and

recruiting COPII/TRAPPIII complexes for sequential ER-to-Golgi cargo transport (Fig 7).

Fig 6. Collagen secretion is independent of ER stress and autophagy induction. (A-C) Exemplar epifluorescence

images of the autophagy induction reporter tts-1p::GFP (A), UPR reporter hsp-4p::GFP (B) and COL-19::GFP (C) in

sac-1, sac-2 and tmem-39 RNAi treated animals. Scale bars: 20 μm. (D) Western blot analysis of COL-19::GFP in sac-1,

sac-2 and tmem-39 RNAi treated animals. Arrows indicate procollagen monomers; triangles indicate mature

monomers and cross-linked COL-19::GFP. (E) Exemplar epifluorescence images of tts-1p::GFP with control and let-
363 RNAi in wild type animals. Scale bars: 20 μm. (F) Exemplar confocal fluorescence images of COL-19::GFP in

control and let-363 RNAi in wild-type animals. Scale bars: 20 μm. (G) Western blot analysis of COL-19::GFP. Arrows

indicate procollagen monomers; triangles indicate mature monomers and cross-linked COL-19::GFP. (H-I) Exemplar

confocal fluorescence images of COL-19::GFP in control and atg-5 RNAi in wild type (A) and tmem-39(dma258)
mutants (I). Scale bars: 20 μm. (J) Western blot analysis of COL-19::GFP in control and atg-5 RNAi. Arrows indicate

procollagen monomers; triangles indicate mature monomers and cross-linked COL-19::GFP.

https://doi.org/10.1371/journal.pgen.1009317.g006
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By yeast-two-hybrid assays, we found that the TMEM39A cytoplasmic loop domain can

interact with the Sec23A. RNAi knock-down of sec-23 and other COPII genes recapitulated

the tmem-39 loss-of-function phenotypes in constitutively high ER stress response, defective

collagen secretion and sensitivity to osmolality stress in C. elegans (Table 1). We also noticed

that RNAi knock-down of many COPII related genes, such as sec-23, sec-24.1, npp-20, sar-1,

sec-12, rab-5 and trpp-8 caused more severe phenotypes than tmem-39 RNAi, leading to lethal-

ity or developmental arrest that prevented collagen phenotype analysis (Table 1). However,

treatment with these RNAi starting from L4-stage for animals transferred from normal condi-

tions to RNAi led to robust COL-19::GFP phenotype (Figs 4F and S6). Shorter duration of

RNAi treatment may explain milder collagen defective phenotype for sec-31, npp-20 and sec-
12 (S6E, S6H and S6I Fig). Compared with most COPII-related genes, tmem-39 null mutants

exhibit similar collagen secretion defects but are nonetheless viable, supporting the notion that

TMEM-39 acts with COPII in collagen secretion but may have more specialized roles in facili-

tating secretion of specific client proteins including collagen COL-19 and the PtdIns(4)P Phos-

phatase SAC1 [27].

Recent work showed that TMEM39A facilitates the ER-to-Golgi transport of SAC1 and reg-

ulates autophagosome formation [27]. We found that RNAi knock-down of autophagy related

genes, such as sac-1 and let-363, caused autophagy induction but did not affect the ER stress

response or collagen secretion (Fig 6). Genes identified from the asp-17p::GFP screen that reg-

ulate the ER stress response also did not affect collagen secretion (S4 Table), further supporting

the notion that roles of TMEM-39 in collagen secretion are independent of ER stress response

and autophagy.

Fig 7. Schematic model showing TMEM39 regulation of collagen secretion. The second cytoplasmic loop domain of TMEM39A interacts

with the core COPII coating component Sec23A. TMEM131 binds to procollagen to facilitate assembly of procollagen trimers and TRAPP III

activation of Rab GTPase, in coordination with TMEM39A to promote the ER-to-Golgi transport of procollagen cargo in COPII. Uso1

interacts with the COPII vesicle to promote targeting to the Golgi apparatus. The schematic model reflects proposed conserved features of

regulation and mechanisms of action based on our findings rather than focusing on species-specific differences.

https://doi.org/10.1371/journal.pgen.1009317.g007
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In mammalian cells, ER-to-Golgi transport proceeds by cargo assembly into COPII-coated

