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SUMMARY
Based on evaluations of imputation performed on a genotype dataset consisting of about 11,000 sub-Sa-
haran African (SSA) participants, we show Trans-Omics for Precision Medicine (TOPMed) and the African
Genome Resource (AGR) to be currently the best panels for imputing SSA datasets. We report notable differ-
ences in the number of single-nucleotide polymorphisms (SNPs) that are imputed by different panels in data-
sets from East, West, and South Africa. Comparisons with a subset of 95 SSA high-coverage whole-genome
sequences (WGSs) show that despite being about 20-fold smaller, the AGR imputed dataset has higher
concordance with the WGSs. Moreover, the level of concordance between imputed and WGS datasets
was strongly influenced by the extent of Khoe-San ancestry in a genome, highlighting the need for integration
of not only geographically but also ancestrally diverseWGS data in reference panels for further improvement
in imputation of SSA datasets. Approaches that integrate imputed data from different panels could also lead
to better imputation.
INTRODUCTION

Imputation is a widely used technique to statistically predict un-

observed genotypes in a single-nucleotide polymorphism (SNP)

array dataset based on haplotypes inferred using a reference

panel. This step not only adds to the genomic coverage for

genome-wide association studies (GWASs) but also enables

more efficient meta-analysis of independent GWASs by

increasing the overlap between them.1 These reference panels

generally consist of a set of curated whole-genome sequences

(WGS), some of which are openly available while others are

only accessible via specific imputation services.

As the size of a reference panel and its genetic proximity to the

target populations have been shown to positively impact imputa-

tion performance, larger andmore geographically representative

panels have been introduced.1 These include globally focused

panels such as the 1000 Genomes Project (KGP; n = 2,504),2

the Haplotype Reference Consortium (HRC; n = 32,470),3

Trans-Omics for Precision Medicine (TOPMed; n = 97,256),4

and panels that focus on representing a particular geographic re-

gion such as the African Genome Resource (AGR; n = 4,956),5
This is an open access article under the CC BY-N
the Consortium on Asthma among African-ancestry Populations

in the Americas (CAAPA; n = 883),6 and Genome Asia

(n = 6,461).7 As is evident, the size of WGS datasets that are

included in these panels range from about a thousand to around

a hundred thousand individual genomes. Moreover, the degree

of representation of different continents/geographic regions

varies widely between these panels, and it has been shown

that more representative and targeted panels can lead to better

imputation compared with global panels.8,9 In the absence of a

comprehensive evaluation of performance of current reference

panels in imputing sub-Saharan African (SSA) populations, re-

searchers have limited knowledge to inform their selection of

panels for imputation of GWAS datasets.

To assess the performance of widely used reference panels in

SSA populations, we imputed a dataset of �10,900 samples

from four countries—Kenya (East), Ghana and Burkina Faso

(West), and South Africa (South)10,11—using five imputation

panels hosted on the Sanger, TOPMed, andMichigan imputation

services. The sequence datasets included in global reference

panels are predominantly based on West African populations

and diaspora populations originating from this geographic
Cell Genomics 3, 100332, June 14, 2023 ª 2023 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Summary of the AWI-Gen dataset and study schema

(A) The participants from the AWI-Gen cohort are sampled from different regions across Africa—Kenya (East), Ghana and Burkina Faso (West), and South Africa

(South). Numbers below the circles on the map show approximate sample sizes.

(B) The schematic representation of the study design summarizing the main steps implemented to compare the datasets imputed using the five widely used

reference panels: AGR, African Genome Resource hosted at the Sanger Imputation Server (SIS); KGP_S, 1000 Genomes Project hosted at the SIS; HRC, Haplo-

type Reference Consortium hosted at the SIS; KGP_M, 1000 Genomes Project hosted at the Michigan Imputation Server (MIS); TOPMed, hosted at the TOPMed

Imputation Server (TIS).
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region.2,4 Due to this geographic bias, the global panels lack the

representation of diversity from Eastern, Central, and Southern

Africa, which might impact the imputation performance in popu-

lations from these regions more adversely compared with popu-

lations with predominantly West African ancestry. In addition to

enabling the evaluation of imputation performance based on a

relatively large SSA GWAS dataset, the geographic spread of

the participants, for the first time, enabled a comparison of impu-

tation in datasets from different African regions.

Deep ancestral divisions among SSA populations often

result in major genetic differences in populations inhabiting

different geographic regions and sometimes also within a spe-

cific region.12,13 However, the impact of representation or the

absence of these ancestries in the reference panels has not

yet been assessed. Although our dataset has an over-

whelming majority of one major African ethnolinguistic division

(Niger-Congo speakers), three of the other major African divi-

sions (Khoe-San, Nilo-Saharan, and Afro-Asiatic speakers) are

represented in sizable proportions, as the dataset includes in-

dividuals from these divisions or individuals with significant

gene flow from them.14 The list of ethnolinguistic groups

in the Africa-Wits INDEPTH Partnership for Genomic Studies

in African Populations (AWI-Gen) dataset is provided in

Table S1, and more details can be found in Ramsay et al.10

This unique property of the dataset also enables an evaluation

of the impact of ancestral diversity of SSA populations on

imputation performance.

The number of SNPs imputed by a panel and the associated

imputation statistics (e.g., INFO or R2 scores) are generally

used to quantify the efficiency and quality of imputation. How-

ever, these statistics do not provide an assessment of the accu-
2 Cell Genomics 3, 100332, June 14, 2023
racy of the imputed genotypes, and a comparison of imputed

datasets with high-quality WGSs is needed to estimate this.

We sequenced 95 of the genotyped samples at high coverage

(>303) to generate data for a direct estimate of the imputation

accuracy.

Meta-imputation with multiple panels is becoming a popular

approach to improve imputation.15 These methods harness the

content of individual panels to provide a more comprehensive

imputation of the dataset. However, as these methods rely on

factors such as the underlying linkage disequilibrium (LD) archi-

tecture and allele frequencies, they could be especially chal-

lenging in African populations that have generally smaller LD

blocks and harbor a much higher number of rare variants.2,13,16

Based on a comparison with the WGS dataset, we assess the

extent to which meta-imputation with multiple panels could

boost the imputation of the SSA dataset.

We report comprehensive evaluations of imputation perfor-

mance of widely used reference panels in a pan-African dataset

and identify several key factors that need to be considered when

deciding on an optimal panel for genotype imputation for SSA

GWAS datasets.

