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Abstract: In this article, we present a simple and novel design of a double-sided metasurface for
a dual-band and polarization-independent microwave-energy-harvesting system. The proposed
metasurface is constructed from the dual-sided design of 8 × 8 unit cells. Different from the regular
dual-band unit cells that contain two loops or multiple shapes of resonators printed in the same
layer, the proposed metasurface is based on designing double loops, each combined with two arms
of a dipole printed on the top and bottom sides of a single substrate. Thus, the bottom layer is
utilized to generate the second frequency band of interest. Three main numerical simulations were
conducted to investigate the performance of a single unit cell, a 2 × 2 supercell, and an array of
an 8 × 8 metasurface structure. The numerical simulation demonstrated that 98% and 95% of the
incident energy is collected at two bands of 1.8 and 6.5 GHz for the proposed harvester.

Keywords: metasurface harvester; absorbers; energy harvesting

1. Introduction

Recent developments in the field of metamaterials opened the possibility of designing
and realising near-unity harvesters, enabling many applications such as portable wire-
less sensor networks [1,2], RFIDs [1,3], wireless chargeable devices [1,4], the Internet of
Things [5], and biomedical implantable devices [6], to name a few. An antenna and a
rectification circuit are considered to be the main components to build a microwave-energy-
harvesting and wireless power transfer system (MEHWS). The antenna component is
utilized to receive the incident electromagnetic (EM) waves and convert them to AC power.
The rectification circuit component, however, is used to convert the received AC power
by the antenna part to DC [7]. The total performance of the MEHWS depends on the
efficiency of each individual component combined. In order to improve the performance
of the antenna part, the antenna should be effectively designed to capture an incident
EM wave with different polarizations at various bands of frequencies due to the nature
of the incident electromagnetic wave having an unknown polarization and frequency of
operation [8,9]. Some studies enhanced the electromagnetic wave absorption performance
of dual-band and single-band absorbers by using nanosheets [10,11].

Generally, a metasurface array structure has shown superior performance when com-
pared to conventional antenna arrays, such as patch arrays, in developing an MEHWS in
terms of higher harvesting efficiency [12–14]. Moreover, designing a metasurface harvester
is different from designing an absorber where a metasurface harvester captures electromag-
netic energy and dissipates it on a connected load rather than having the absorbed energy
be consumed within a lossy substrate [14].

In the literature, developing a dual-band and dual-polarization receiving antenna
for an MEHWS based on a metasurface antenna array has been considered a challenging
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task due to the need for a complicated design, which includes multiple layers and an intri-
cate corporate feed network, used to channel the output AC and/or DC power [1,13–21].
Many studies concentrated on designing a dual-polarized receiving metasurface antenna
array [13,16,22–26], and other studies focused on developing a dual-band receiving meta-
surface antenna array [27–29]. However, some studies presented dual-polarized and multi-
band metasurface harvesters [14,17–21,30–34]. The MEHWSs presented in the literature
with dual-polarized and multiband metasurface harvesters are considered complicated
and costly systems since most of them utilize a dual-layer configuration design with
multiple vias connecting the stacked layers electrically. Moreover, the reported studies
in [14,30–34] developed dual-band and dual-polarization metasurfaces using a single-layer
model with multiple vias, which also add to the complexity of the overall design of the
energy-harvesting system.

In this paper, the design of a metasurface array for a dual-band and polarization-
independent microwave-energy-harvesting system is presented. The novel structure of the
proposed metasurface array consists of a single layer and double-sided loops to achieve a
dual-band and dual-polarized metasurface array with higher radiation to AC efficiency in
the microwave regime. The novelty of the proposed structure is demonstrated by avoiding
the use of a multilayered configuration, which requires the use of vias, which makes the
design more intricate and costly. In addition, the proposed design allows for the easy
integration of the rectification circuitry by placing a single diode across the joint feed of the
two loops, which minimizes the overall diodes used in an array of metasurface unit cells.