ER export sites (ERES) followed by vesicular/tubular transport along microtubule tracks toward

the Golgi in a dynein/dynactin-dependent manner [54]. We identified the dynein/dynactin

component DCTN6 as a TMEM39A interactor although RNAi against C. elegans homolog of

DCTN6 did not affect COL-19::GFP secretion. How C. elegans dynein/dynactin components

contribute to collagen secretion remains to be determined. However, in human cells, Sec23p

directly interacts with the dynactin complex [54], indicating that TMEM39A may participate in

a Sec23/DCTN6 complex to facilitate COPII coat assembly and subsequent dynein/dynactin-

dependent transport. Test of this hypothetic model and determination of the underlying mecha-

nism in relation to TMEM131’s role in collagen secretion await further investigations.

Mammalian genomes encode two TMEM39 family proteins, TMEM39A and TMEM39B.

TMEM39A is a susceptibility locus associated with various autoimmune diseases and highly

up-regulated in brain tumors [36,55]. TMEM39B was recently found to interact with the

SARS-CoV-2 ORF9C protein, which localizes to ER-derived vesicles [56,57]. It remains

unknown whether TMEM39A and TMEM39B exhibit functional redundancy in physiological

collagen secretion or pathological processes in human diseases. With single tmem39 ortholo-

gue for each, model organisms C. elegans and Drosophila may continue to provide insights

into functions and mechanisms of action of this protein family. Future elucidation of evolu-

tionarily conserved roles of mammalian TMEM39 proteins in physiological and pathological

processes may lead to therapeutic targets and strategies for treating diseases associated with

this protein family in humans.

Materials and methods

Worm strains

The Bristol N2 strain was used as the wild type strain, and genotypes of other strains used are:

zcIs4 [hsp-4p::GFP] V, ire-1(zc14) II; zcIs4 V, dmaIs10 [asp-17p::GFP; unc-54p::mCherry] X,

dmaIs40 [col-101::GFP; unc-54p::mCherry], nIs617 [tts-1p::GFP, unc-54p::mCherry], kuIs55
[lon-3::GFP], kaIs12 [col-19::GFP], qy24 [emb-9p::emb-9::mNG] III and tmem-39(dma258) I.

Transgenic strains dmaEx169 [rpl-28p::T19D2.1::mCherry; unc-122p::GFP], dmaEx153 [rpl-
28p::Y73E7A.8::mCherry; unc-122p::GFP], and dmaEx152 [rpl-28p::F23H12.5::mCherry; unc-
122p::GFP] were generated as extrachromosomal arrays as described [58].

For dmaIs40, the 2.7 kb col-101 promoter and coding sequence was PCR amplified with

primer “col-101 promoter F/R”; the GFP tag with unc-54 5’-UTR was amplified with primer

“GFP-UTR F/R”; the 4.3kb full length fragment was generated by primer “full length F/R” (S5

Table). The injection mixture with 40 ng/μL col-101::GFP PCR products, 80 ng/μL salmon

sperm DNA and 40 ng/μL unc-54p::mCherry was used for transformation. The transgenic line

was used to generate the integrated line dmaIs40 by UV radiation method.

The precise tmem-39(dma258) knock-out strain was generated by CRISPR/Cas9 methods

[59,60]. Primer sequences are listed in S1 and S2 Tables.

Translational fluorescent reporters used by tmem-39 RNAi knock-down to identify a phe-

notype include: bcIs39 [lim-7p::ced-1::GFP+lin-15(+)], caIs618 [eff-1p::eff-1::GFP], dnSi4 [gna-
1p::GFP + Cbr-unc-119(+)], juEx1111 [spon-1::vGFP], lrp-1(ku156)eqIs1 [lrp-1p::lrp-1::GFP] I;

rrf-3(pk1426) II, muIs49 [egl-20::GFP+unc-22(+)], nIs590 [fat-7p::fat-7::GFP], nuIs26 [cat-1::

GFP], osIs60 [unc-54p::mig-23::GFP; unc-119(+)], osIs66 [myo-3p::eGFP::wrk-1], sqIs11 [lgg-
1p::mCherry::GFP::lgg-1+rol-6(+)], osIs77 [unc-54p::RFP::SP12;unc-119(+)], pwIs503 [vha-6p::

mans::GFP+Cbr-unc-119(+)], qyIs44 [emb-9p::emb-9::mCherry], rhIs23 [GFP::him-4], veIs13
[col-19::GFP + rol-6(+)] V; let-7(mn112) unc-3(e151) X; mgEx725 [lin-4::let-7 + ttx-3::RFP],
vkEx1243 [nhx-2p::ubiquitin-V::mCherry+myo-2p::GFP], vkEx1256 [nhx-2p::cpl-1::YFP],
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vkEx1260 [nhx-2p::cpl-1::YFP], vkEx1879 [nhx-2p::cpl-1(W32A Y35A)::YFP] and xnIs96 [hmr-
1p::hmr-1::GFP].