RESULTS

Comparison of imputed datasets
The AWI-Gen study consists of about 12,000 participants living

in four countries from East, West, and Southern Africa.10,11

About 10,900 of these participants were genotyped using the

H3Africa Custom SNP array (https://chipinfo.h3abionet.org/)

and form our core dataset. The sample size and geographic

location of the AWI-Gen participants are shown in Figure 1A,

https://chipinfo.h3abionet.org/


Table 1. Summary of imputation reference panels compared in our study

Reference panel Samples Sites (millions) Ancestry distribution Panel content Phasing and imputation

AGR 4,956 93 predominantly Africana chr1-22 and X; biallelic SNPs only EAGLE2+ PBWT

TOPMed 97,256 308 multi-ethnic chr1-22 and X; SNPs and indels EAGLE2+ Minimac4

KGP_S 2,504 85 multi-ethnic chr1-22 and X; SNPs and indels EAGLE2+ PBWT

KGP_M 2,504 49 multi-ethnic chr1-22 and X; SNPs and indels EAGLE2+ Minimac4

HRC 32,470 40 predominantly European chr1-22 and X; SNPs only EAGLE2+ PBWT

Panel codes: AGR, African Genome Resource hosted at the Sanger Imputation Server (SIS); KGP_S, 1000 Genomes Project hosted at the SIS; HRC,

Haplo-type Reference Consortium hosted at the SIS; KGP_M, 1000 Genomes Project hosted at the Michigan Imputation Server; TOPMed, hosted at

the TOPMed Imputation Server.
aPopulations from Uganda, Ethiopia, Egypt, and Nama from South Africa and the 1000 Genomes Project.
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and the overall study design is presented in Figure 1B. We

imputed the AWI-Gen dataset remotely using five reference

panels—KGP (KGP_S), AGR, and HRC panels hosted at the

Sanger Imputation Server (SIS), the TOPMed panel hosted at

the TOPMed Imputation Server (TIS), and the KGP panel

(KGP_M) hosted at the Michigan Imputation Server (MIS). The

details of the imputation panels compared in our study are pre-

sented in Table 1.

The comparison of the number and quality of SNPs that were

imputed using these panels are summarized in Figure 2. As ex-

pected, TOPMed, the largest of these panels, imputed the high-

est number of SNPs (Figure 2A) and showed the highest average

INFO (or R2) scores (Figure 2B). The differences between

TOPMed and other panels were most prominent for extremely

rare variants (alternate allele frequency [AAF] < 0.001), both in

the number of imputed SNPs and average INFO scores (or R2)

(Figures 2B and 2C). Despite being many folds smaller, the

AGR emerged as a close competitor to TOPMed for AAFs over

0.001 and outperformed other panels in average INFO score

(or R2) distribution (Figure 2B). While other panels impute a

similar number of SNPs compared with TOPMed and AGR for

AAF bins greater than 0.01 (Figure 2C), the difference in INFO

score (or R2) remains conspicuous across a much wider part

of the allele frequency spectrum (Figure 2B). Comparisons of

imputed SNP density per Mb and average INFO score (or R2)

per Mb further show the pattern of differences between

panels to run more or less consistently along chromosomes

(Figures 2D and S1).

As GWAS datasets invariably undergo post-imputation quality

control (QC) based on INFO score or R2 filtering, to obtain esti-

mates that align better to actual GWAS datasets, we performed

an additional set of comparisons including only those SNPs that

were imputed with INFO scores (or R2) over 0.6. Overall, the

same pattern of inter-panel differences was observed in the

INFO score filtered datasets (Figure S2). Clear differences were

observed in the imputed datasets generated using KGP panels

at the SIS (KGP_S) and the MIS (KGP_M). For our dataset, the

KGP_S panel imputed considerably more SNPs and also

showed a higher average INFO score (or R2) than the KGP_M

panel at lower allele frequency bins. The predominantly Euro-

pean data-based HRC panel, which has been one of the most

successful and widely used panels for imputation in European

ancestry populations, was outperformed by all other panels in

our dataset.
Union and intersection of SNPs imputed by different
panels
Next, we investigated the overlap between the set of SNPs that

were imputed by all the panels. In total, �76 million SNPs (union

of all SNPs) were imputed, of which �19 million SNPs were

imputed by all five panels as a common subset irrespective of

the reference panel used (Figure 3A). To assess whether the

predicted genotypes for these SNPs were also the same, we

performed pairwise comparison of the allele frequencies in the

datasets imputed by all five panels. Although a large majority

of SNPs had very similar allele frequencies, differences were

not uncommon (Table S2). For instance, over 86,000 of these

SNPs showed over 0.01 AAF differences between TOPMed

and AGR imputed datasets. A further 6 million SNPs were

imputed by at least four of the five panels.

We also explored the SNPs uniquely imputed by a panel or an

intersection of panels. The TOPMed panel imputed the highest

number of SNPs (18.3 million) that were unique to imputation by

a single panel, followed by the AGR, which imputed about 9.6

million SNPs not imputed by other panels. In addition, these two

panels both imputed 5.3 million SNPs that the others did not.

Despite the inherent intersection between the sequence datasets

used to build some of the panels (for instance, KGP is included in

both the HRC and AGR panels), exclusive imputation of 4 million

SNPs by the KGP_S and 0.4 million SNPs by KGP_M shows that

differences in panel curation and imputation algorithms can lead

to noticeable differences in the content imputed. The subset of

SNPs with INFO scores (or R2) >0.6 showed a very similar pattern

of intersection (Figure S3), with �15.6 million SNPs imputed as a

common subset irrespective of the reference panel used.

To further unpack the panel-specific imputation, we compared

the allele frequency distribution of the SNPs that were imputed

by only one of the panels (Figure 3B). Although the majority of

these SNPs were extremely rare, several hundred thousand

SNPs were common enough to be included in modest-to-large

GWASs. Moreover, these uniquely imputed SNPs included

several known associations reported in the GWAS catalog (Fig-

ure 3C), suggesting that the choice of panels can also impact the

SNPs that can be replicated by a study. Probably as a function of

its widespread use in GWAS studies, the HRC exclusively im-

putes the largest number of SNPs that have been previously re-

ported as GWAS associations. Therefore, this panel, although

suboptimal according to other imputation evaluation parame-

ters, can be more useful in replication studies.
Cell Genomics 3, 100332, June 14, 2023 3
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Figure 2. Evaluation of the AWI-Gen dataset imputed by the five reference panels

(A) Total number of SNPs imputed by different panels and their distribution across all R2 or INFO score bins.

(B) Average INFO score (or R2) across allele frequency bins.

(C) Number of imputed SNPs across allele frequency bins.

(D) SNP density per Mb for chromosome 1, related to Figure S1.