2. A Dual-Band and Polarized Unit Cell Design Methodology

The design of the proposed dual-band unit cell is based on generating two bands
from two loops printed on the top and bottom layers of a single Rogers 4003c substrate.
The bottom layer is utilized instead of having the loops in the top layer only, thus miniatur-
izing the unit cell further. A single unit cell contains double-sided resonators where each
side contains a loop with a dipole in the middle having a small gap. A resistive load R
is placed on the gap of each dipole to consume the absorbed energy and to mimic a port
where the rectification circuitry can be integrated, as shown in Figure 1a. The dimensions
of the unit cell are w = l = 23 mm with substrate thickness h = 1.524 mm and copper
thickness = 35 µm.

The loop on the top layer has radius r1 = 11.2 mm, whereas the radius of the bottom
loop r2 = 10.6 mm. The two radii were carefully studied such that the results were in two
frequency bands of 1.8 GHz and 5 GHz, respectively, as shown in Figure 2. Both loops
on the top and bottom layers contain two cuts c that divide them into two identical half
loops. Each half loop on the top and bottom layer is electrically connected from the top to
the bottom layer through the substrate of the unit cell, as shown in Figure 1c. In addition,
a reflector is placed at a distance f from the bottom layer, as illustrated in Figure 1d.

In the literature, the performance of the harvester is evaluated based on a higher value
of the efficiency η. This value of the efficiency η is based on two main factors including the
input power Pin, which is the real power available at the surface of the harvester, and the
developed power Pd, which can be calculated by summing all the load resistors of each
unit cell. The efficiency η is then calculated by using the following equation: η = Pd

Pin
∗ 100%

where the developed power represents all the dissipated power across the connected
loads of all unit cells within the footprint. The input power is considered as the available
power on the surface area or the footprint of the harvester, which can be determined by
multiplying the Poynting vector by the physical area of the harvester.
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Figure 1. The presented unit cell: (a) top loop layer, (b) bottom loop layer, (c) top and bottom loop
layers connected with two connectors, and (d) view of the top and bottom layers with the ground
spacer reflector.

Figure 2. Simulation results of the proposed unit cell showing S11.

Using the CST [35] simulation setup, the main design parameters of the introduced
unit cell are optimized to achieve high-efficiency collected power across the resistive load.
First of all, the spacer distance f between the bottom layer and the reflector along with the
resistive R load value were investigated. The f values were optimized between f = 5 mm
and f = 20 mm and the R load in between R = 100 Ω and R = 350 Ω to obtain the optimum
value of f with the goal of achieving a higher value of radiation to AC conversion efficiency.

Simulation results demonstrating the efficiency of the unit cell with four cases f = 5 mm,
f = 10 mm, f = 15 mm, and f = 20 mm while sweeping the R load values from R = 100 Ω
to R = 350 Ω are shown in Figure 3a–d, respectively. The presented unit cell collected a
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high efficiency of 99% at the optimum values of R = 200 Ω and f = 15 mm. Furthermore,
the proposed unit cell has the capability to collect power over the entire range of R values
from 100 Ω to 350 Ω, resulting in a harvester with a wide impedance bandwidth.

(a): f=5mm (b): f=10mm

(c): f=15mm (d): f=20mm

Figure 3. Results of the introduced unit cell demonstrating the efficiency using different values of
the R load from 100 Ω to 350 Ω and using four cases of f : (a) f = 5 mm, (b) f = 10 mm, (c) f = 15 mm,
and (d) f = 20 mm.

Next, three simulation environments were implemented to demonstrate the opti-
mum values of other design parameters of the presented unit cell including the gap, cut,
and width of the trace. First, a simulation was implemented to investigate the effect of
different gap sizes. In this simulation environment, five different sizes of the gap were
investigated for various values from Gap1 = 0.2 mm to Gap5 = 0.6 mm at optimum values
of both the resistive load R of 200 Ω and the distance off the spacer f = 15 mm between
the resonator and the reflector.