Worm maintenance

C. elegans strains were maintained in standard nematode growth medium (NGM) plates with

seeded E. coli at 20˚C [61]. Worm stages were synchronized by bleaching the gravid adults,

and bacterial feeding-induced RNAi knock-down was performed as previously described [62].

For RNAi colonies that show lethality or larvae arrest phenotypes, around 20–30 P0 L4 animals

were transferred from normal NGM plates to RNAi plates, and grew for 2–3 days to observe

the P0 phenotype.

Imaging

Digital automated epifluorescence microscopes (EVOS, Life Technologies) and SPE confocal

microscope (Leica) were used to obtain fluorescence images. Animals at the same stage were

randomly picked from the plate, and transferred to a 4% agar pad with 10 mM sodium azide

and 1 mM levamisole in M9 solution (31742-250MG, Sigma-Aldrich) on a slide for imaging.

Identical setting and conditions were used to compare experimental groups with controls.

ImageJ was used for the quantification of worm body length at L4 stages.

Co-immunoprecipitation

HEK293T cells were transfected with the indicated plasmids, following the instruction of Tur-

boFect Transfection Reagent (Thermo Fisher Scientific, R0531). After transfection for 48 hr,

cells were lysed on ice for 30 min in cell lysis buffer (Cell signaling, 9803) with protease inhibi-

tor cocktail (SIGMA 11836153001). After centrifugation at 13,000 rpm for 15 mins at 4˚C,

supernatants were collected and precleaned by control magnetic beads (bmab-20, Chromo-

Tek) for 30 mins at 4˚C, and followed by immunoprecipitation with GFP-Trap agarose beads

(gtma-10, ChromoTek) for 2 hr at 4˚C. After washing with 1XPBS for 4 times and cell lysis

buffer for 1 time at 4 degree, the bound proteins were eluted with 1xSDS Laemmli Sample

Buffer with 10% β-mercaptoethanol and analyzed by immunoblotting.

Western blot analysis of proteins

Animals at the same stage from the control and experiment groups were picked (N>30) into

20 μL Laemmli Sample Buffer with 10% β-mercaptoethanol and lysed directly for Western blot

analysis. Protein samples were run with 15% Precast Protein Gel (Bio-Rad, 4561084), except

that COL-101::GFP samples were run with 7.5% Precast Protein Gel (Bio-Rad, 4561023), and

then transferred to the nitrocellulose membrane (Bio-Rad, 1620167). The membranes were

blotted by antibodies against GFP (A02020, Abbkine), mCherry (Invitrogen, M11217), Tubu-

lin (Sigma, T5168) and H3 (Abcam, ab1791).

For subcellular fractionation, three plates (6cm dish) of adult-stage animal pellets were

washed with M9 buffer three times for worm samples, were resuspended in 500 μL of RIPA

lysis buffer (Amresco, N653) with 10 mM phenylmethylsulfonylfluoride (PMSF) and protease

inhibitor cocktail (BioTools, B14002). Then, pellet samples were disrupted by TissueRuptor

(motor unit “8” for 1 min) and incubated for 45 min in a 4˚C cold room. The lysate was centri-

fuged at 12,000 rpm for 20 min, the supernatant was collected as the supernatant fraction, and

the pellet was resuspended in 500 μL of RIPA lysis buffer with 10 mM PMSF and protease

inhibitor cocktail as the precipitation fraction. Then, 20 μL Samples added with 4× Laemmli

sample buffer were subject to Western blot analysis, as described above.