All evaluations are based on 10,903 individuals. AGR, African Genome Resource hosted at the SIS; KGP_S, 1000 Genomes Project hosted at the SIS; HRC,

Haplo-type Reference Consortium hosted at the SIS; KGP_M, 1000 Genomes Project hosted at the MIS; TOPMed, hosted at the TIS.

Article
ll

OPEN ACCESS
Impact of geography and non-Niger-Congo ancestry
gene flow on imputation
Previous studies like theKGP2 andGurdasani et al.12 have shown

that the number of SNPs observed in different African popula-

tions vary in a geographically stratified manner. The inclusion of

samples from East, West, and South Africa in the AWI-Gen study

provided an opportunity to investigate whether the number of

SNPs imputed in genotype datasets of similar size also vary

within these three SSA regions. The number of SNPs imputed

by TOPMed and AGR (the two best-performing panels) for a

similar number of individuals from these three regions is pre-

sented in Figure 4A. For both the panels, we observed the East

African dataset to have the highest number of imputed SNPs, fol-

lowed by South and West Africa. The higher number of imputed

SNPs in East African Niger-Congo speakers compared with

South African speakers is consistent with the previous observa-

tion of higher SNP content in WGSs of Bantu speakers from

Uganda compared with South African Bantu speakers.12 Simi-

larly, the KGP dataset shows that East African Luhya (LWK) con-

tains more SNPs compared with the West African Yoruba (YRI).2

Our imputed datasets mirror this trend of a higher SNP count in

East compared with West Africans (for both AGR and

TOPMed). However, while AGR imputed a few million more

SNPs in the South Africa compared with the West Africa, the dif-
4 Cell Genomics 3, 100332, June 14, 2023
ference is much less pronounced for the dataset imputed on the

TOPMed panel (Figure 4A). Further work will be required to esti-

mate the extent to which imputed dataset sizes are impacted

by the presence of South African genomes in the AGR and their

absence from TOPMed. The comparisons for SNPs with INFO

scores (orR2) >0.6 show the same trendasobserved for the over-

all estimates (Figure S4).

Many extant African populations are the result of admixture of

two or more ancestries from major African ethnolinguistic divi-

sions (e.g., Khoe-San and Bantu speakers). Khoe-San is a col-

lective term for populations across Southern Africa that predate

the expansion of Bantu speakers; these populations descend

from the earliest human population divergence and thus harbor

greater genetic diversity and higher SNP content.17–20 While

some of these ancestries are well represented in all reference

panels, some are included in a limited set of panels, and still

others are absent from all the current panels. Therefore, these

ancestral differences arguably have the potential to influence

how well a genome can be imputed. We assessed whether

gene flow from ancestries that are relatively less represented in

imputation panels (such as Khoe-San, Afro-Asiatic, and Nilo-

Saharan ancestries) impact the number of SNPs imputed in a da-

taset. Based on a global ancestry inference approach (using

ADMIXTURE21), we estimated the Khoe-San and Niger-Congo



Figure 3. Overlap between SNPs imputed by

the five reference panels

(A) UpSet plot showing panel-specific and shared

SNPs between the imputed datasets.

(B) SNPs with allele frequency (AF) >0.005 that

were imputed uniquely by each panel.

(C) SNPs reported in GWAS catalog that were

imputed uniquely by each panel.

All the evaluations are based on 10,903 individuals.

AGR, African Genome Resource hosted at the SIS;

KGP_S, 1000 Genomes Project hosted at the SIS;

HRC, Haplo-type Reference Consortium hosted at

the SIS; KGP_M, 1000 Genomes Project hosted at

the MIS; TOPMed, hosted at the TIS.
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(the two major ancestries prevalent in this geographic region)

contributions to the genomes of the AWI-Gen South African par-

ticipants from Soweto (one of the study sites from South Africa).

The admixture plot at K = 3 is shown in Figure S5A. Figure 4B

shows a clear correlation (R = 0.71, p < 2.2e�16) between the

level of Khoe-San ancestry and the imputed SNP count per indi-

vidual by the AGR panel. This can be reasoned by the fact that

the Khoe-San genomes are known to be more diverse and

have, on average, higher SNP content compared with all other

human populations.19 A similar analysis showed the level of

non-Niger-Congo (mainly originating from Afro-Asiatic, Nilo-

Saharans, and Eurasian) ancestry in the East African participants

(Figure S5B) to be inversely correlated (R = �0.76, p < 2.2e�16)

to the number of imputed SNPs in an individual (Figure 4C). The

level for non-Niger-Congo ancestry shown here is based atK = 3,

though the estimates might differ for other values of K (Fig-

ure S5B). The non-Niger-Congo ancestry in East Africans might

also include a trace level of rain forest forager-related ancestry in

some of the participants. Interestingly, the Ethiopian populations

in the African Genome Variation Project (AGVP) dataset that

correspond to these two ancestries contain fewer SNPs

compared with Bantu speakers from Uganda.12 However, large

pan-African high-coverage WGS datasets will be required to

assess if there are systematic differences in SNP count between

East African ancestral groups and also whether the differences

observed in our data correspond to inherent genomic features

or the varied ability of existing panels to impute genotype for
such ancestral groups. Nevertheless, the

much higher genomic diversity of African

populations compared with the neigh-

boring Eurasian populations leads us to

speculate that the observed differences

among the East African participants could

be primarily driven by underlying differ-

ences in levels of the Eurasian component

that is included under the non-Niger-

Congo ancestry. The same trend was

observed in the SNP set imputed by the

TOPMed panel (Figure S6). Therefore,

the impact of ancestry concurs broadly

with the current understanding of overall

diversity and SNP counts in SSA ances-

tral groups.
We also investigated the level of discordance of genotypes

imputed by AGR and TOPMed for East, West, and South Afri-

can populations. This was done by estimating non-reference

discordance rates (NDRs) between AGR and TOPMed for indi-

viduals from each geographic region separately. Data for the

South African participants showed the highest NDR between

the two panels (NDR = 4.89% ± 1.26%), followed by East Afri-

cans (NDR = 3.61% ± 0.74%). The West African participants

showed the lowest discordance (NDR = 2.71% ± 0.14%)

(Figure 4D). To identify the possible source of systematic differ-

ences in NDRs between the two panels, we assessed the rela-

tionship between the level of non-Niger-Congo ancestry in the

individuals from East and South Africa and their respective

NDR scores. The observation of a very strong correlation in

both South African (R = 0.99, p < 2.2e�16; Figure S7A) and

East African (R = 0.93, p < 2.2e�16; Figure S7B) datasets sug-

gests that genotype discordance between imputed datasets

generally increase with increase in non-Niger-Congo ancestry

in a genome. Therefore, the same panel might perform differ-

ently in populations from different geographic regions of the

continent.