For all five values of the gap from Gap1 = 0.2 mm to Gap5 = 0.6 mm, the efficiency
values were recorded to obtain the optimum value of the gap, which achieved higher
efficiency, as illustrated in Figure 4. From the obtained results, we noticed that the optimum
value of the gap was Gap4 = 0.5 mm.
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Figure 4. Obtained results of the efficiency of the five investigated cases for the values of the gap
from Gap1 = 0.2 mm to Gap5 = 0.6 mm.

The size of the cuts c was investigated next, while all other parameters were used at
the optimal values as obtained above. To show this, a simulation environment was setup
for five different values of the cuts, which changed from C1 = 0.2 mm to C5 = 0.5 mm with
the optimal values of R = 200 Ω, f = 15 mm, and Gap4 = 0.5 mm. From the demonstrated
results in Figure 5, C3 = 0.4 mm is the optimum value to obtain the goal of higher efficiency.

Figure 5. Obtained results of the efficiency of the five investigated cases for the values of the cuts
from C1 = 0.2 mm to C5 = 0.6 mm.

The last numerical study was performed using five different values of the width
ranging from W1 = 1.5 mm to W5 = 3 mm at optimal values of R = 200 Ω, f = 15 mm,
Gap4 = 0.5 mm, and cut C3 = 0.4 mm. Figure 6 shows that a width size of W3 = 2.5 mm is
the best value among the obtained results of the five investigated cases of the width from
w1 = 1.5 mm to w5 = 3.5 mm, having the highest efficiency value.
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Figure 6. Obtained results of the efficiency of the five investigated cases for the values of the width
from W1 = 1.5 mm to W5 = 3.5 mm.

3. The 2 × 2 Supercell Design Methodology

To demonstrate the dual-polarized feature of the presented cell, a supercell comprised
of 2 × 2 unit cells was implemented. Each bottom and top layer contained four unit cells.
The top left and the bottom right cells were designed for y polarizations (Ry), and the top
right and bottom left cells were designed for x polarizations (Rx), as shown in Figure 7.

xK

E

y

Ɵ 

E

Ex

(b)(a)

Ry
Rx

Rx
Ry

Figure 7. Geometry of the introduced supercell: (a) top loop layer and (b) view of the multiple
polarizations at different angles of the incident power.

The design parameters of the 2 × 2 supercell including the resistive loads and the
separation between adjacent cells sep were simulated and optimized to achieve high
collecting efficiency.

First, a numerical simulation was performed for different loads Rx = Ry values from
100 Ω to 350 Ω at the optimum parameters obtained for the single unit cell. Figure 8
shows the numerical efficiency results of the proposed dual-band and dual-polarized
2 × 2 supercell with different values of the terminated loads ranging from 100 Ω to 350 Ω.
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Figure 8. The obtained results demonstrating the efficiency of the presented supercell with different
values of R ranging from 100 Ω to 350 Ω.

The next simulation was implemented to optimize the second design parameter of
the proposed supercell including the separation between adjacent cells sep. The values of
sep were optimized with the goal of having higher conversion efficiency. Figure 9 shows
the efficiency results of the presented supercell with different values of sep ranging from
Sep1 = 0.2 mm to Sep5 = 0.6 mm. The results showed that the optimum value of Sep4
achieves the highest conversion efficiency when the length is 0.4 mm.

Figure 9. Obtained results demonstrating the efficiency with the separation between adjacent cells of
the implemented supercell varied.

To study the capability of the supercell to absorb electromagnetic energy with dual-
polarization, a simulation was conducted for two normal incidence TE and TM mode
polarizations. At the two bands of 1.9 GHz and 6.5 GHz, the efficiency is 98% and 80% for
both TE and TM mode polarizations, respectively, as illustrated in Figure 10.
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Figure 10. Obtained results illustrating the efficiency of the implemented supercell for both TE and
TM modes.

To illustrate the duality of the polarization of the implemented supercell for both bands,
a simulation environment was implemented for both TE and TM polarizations. Figure 11
illustrates the obtained results of the electric field across the surface of the supercell for two
polarizations, where the red colour demonstrates the high-magnitude values of the electric
field for both TE and TM modes.