PLOS GENETICS The TMEM39 protein family is essential for collagen secretion

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009317 February 1, 2021 14 / 21

https://doi.org/10.1371/journal.pgen.1009317


Quantitative RT-PCR

Worm total RNA was extracted by following the protocol of Quick-RNA MiniPrep kit (Zymo

Research, R1055). cDNA was reverse transcribed by the reverse transcriptase mix kit (Bio-

Tools, B24408). Using SYBR Green Supermix (Thermo Fisher Scientific, FERK1081), the real-

time qPCR was performed on the Roche LightCycler96 (Roche, 05815916001) system. Ct val-

ues of specific genes were normalized to the housekeeping gene levels: act-1 for C. elegans sam-

ples. Results were presented as fold changes to respective references. Statistical significance

was determined with t-test, using GraphPad Prism 7. Primer sequences are listed in S2 Table.

Osmotic stress experiment

Wild-type and tmem-39(dma258) animals at L4 stages were recognized by a white crescent in

the presumptive vulval region. Two days later, animals at adult stage were transferred to the 6

well tissue culture plate (Fablab FL7105), which is supplied with 2 mL distilled Water and 40

animals in each well (Thermo Fisher, 10977–015). The number of animals shown intestine

exposure was counted as sensitive to osmotic stress treatment. Each group was with at three

biological replicates (n = 40).

Synthetic lethality analysis in C. elegans
Wild-type and tmem-39 (dma258) mutants were maintained in the normal NGM plates for at

least 2 generations at 20˚C. Two L4 stage worms were picked into indicated RNAi plate for

synthetic lethality test as described [63]. Seven days later, the number of worms at adult stage

were counted. The score was assigned into 0 to 6 (0 means parental worms only; 1 means less

than 10 progenies; 2 means 11 to 50 progenies; 3 means 51 to 100 progenies; 4 means 101 to

150 progenies; 5 means 151 to 200 progenies; and 6 means more than 200 progenies). Each

group was with at three biological replicates.

Drosophila experiments

Fly strains included: UAS-Cg25C:RFP.2.1/CyO; Lsp2-Gal4/TM6B, and

UAS-CG13016_dsRNA (Vienna Drosophila Resource Center ID# 42509/GD). Lsp2-Gal4 is

specifically expressed in the fat body cells. Flies expressing Collagen:RFP in fat body were

crossed to either wild type or UAS-CG13016_dsRNA flies. Wandering-stage third instar larvae

were picked out. Fat body was dissected and fixed in 4% PFA, stained with DAPI, and

mounted for imaging by confocal microscopy.

Yeast-two-hybrid assay

The cDNA coding sequences of the first and second cytoplasmic loop domain of human

TMEM39A were cloned into the pGBKT7 vector and screened against a normalized universal

human cDNA library (Clontech, 630481), following instruction of the Matchmaker Gold

Yeast Two-Hybrid System (Clontech, 630489). Verification of positive colonies was achieved

by co-transforming wild-type or YR-mutant TMEM39A loop domain (in pGBKT7 Vector)

with genes of interest (in pGADT7 Vector) following the instruction of YeastMaker Yeast

Transformation System 2 (Clontech, 630439) as well as plasmids from re-cloned cDNA.

Fluorescent imaging of Hela cells

Hela cells were seeded in 24-well plates with cover glass, each with three replicates (Fisher Scien-

tific, 22293232). Cells were transiently transfected with GFP-tagged human TMEM39A full-

length cDNA in the FUGW plasmid backbone, and the ER localization marker mCherry-ER-3
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(Addgene: 55041) for 2 days. After 1xPBS washing for once, cells were treated by 4% formalde-

hyde solution for 10 mins. With 1xPBS washing for three times, cells were treated with 0.2% Tri-

ton X-100 in 1xPBS solution for 15 mins. Following 1xPBS washing for three times, the cover

slide with cell samples was sealed on the microscope slide with Fluoroshield Mounting Medium

with DAPI (Thermo Fisher Scientific, NC0200574) for imaging by confocal microscopy.

Supporting information

S1 Fig. Multiple sequence alignment indicates evolutionary conservation of TMEM39 pro-

tein sequences among different species. (A-B) Multiple sequence alignment of TMEM39A

from major representative animal species (by COBALT program), with conserved domains

indicated in bars (A). First cytoplasmic loop domain in green frame with dotted line, WS and

YR residues indicated in the second cytoplasmic loop domains in blue frame with dotted line

(B).