Estimating the accuracy of the imputed genotypes
To assess the accuracy of the genotypes imputed by different

panels, we sequenced 95 samples from the AWI-Gen South Af-

rican dataset at high depth (>303) and compared this with the

imputed datasets for these individuals. The overlap (sharing of
Cell Genomics 3, 100332, June 14, 2023 5
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Figure 4. Impact of geography and non-Niger-Congo ancestry gene flow on imputation

(A) Total number of imputed SNPs in samples from East, West, and South Africa by TOPMed and AGR.

(B) Correlation between the number of SNPs imputed per individual by the AGR and the level of Khoe-San ancestry in South African participants. The regression

line, along with correlation coefficient (R) and p value (Pearson correlation), is shown.

(C) Inverse correlation between the number of SNPs imputed per individual by AGR and the level of East African non-Niger-Congo (EA non-NC) ancestry (Afro-

Asiatic, Nilo-Saharan, or Eurasian) in the EA participants. The regression line, along with correlation coefficient (R) and p value (Pearson correlation), is shown. The

ancestry proportions were inferred using ADMIXTURE (see Figure S5). Ancestry-based variation for the dataset imputed using the TOPMed panel is shown in

Figure S6.

(D) Violin plot comparing the distribution of non-reference discordance rate (NDR) between genotypes imputed using AGR vs. TOPMed in the East, West, and

South African populations. Each regional subset (i.e., East, West, and South African populations) consist of �2,000 participants. The NDR is almost constant

across the dataset for West African participants, while the NDR shows substantial variation among the South African participants. Panel codes: AGR, African

Genome Resource hosted at the SIS; TOPMed, hosted at the TIS.
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sites) between the WGS and the imputed dataset generated us-

ing the five panels is shown in Figure 5A and Table 2. All panels

other than HRC were able to impute over 70% of the SNPs de-

tected in these genomes, with AGR and TOPMed showing the

highest overlap. The partitioning of SNPs that were shared by

the imputed dataset and the WGS, by allele frequency bins (Fig-

ure S8), further shows the AGR to better represent rare-to-mod-

erate-frequency SNPs (<0.05) compared with TOPMed, while

TOPMed marginally better represents more common SNPs.

AGR had the lowest alternate allele mismatch between WGSs

and imputed data, markedly lower than all the other panels,

including TOPMed (Table 2).

Figure 5B depicts the intersection between TOPMed, AGR,

and the WGS dataset. Although TOPMed originally imputes a
6 Cell Genomics 3, 100332, June 14, 2023
substantially larger number of SNPs than the AGR, the latter

had a slightly better overlap with the SNPs present in the WGS

data. The pattern of overlap between the panels also provided

an indirect estimate for the maximum improvement that could

be possible with a meta-imputation approach. An efficient com-

bination of AGR and TOPMed can increase the coverage of the

genome by up to 7%. However, this could also add up to

2.5 million (1.52 million from TOPMed + 0.97 million from the

AGR) SNPs to the imputed dataset that are not present in the

WGS data (Figure 5B). In the absence of additional very-high-

coverage WGS data, it is difficult to distinguish whether the

SNPs imputed by the panels but not present in the WGSs repre-

sent improvement, noise, or a mix of these two. Nevertheless, it

can be assumed that while meta-imputation approaches can
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Figure 5. Comparison of imputed genotypes and genotypes inferred using WGS data

(A) Number of sites that were shared by the imputed and WGS datasets for the 95 individuals. The red line on top shows the number of SNPs in the WGS data.

(B) Venn diagram showing the overlap of SNPs between the WGSs and datasets imputed using AGR and TOPMed panels.

(C) Violin plot summarizing the distribution of NDR for the five panels in the 95 individuals.

(D) Correlation between the overall genotype discordance (estimated by NDR) and the level of Khoe-San ancestry in the five imputed datasets. The regression line

for each panel is shown in a different color. The inclusion of the representative Khoe-San population probably leads to a much lower discordance and a gentler

slope in the AGR compared with other panels.

AGR, African Genome Resource hosted at the SIS; KGP_S, 1000 Genomes Project hosted at the SIS; HRC, Haplo-type Reference Consortium hosted at the SIS;

KGP_M, 1000 Genomes Project hosted at the MIS; TOPMed, hosted at the TIS.
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lead to considerable gain in the number of imputed SNPs, it may

also introduce noise in the final dataset.

For the SNPs that were common to the imputed datasets and

WGS, we next assessed the accuracy of the imputed genotypes

by estimating the NDRs (against WGS) for these 95 participants

for all the five panels. Overall, the AGR panel showed the highest

concordance rates (i.e., lowest NDR = 2.23% ± 0.58%) followed

by theTOPMed (NDR=3.57%±1.88%)panel (Figure5C). Further-

more, it needs to be noted that as the size of the imputed dataset

and also the WGS overlapping dataset were different, the same

NDR reflects different numbers of actual SNPs for each panel.

To investigate whether differences in ancestral composition

lead to the large-scale differences in observed NDRs among

the 95 individuals, we compared the level of the NDR with the

level of Khoe-San ancestry in each individual. For all the imputed

datasets, we observed an increase in theNDRwith an increase in

the level of overall Khoe-San ancestry in an individual (Figure 5D).

The dataset imputed using the AGR panel not only showed the

overall lowest NDR but also the lowest rise in NDR with the in-

crease in Khoe-San ancestry. Based on these results, we postu-

late that the inclusion of 84 Nama genomes in this panel to be the
source of the considerably better performance of AGR, espe-

cially in individuals with substantial Khoe-San ancestry.