(a) (b)

(c) (d)
Figure 11. Obtained results of the implemented supercell illustrating the magnitude of the E-field
across the surface of the proposed super unit cell by the red colour for (a) TE mode (Polarization 1) at
1.9 GHz, (b) TE mode (Polarization 1) at 5 GHz, (c) TM mode (Polarization 2) at 1.9 GHz, and (d) TM
mode (Polarization 2) at 5 GHz.
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4. The 8 × 8 Array Metasurface Design Methodology

The proposed metasurface harvester comprised 8 × 8 identical unit cells, as shown in
Figure 12. The overall array size of the periodic array structure is 200 mm × W = 200 mm.
In the simulation environment setup, each unit cell in the proposed harvester was termi-
nated by the optimum R of 200 Ω.

W
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f
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Layer

Plastic
Spacer

x

(a) (b)

xK

E

y

Ɵ 

Figure 12. (a) Geometry of the implemented 8 × 8 metasurface, (b) available power from different
incident angles.

In the simulation environment, the presented metasurface was simulated as a harvester
in receiving mode to collect the power from different angles of incidence using a plane
wave excitation, as demonstrated in Figure 12b.

In the simulation setup, the incident wave was used with different values of the inci-
dent angle (θ from 0◦ to 90 ◦) to study the ability of the proposed metasurface to collect the
available power from different incident angles, as shown in Figure 12b. Figure 13 demon-
strates the efficiency results of the proposed metasurface for various incident angles (θ).

Figure 13. Obtained results demonstrating the efficiency with various incident angles of the imple-
mented 8 × 8 metasurface.
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The results showed that for all the incident angles of the plane wave, the efficiency of
the metasurface array is 98% and 95% at both bands of operating frequencies. Figure 13
shows the overlapping curves of the efficiencies, indicating the ability of the introduced
metasurface to harvest the incident electromagnetic waves from different angles of inci-
dence equally.

To demonstrate the novelty of the proposed dual-band and polarization-independent
metasurface, Table 1 shows the advantages of the proposed metasurface array presented in
this paper compared with a number of state-of-the-art dual-band and dual-polarized arrays
that are based on metasurfaces presented in the literature. The proposed metasurface design
allows for a simple connection of tightly placed unit cells where integrating a matching
network has two main advantages compared with other developed metasurface arrays
presented in the literature. The first feature of the proposed metasurface is the wideband
matching impedance. Such an impedance bandwidth is defined as the range of impedances
that results in a harvesting efficiency of 75% or higher. From the results presented in
Figure 3, a wide range of impedances from 50 Ω to 350 Ω resulted in efficiencies of at least
75%. Another advantage of the proposed metasurface is that such a wideband impedance
response allows for the possibility of integrating a wide range of diodes without the need
for a matching network between the diode and the electromagnetic collector.

Table 1. A comparative study of the proposed dual-band and polarization-independent metasurface array with various
state-of-the-art published papers.

Reference Frequency Unit Cell Bandwidth of Need for Matching Efficiency
Bands (GHz) Size Matching Impedance Network %

[17] 5.5 and 7.2 0.22λ Narrowband Yes 94 and 93%

[19] 2.45 and 6 0.23λ Narrowband Yes 90 and 85%

[30] 1.85 and 2.45 0.32λ Narrowband Yes 47and 23 %

[31] 2.7 and 5 0.31λ Narrowband Yes 91 and 84 %

[32] 1.68 and 2.12 0.67λ Narrowband Yes 67 and 36 %

This work 1.8 and 6.5 0.25λ Wideband NO 98 and 95%

5. Conclusions

The novel design of a planar, simple, multipolarized, and dual-band metasurface
was presented. The proposed metasurface was constructed from 8 × 8 unit cells, which
provide high efficiencies at various incident angles with various terminated load values.
The novelty of the presented metasurface for energy harvesting was demonstrated through
several numerical studies, which showed the ability of the proposed metasurface to achieve
a higher efficiency of 98% and 95% for two operating frequency of 1.8 and 6.5 GHz with a
multipolarized incident wave.
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