(DOCX)

S2 Fig. tmem-39 RNAi knock-down for screen of phenotypic defects of different transla-

tional fluorescent reporters. (A-V) Exemplar fluorescence images showing translational

reporters for (A) wrk-1, (B) gna-1, (C) hmr-1, (D) mans, (E) eff-1, (F-G) cpl-1, (H) mig-23, (I)

fat-7, (J) ced-1, (K) egl-20, (L) ubiquitin-V, (M) Y73E7A.8, (N) spon-1, (O) cat-1, (P) SP12, (Q)

lgg-1, (R) F23H12.5, (S) lrp-1, (T) T19D2.1 and (U-W) emb-9 in wild-type animals by control

and tmem-39 RNAi, wild-type and tmem-39(dma258) mutant (V) at 20˚C (n = 3–4 for each

reporters). Scale bars: 20 μm.

(DOCX)

S3 Fig. TMEM-39 is essential for procollagen collagen secretion in C. elegans. (A-C) Exem-

plar Western blot analysis of COL-19::GFP proteins from total lysates of wild type animals

with control and tmem-39 RNAi (A-B). Exemplar Western blot analysis of COL-19::GFP pro-

teins from different fractions of wild type and mutant animals (C). wt, wild-type. mut,

mutants. IB, immunoblotting. Arrows indicate procollagen monomers; triangles indicate

mature monomers and cross-linked COL-19::GFP.

(DOCX)

S4 Fig. Roles of TMEM-39 in cuticle collagen secretion, osmotic stress sensitivity and inter-

action with the ERAD pathway. (A-B) Exemplar fluorescence images showing translational

reporters for (A) col-101 and (B) lon-3. In wild-type animals at 20˚C (n = 3–4 for each report-

ers). The area in the inset indicates longer exposure for enhanced fluorescence intensity.

Arrows indicate decreased COL-101::GFP abundance but largely intact cuticle furrows in

tmem-39(dma258) mutants. Scale bars: 20 μm. (C) Exemplar images of COL-101::GFP in wild-

type and tmem-39(dma258) animals for Western blot analysis with 15% SDS-PAGE. (D)

Osmotic stress sensitivity of wild-type and tmem-39(dma258) animals after treatment with dis-

tilled water after indicated time points. (E) Synthetic lethality test for wild-type and tmem-39
(dma258) with genes involved in the ER associated degradation (ERAD) pathway. The score

was assigned into 0 to 6 (0 means parental worms only; 1 means less than 10 progenies; 2

means 11 to 50 progenies; 3 means 51 to 100 progenies; 4 means 101 to 150 progenies; 5

means 151 to 200 progenies; and 6 means more than 200 progenies). Each group was with at

three biological replicates.

(DOCX)

S5 Fig. Human TMEM39A interacts with Sec23A. (A-B) Two independent repeats of co-

immunoprecipitation and Western blot analysis of interaction between mCherry-labeled
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TMEM39A cytoplasmic loop domain and GFP-labeled Sec23A Ct fragment in HEK293T cells.

Cells were transfected with expression vectors, lysed for immunoprecipitation by GFP-TRAP,

and blotted with antibodies against GFP and mCherry.

(DOCX)

S6 Fig. RNAi knock-down of COPII component genes affect COL-19::GFP. (A-J) Exemplar

fluorescence images of col-19::gfp translational reporter for (A) control, (B) sar-1, (C) sec-24.1,

(D) sec-24.2, (E) sec-31, (F) trpp-6, (G) trpp-8, (H) npp-20, (I) sec-12, (J) rab-1 and (K) tmem-
131 RNAi in wild-type animals at 20˚C. Scale bars: 20 μm.

(DOCX)

S7 Fig. RNAi knock-down of COPII component genes differentially affect ER stress

response. (A-J) Exemplar fluorescence images of hsp-4p::GFP transcriptional reporters for (A)

control, (B) sec-24.1, (C) sar-1, (D) npp-20, (E) tmem-131, (F) sec-24.2, (G) sec-31, (H) pdi-2,

(I) trpp-8 and (J) uso-1 RNAi in wild-type animals at 20˚C. Scale bars: 20 μm.

(DOCX)

S8 Fig. RNAi of dnc-6 does not affect ER stress response or COL-19::GFP. (A) Cladogram

of phylogenetic tree for the DCTN6 protein family from major representative eukaryotic spe-

cies (adapted from www.treefam.org). Domain architectures of DCTN6 family proteins

(right). Arrows indicate conserved bacterial transferase hexapeptide domains. (B) Exemplar
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