The choice of an optimal INFO score (or R2) cutoff value is also

an issue that researchers grapple with. To study the extent to

which INFO score cutoffs concur with genomic coverage and ac-

curacy, we performed two sets of analyses. In the first set, we

compared the proportion of SNPs in each of the imputed data-

sets (AGR and TOPMed) that showed overlap with the WGS da-

taset at progressively higher INFO score (or R2) cutoffs (Fig-

ure S9). The results show the overlap of each panel with a

WGS to decrease marginally as the cutoff increases from 0.30

to 0.60. Moreover, the core set of SNPs that were present in

the WGS and imputed by both the panels remained largely

robust to the INFO score (or R2) variations. In the second set,

we studied the dynamics of NDRs with increase in INFO score

(or R2) cutoff (Table 3).We observed an almost negligible change

in NDR values even when using a rather stringent INFO score (or

R2) cutoff of 0.8. As expected, the NDR shows a significant

improvement when an INFO score (or R2) cutoff >0.9 is used,

but using such a high imputation quality measure cutoff leads

to the loss of about �10% (TOPMed) to �25% (HRC) of SNPs
Cell Genomics 3, 100332, June 14, 2023 7



Table 2. Comparison of the subset of 95whole-genome sequence data from South African participants with the five imputed datasets

Parameters compared AGR TOPMed KGP_S KGP_M HRC

Total number of SNPs imputed 19,507,662 19,898,122 19,123,670 18,193,059 15,654,537

Number of sites common between imputed

and sequence data

18,340,523 18,190,569 16,245,629 16,065,601 14,089,125

Number of sites unique to sequence data

(fraction of sites in the file �22.8 M SNPs) (%)

4,482,848 (19.6) 4,632,802 (20.3) 6,577,742 (28.8) 6,757,770 (29.6) 8,734,246 (38.3)

Number of sites unique to imputed data

(fraction of sites in the file) (%)

1,167,139 (6.0) 1,707,553 (8.6) 2,878,041 (15.0) 2,127,458 (11.7) 1,565,412 (10.0)

Number of reference allele (REF) mismatches 0 0 1 4,912 0

Number of alternate allele (ALT) mismatches 637 8,536 14,083 10,814 12,794

Panel codes: AGR, African Genome Resource hosted at the Sanger Imputation Server (SIS); KGP_S, 1000 Genomes Project hosted at the SIS; HRC,

Haplo-type Reference Consortium hosted at the SIS; KGP_M, 1000 Genomes Project hosted at the Michigan Imputation Server; TOPMed, hosted at

the TOPMed Imputation Server.
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from the imputed datasets (Table S3). Therefore, while the

reduction of discordance is possible with very stringent INFO

scores (or R2) cutoffs, the gain in accuracy would be at the

expense of having a substantial number of variants filtered out.

We also compared the allele frequencies observed in theWGS

dataset with the allele frequencies in the imputed dataset (for the

95 individuals) for each panel. AGR once again showed the best

correlation value and the narrowest diagonal band along with the

least number of deviant SNPs, closely followed by the TOPMed

panel (Figure S10). Taken together, the WGS-based compari-

sons consistently show the AGR to be the most accurate, while

the TOPMed was the second best. Both were much better than

the other panels.

DISCUSSION

The under-representation of African ancestry populations in cur-

rent GWASs has been flagged as a major concern, and the need

to improve this representation has been highlighted repeatedly in

recent literature.16,22 Currently, only 2%of individuals included in

GWASs are individuals of ‘‘African ancestry,’’ and the vastmajor-

ity of these African ancestry populations in genetic studies are

related to Western African, e.g., African Americans or Afro-

Caribbeans (72%–93% in the GWAS catalog andR90% in gno-

mAD).23,24 Even among the limited SSA GWAS datasets that are

around, many have been imputed using panels that are not

optimal for these populations. Therefore, evaluating the accu-

racy of imputation in SSA populations is a vital step toward utiliz-

ing the full potential of these datasets and improving their inclu-

sion in global GWASs.

Imputation performance of five widely used reference panels

was assessed in the pan-African AWI-Gen dataset of �10,900

samples. As expected, the largest panel, TOPMed, and the

panel that has the highest proportional representation of SSA

populations, the AGR, emerged as the best-performing panels.

In our dataset, both these panels clearly outperformed global

panels such as the KGP and HRC for imputation of SSA data-

sets. The relatively weaker performance of HRC compared with

the KGP was recently observed in a study on African American

populations.25 Reiterating the importance of genetic proximity,

despite a much larger size, the HRC panel was outperformed
8 Cell Genomics 3, 100332, June 14, 2023
by all other panels including both KGP panels. We also

observed notable differences in imputed SNP count and INFO

score (or R2) for the KGP panel accessed via the SIS and the

MIS. These differences could be driven by panel size variation

(the KGP_M panel is almost half the size of the KGP_S panel)

as well as the use of different imputation algorithms (SIS uses

PBWT, while MIS employs MiniMac4). Due to the unavailability

of the actual panels for evaluation, we were unable to assess

the relative contribution of these factors. However, as observed

in previous studies,26,27 both these factors probably contribute

to the differential imputation performance of the KGP panel

hosted at the SIS and the MIS. Irrespective of panel size,

each panel uniquely imputed a considerable number of SNPs.

Although a large proportion of these are extremely rare and

therefore have less relevance for modest GWASs, the presence

of tens of thousands of modest-frequency SNPs in these

uniquely imputed datasets shows that GWAS association, repli-

cation of signals, and polygenic risk score-based assessment

could be impacted by the choice of reference panels.

Several studies have highlighted substantial genetic differenti-

ation within populations from East, West, and South Africa.12,13

However, the systematic evaluation of imputation differences

among geographic regions in Africa is not straightforward, as it

requires a homogeneous dataset containing samples from three

geographic regions that are comparable in all technical aspects

such as genotyping platform, sample size, andQC standards. As

our full dataset was already genotyped and QCed together, we

only selected sample sets of almost equal size from one site

each in East, West, and South Africa to represent these regions.

Despite the increase in overall representation of African ancestry

in some of the more recent reference panels, there is a bias to-

ward West African origin populations and a lack of representa-

tion of other African regions and ancestries in them. Our study,

for the first time, shows evidence for noticeable variation in the

imputation of genotype datasets from different parts of the conti-

nent. We were also able to show that the level of specific ances-

tries such as East African and Khoe-San ancestry in an individual

can lead to considerably higher or lower numbers of imputed

SNPs. Moreover, the representation of these ancestries in the

panel could be critical in determining the content that can be

imputed for some populations. For instance, the presence of



Table 3. Dynamics of non-reference discordance rate (NDR) with increase in INFO or R2 score cutoffs

INFO score AGR TOPMed KGP_S KGP_M HRC

>0 2.23 ± 0.58 3.57 ± 1.88 7.01 ± 2.37 6.74 ± 2.32 7.64 ± 2.28

>0.3 2.23 ± 0.58 3.59 ± 1.90 7.01 ± 2.37 6.71 ± 2.34 7.64 ± 2.28

>0.4 2.23 ± 0.58 3.59 ± 1.90 6.99 ± 2.37 6.67 ± 2.35 7.63 ± 2.29

>0.5 2.21 ± 0.58 3.58 ± 1.90 6.93 ± 2.36 6.61 ± 2.35 7.55 ± 2.28

>0.6 2.18 ± 0.58 3.56 ± 1.90 6.80 ± 2.35 6.52 ± 2.34 7.37 ± 2.27

>0.7 2.11 ± 0.57 3.50 ± 1.88 6.54 ± 2.31 6.23 ± 2.33 7.00 ± 2.24

>0.8 1.95 ± 0.53 3.39 ± 1.82 6.01 ± 2.20 5.91 ± 2.24 6.30 ± 2.12

>0.9 1.55 ± 0.43 2.97 ± 1.63 4.70 ± 1.86 4.66 ± 1.94 4.73 ± 1.76

Panel codes: AGR, African Genome Resource hosted at the Sanger Imputation Server (SIS); KGP_S, 1000 Genomes Project hosted at the SIS; HRC,

Haplo-type Reference Consortium hosted at the SIS; KGP_M, 1000 Genomes Project hosted at the Michigan Imputation Server; TOPMed, hosted at

the TOPMed Imputation Server.
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Khoe-San genomes in the AGR seems to have a positive impact

on the imputation of Southern African samples, as demonstrated

by much greater differences in imputation of West and South Af-

rican populations compared with TOPMed. Moreover, the com-

plex pattern flow of African ancestry to the Caribbean Islands

and different parts of North and South America28 suggests that

this lack of representation could also impact the imputation per-

formance and accuracy for some of the diaspora populations.

Therefore, a careful assessment of the sampling geography

and ancestry is essential for choosing the optimal imputation

panel. It is also critical to focus on efforts to ensure representa-

tion of each of these unique African ancestries in the imputation

panels in addition to increasing sample sizes and African

representation.

For an end user, an estimate of how accurately a reference

panel imputes data in their population is as important as the total

number of SNPs that are imputed and the imputation scores. Our

evaluation based on comparison with a truth dataset consisting

of 95 of our South African samples shows that although TOPMed

imputes substantially more rare SNPs, the AGR has higher accu-

racy. Therefore, while TOPMed is generally considered the best

imputation panel, the AGR panel may be a better alternative for

specific African genetic association studies, especially when

they have limited power for testing rare variations due to smaller

sample sizes or include individuals from a particular geographic

region/ancestry better represented in that panel. Due to the

large-scale differences in size of the panels compared, which

could intrinsically bias the NDR estimates against larger panels,

we did not include sites that were reference/reference across the

WGS dataset in our comparisons. Therefore, NDR estimates

derived using alternative approaches, such as those based on

comparison of individual-level gVCF files, might differ from the

results presented here.

As an indirect estimate of the level of difference that might be

observed if reference/reference sites in the WGS were included

in NDR estimation, we have noted the number of sites (Figure 5B)

that were reference/reference in the WGS dataset but had at

least one non-reference allele in each of the imputed datasets.

The observation of a considerably higher number of such sites

for the TOPMed panel (1.45 million) compared with the AGR

panel (0.93 million) hints that the consideration of reference/

reference sites in the comparisons could further augment the dif-
ference in discordance between these panels and the WGS, as

the discordance estimates for TOPMed would increase by

much larger values compared with the AGR.

The comparison of imputed and truth datasets also revealed

that meta-imputation of datasets generated using the two

best-performing panels has the potential to further improve the

coverage of the genome in the imputed data. However, as

around a million variants that were absent in the WGS were

imputed by each of these panels, further exploration and evalu-

ation are required to ascertain the accuracy when implementing

this approach in SSA datasets.

Based on the evaluation of five popular imputation panels, we

recommend a careful consideration of several factors such as

sample size, geographic origin, and ancestry composition of

the reference panel and target population to inform the choice

of the most suitable panel for SSA datasets. While TOPMed,

currently the largest and most diverse panel, outperforms other

panels in most of the metrics, higher concordance with WGS

data makes the AGR a promising alternative for SSA popula-

tions. We anticipate that our in-depth comparisons will assist

researchers when prioritizing reference panels based on the

characteristics of their specific dataset and that it will also inform

strategies for future improvement of SSA-focused reference

panels.

Limitations of the study
As some of these panels are only available for use on a specific

imputation platform that implements a particular algorithm, there

is a limit to the combinations of panels and algorithms that could

be tested. Also, the TOPMed imputation service provides out-

puts in genomic GRCh38 only, while the AGR on the SIS only

generates results in GRCh37. A LiftOver step is needed to

make these datasets comparable, which might lead to some

loss of information. Furthermore, the imputation quality assess-

ment metrics provided by these two services, although similar,

are not exactly the same, and this could have influenced our

evaluations. While the other panels are fixed, TOPMed periodi-

cally undergoes updates; therefore, the outcomes might change

for more recent versions of the panel. The AWI-Gen dataset was

genotyped on the H3Africa SNP array, so the trends presented

here may vary for datasets genotyped on other genotyping ar-

rays. As the AGR imputes only biallelic SNPs, we have not
Cell Genomics 3, 100332, June 14, 2023 9
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included insertions or deletions (indels) and structural variants in

our evaluations. Moreover, sex chromosomes were also not

included in the current analysis. These factors could also have

impacted the genome-wide estimates. Although we do not

expect the reported trends to substantially differ between arrays,

type of variants (i.e., SNPs and indels), or autosomes and sex

chromosomes, further investigations of these categories will

be required for a more comprehensive picture. The relatively

small sample size of the high-coverage sequence dataset (just

about 1%) and its restriction to one geographic region limits

the assessment of imputation accuracy.
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(2018). Genomic and environmental risk factors for cardiometabolic dis-

eases in Africa: methods used for Phase 1 of the AWI-Gen population

cross-sectional study. Glob. Health Action 11, 1507133.

12. Gurdasani, D., Carstensen, T., Tekola-Ayele, F., Pagani, L., Tachmazidou,

I., Hatzikotoulas, K., Karthikeyan, S., Iles, L., Pollard, M.O., Choudhury, A.,

https://doi.org/10.1016/j.xgen.2023.100332
https://doi.org/10.1016/j.xgen.2023.100332
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref1
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref1
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref2
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref2
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref2
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref2
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref3
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref3
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref3
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref3
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref4
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref4
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref4
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref4
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref5
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref5
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref5
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref5
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref6
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref6
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref6
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref6
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref7
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref7
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref8
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref8
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref8
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref8
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref9
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref9
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref9
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref9
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref9
https://doi.org/10.1017/gheg.2016.17
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref11
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref11
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref11
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref11
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref11
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref12
http://refhub.elsevier.com/S2666-979X(23)00100-3/sref12


Article
ll

OPEN ACCESS
et al. (2015). The African genome variation Project shapes medical ge-

netics in Africa. Nature 517, 327–332.
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17. Schlebusch, C.M., Skoglund, P., Sjödin, P., Gattepaille, L.M., Hernandez,

D., Jay, F., Li, S., De Jongh, M., Singleton, A., Blum, M.G.B., et al. (2012).

Genomic variation in seven Khoe-San groups reveals adaptation and

complex African history. Science 338, 374–379.

18. Schlebusch, C.M., Malmström, H., G€unther, T., Sjödin, P., Coutinho, A.,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

AWI-Gen Genotype Dataset Ramsay et al.10 https://ega-archive.org/datasets/EGAD00010001996

AWI-Gen WGS Dataset https://ega-archive.org/datasets/EGAD00001006418

GWAS Catalog Buniello et al.924 https://www.ebi.ac.uk/gwas/

AGVP data Gurdasani et al.12 https://www.nature.com/articles/nature13997

Khoe-San genotype data Schlebusch et al.17 https://pubmed.ncbi.nlm.nih.gov/22997136/

Software and algorithms

Sanger Imputation Service McCarthy et al.3 https://imputation.sanger.ac.uk/

TOPMed Imputation Service Taliun et al.4 https://imputation.biodatacatalyst.nhlbi.nih.gov/

Michigan Imputation Service Das et al.29 https://imputationserver.sph.umich.edu/index.html

PLINKv1.9 Chang et al.30 http://www.cog-genomics.org/plink/1.9/

EAGLE2 Loh et al.31 https://alkesgroup.broadinstitute.org/Eagle/

PBWT Durbin32 https://github.com/richarddurbin/pbwt

Minimac4 Das et al.29 https://github.com/statgen/Minimac4

VCFtools Danecek et al.33 https://vcftools.sourceforge.net/

BCFtools Li34 https://samtools.github.io/bcftools/

UCSC liftOver tool Hinrichs et al.35 https://genome.ucsc.edu/cgi-bin/hgLiftOver

ADMIXTURE (v1.3) Alexander et al.21 https://dalexander.github.io/admixture/

BWA (v0.7.17-r1188) Li et al.36 https://github.com/lh3/bwa

GATK package (v4.1.3) Poplin et al.37 https://github.com/broadinstitute/gatk

Other

Scripts for WGS processing This study https://doi.org/10.5281/zenodo.7861519
RESOURCE AVAILABILITY

Lead contact
The lead contact for this paper is Ananyo Choudhury (Ananyo.Choudhury@wits.ac.za)

Materials availability
This study did not generate new unique reagents.

Data and code availability
The data used in this study are available at the EuropeanGenome-phenome Archive (EGA) - Genotype Data: EGAD00010001996 and

WGS data: EGAD00001006418. These datasets are available subject to controlled access through the Data and Biospecimen Ac-

cess Committee of the H3Africa Consortium or via collaboration. The details for tools and codes used for conducting this research

are provided in the key resource table. Any additional information required to reanalyze the data reported in this paper is available

from the lead contact upon request.

METHOD DETAILS

AWI-gen genotype dataset
AWI-Gen is a cohort of �12,000 SSA participants sampled from different sites across Africa- Kenya (East), Ghana and Burkina Faso

(West) and South Africa (South). More details on this cohort are available in Ramsay et al. and Ali et al.10,11 Of these, about 10,900

samples were genotyped on the 2.3 M SNP H3Africa array (https://chipinfo.h3abionet.org/) at Illumina FastTrackTM Microarray ser-

vices (Illumina, San Diego, USA). The Illumina pipeline was used to perform the genotype calling. The following quality control (QC)

steps were performed for the genotype dataset using PLINKv1.930 - removal of SNPs showing missingness >0.05, minor allele fre-

quency (MAF) < 0.01, and Hardy-Weinberg equilibrium (HWE) p-value <0.0001. Additionally, duplicates, indels, X chromosome,
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Y chromosome and mitochondrial SNPs, and SNPs that did not match the GRCh37 references alleles were also removed. Samples

which had a missing SNP genotyping rate >0.05, showed sex inconsistencies between the recorded and genetic sex and were

potential duplicates (PIHAT > 0.9) were excluded. The clean final dataset included 1,729,661 SNPs and 10,903 individuals.

Pre-imputation phasing and imputation
We used five different widely used reference panels to evaluate which performed the best to impute the African genomes. Three of

these panels – the African Genome Recourse (AGR), 1000 Genomes Project (KGP_S), Haplotype Reference Consortium (HRC) are

hosted at Sanger Imputation Server (SIS) (https://imputation.sanger.ac.uk/), TOPMed panel hosted at TOPMed Imputation Server

(TIS) (https://imputation.biodatacatalyst.nhlbi.nih.gov/) and lastly the 1000Genomes Project (KGP_M) hosted atMichigan Imputation

Server (MIS) (https://imputationserver.sph.umich.edu/index.html). For the datasets imputed at SIS, the EAGLE231 + positional

Burrows–Wheeler transform (PBWT)32 pipeline was used for pre-phasing and imputation. For the datasets imputed at TIS and

MIS on the other hand, EAGLE2 +Minimac429 pipeline was used. The VCF files were downloaded from online servers post imputation

and processed using VCFtools33 to remove monomorphic SNPs, SNPs showing missingness >0.05 and HWE p value <0.00001.

Imputation performance evaluation and accuracy
To evaluate the imputation accuracy, we noted the number of SNPs imputed as well as the imputation quality for each panel. The SIS

(that implements PWBT algorithm) provides an INFO score (an estimate of the ratio of statistical information about the population

allele frequency in the imputed genotypes and in the true genotypes) for imputation quality assessment, while TIS and MIS (that im-

plementsMinimac4) provide R2 values (squared correlation between the true and estimated dose of an allele across all imputed sam-

ples) for the same. Though by definition, the two evaluation metrics are not the same, and cannot be compared directly, studies have

shown that the matrices provided by these two imputation programs often show a high correlation.1,8,38 Hence, for all the imputed

datasets, we used an evaluation metrics cut-off of 0.6 irrespective of the imputation algorithm used.

We calculated the total number of imputed SNPs and number of well imputed SNPs (i.e. SNPs with INFO score or R2 >0.6) across

all chromosomes for each imputed dataset. As the frequency of an allele can impact the quality of imputation, we calculated the allele

frequency using VCFtools and classified the SNPs into seven frequency bins accordingly (0.00–0.001, 0.001–0.005, 0.005–0.01,

0.01–0.05, 0.05–0.1, 0.1–0.5 and 0.5–1.0) and calculated the total number of SNPs, number of well imputed SNPs and aggregate

INFO score or R2 per frequency bin. To compare the density and quality of imputed SNPs across chromosomes in the five imputed

datasets, we calculated the number of imputed (and well imputed) SNPs and aggregate INFO score or R2 value per 1MB for all the

chromosomes in each dataset. The AGR andHRCpanels cannot impute INDELs, sowe restricted the said analyses to ‘SNPs only’ for

KGP_S, KGP_M and TOPMed.

Overlap between imputed datasets
To enable a comparison of imputed datasets generated by the five panels, the TOPMed imputed dataset that was in build GRCh38

was converted to GRCh37 using UCSC liftOver tool.35 The R package UpSetR39 was used to estimate the overlap between these

datasets. Allele frequencies of SNPs that were uniquely imputed by each panel were estimated using VCFtools. To compare the

occurrence of known GWAS associations among the uniquely imputed SNP sets, we downloaded the GWAS catalog24 (accessed

inMay 2022), converted it to GRCh37 using UCSC liftOver35 and studied the overlap of these SNPs to the uniquely imputed SNP sets.

To identify cases where the panels even if imputing the same SNPs do not impute the same genotypes across the dataset, we

calculated the allele frequency of the SNPs imputed by all five reference panels and compared it among all possible pairs of the

imputed datasets, and identified the SNPs that had allele frequency differences greater than 0.01.

Assessing the impact of geography
Since our dataset had representation from three geographic regions across sub-Saharan Africa-East (Kenya), West (Ghana and Bur-

kina Faso) and South (South Africa), we investigated whether the number of SNPs imputed by the reference panels also vary within

these three regions. To avoid bias in sample size, we selected representative datasets of similar size from the three SSA regions.

Overall, the Eastern region had the lowest sample size in our dataset (n = 1766). Therefore, a similar number of individuals were

selected from the other two regions: West (n = 1856) and South (n = 1777). These subsets were extracted separately using BCFtools

v.1.534 from the full datasets that were imputed by the AGR and TOPMed panels. SNPs with minor allele count less than one were

removed and the residual SNPs were used to estimate the number of imputed SNPs for East, West and South African datasets.

Assessing the impact of non-Niger-Congo ancestry
To investigate the impact of non-Niger-Congo ancestry on the number of imputed SNPs, we used the previously described subset of

individuals from East (n = 1766) and South Africa (n = 1777). These individuals were extracted from the pre-imputation genotype data-

set and converted to plink format. Both South African and East African dataset wasmergedwith a genotype dataset fromSchlebusch

et al.17 and Gurdasani et al.12 separately, using PLINKv1.9. For both the merged datasets, SNPs with high missingness and very low

allele frequency were removed, and pruned for SNPs in high linkage disequilibrium using PLINK v1.9 (window size of 50 SNPs, with a

window slide of 5 SNPs and r2 > 0.5). To estimate the proportions of the non-Niger-Congo ancestry, we used an unsupervised clus-

tering algorithm implemented in ADMIXTURE (v1.3)21 on the merged dataset at K = 3. For the subset of individuals from East Africa,
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we estimated the proportion of non-Niger-Congo (Afro-Asiatic/Nilo-Saharan/Eurasian) ancestry for each individual. Similarly, for the

subset of individuals from South Africa, the level of Khoe-San ancestry was inferred.

To estimate the number of imputed SNPs in each individual, we extracted one individual at a time from the imputed dataset (for

both AGR and TOPMed panels) using BCFtools v.1.5 and removed all SNPs with minor allele count equal to zero and an INFO score

or R2 value less than 0.6. Next, we performed a regression analysis between the non-Niger-Congo ancestry proportion and imputed

SNP count by individual for both East and South Africa.

We further investigated whether the non-Niger-Congo ancestry observed in East and South African individuals have any impact

on the genotypes imputed by AGR and TOPMed panels. The BCFtools v.1.5 ‘stats’ module was implemented to estimate the

genotype concordance by samples between the AGR-South Africa versus TOPMed-South Africa (n = 1777) and AGR-East Africa

versus TOPMed-East Africa (n = 1766). The TOPMed GRCh37 version (generated using liftOver) was used so that the genotypes

could be compared directly. The non-reference Discordance Rate (NDR) is calculated using the formula NDR = (Err+Era+Eaa)/

(Mra+Maa+Err+Era+Eaa), where Err, Era and Eaa are the homozygous reference, heterozygous and homozygous alternative geno-

types mismatch counts, while Mra and Maa are the heterozygous and homozygous alternative genotypes match counts.40 Next,

we plotted the NDR of each individual against the proportion of Khoe-San ancestry for South African individuals and Afro-Asiatic/

Nilo-Saharan/Eurasian ancestry for East African individuals.

Comparison with 95 high-coverage whole genome sequences
A subset of 95 high-coverageWGSwere used as the gold standard to compare the quality of imputation by the five reference panels.

The 95 samples of HiSeq/NextGen 151 bp read pairs were aligned with BWA (v0.7.17-r1188).36 After alignment additional improve-

ments were applied to the BAM file. Duplicates were marked with MarkDuplicates included in the GATK package (v4.1.3).37 Base

quality recalibration (BaseRecaibrator, ApplyBQSR in GATK v4.1.3) was used to assure high quality base scores. Per sample calling

with GATKs HaplotypeCaller (v4.1.3) was conducted followed by joint genotyping on the complete set using CombineGVCFs (v4.1.3)

and GenotypeGVCFs (v4.1.3). Quality control was applied using GATK’s VarianRecalibrator which uses existing truth sets to filter out

low quality calls. All code for this process can be found here: https://github.com/grbot/varcall. The processed VCF file was subjected

to another round of QC by removing SNPs showingmissingness greater than 0.05 andminor allele count less than 1. The INDELs and

sex chromosomeswere also removed. The final QCed file had 95 individuals and 22,823,371 variants. These 95 individuals were then

extracted from all the 5 imputed datasets. For the TOPMed panel, the GRCh37 version of the imputed dataset was used. INDELs and

SNPs with minor allele count less than one were removed.

The genotype concordance by samples between the sequence data and imputed data of 95 individuals was estimated using the

BCFtools stats module. To investigate the change in NDR levels with the levels of INFO score or R2 value threshold, we repeated the

above analysis at different INFO score or R2 value cut-offs – 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9, and calculated themean (±SD) NDR for

five imputed datasets. We also investigated whether there is any correlation between the NDR levels and the proportion of Khoe-San

ancestry in these individuals.

To assess howwell the frequency of SNPs in the imputed datasets correlate with the sequence data, for each imputed dataset, the

SNPs common to both the imputed and sequence data were considered and frequencies in the two datasets were calculated using

VCFtools and compared. We also estimated the SNP overlap (compared toWGS data) by allele frequency bin for AGR and TOPMed.
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