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SUMMARY

Interleukin-1 receptor-associated kinases (IRAKs) −4, −2, and −1 are involved in transducing 

signals from Toll-like receptors (TLRs) via the adaptor myeloid differentiation primary-response 

protein 88 (MYD88). How MYD88/IRAK4/2/1 complexes are formed, their redundancies, 

and potential non-enzymatic roles are subjects of debate. Here, we examine the hierarchical 

requirements for IRAK proteins in the context of TLR4 activation and confirmed that the kinase 

activity of IRAK4 is essential for MYD88 signaling. Surprisingly, the IRAK4 scaffold is required 

for activation of the E3 ubiquitin ligase TNF receptor-associated factor 6 (TRAF6) by both 

MYD88 and TIR domain-containing adaptor protein inducing IFN-β (TRIF), a unique adaptation 

in the TLR4 response. IRAK4 scaffold is, therefore, essential in integrating MYD88 and TRIF in 

TLR4 signaling.
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In brief

By studying the redundancies of IRAK proteins in Toll-like receptor (TLR) 4 and 7 signaling, 

Pereira et al. demonstrate a kinase-independent function for IRAK4 in the TRIF pathway. This 

provides an understanding of how TLR4 signaling triggers the production of inflammatory 

cytokines upon infections with Gram-negative bacteria.

INTRODUCTION

Toll-like receptors (TLRs) are pattern recognition receptors essential for protecting the 

host against infections (Gazzinelli and Denkers, 2006; O’Neill et al., 2013; Fitzgerald 

and Kagan, 2020). Upon interaction with their specific ligand, such as lipopolysaccharide 

(LPS) for TLR4 or single-stranded RNA for TLR7, TLRs signal via the adaptors myeloid 

differentiation primary-response protein 88 (MYD88) or TIR domain-containing adaptor 

protein inducing IFN-β (TRIF). MYD88 is the adaptor for all TLRs except TLR3, which 

uses TRIF (Fitzgerald and Kagan, 2020). TLR4 employs both MYD88 and TRIF in 

addition to bridging adaptors MYD88-adapter-like (MAL) and Trif-related adaptor molecule 

(TRAM) (Fitzgerald et al., 2001, 2003b; Kagan et al., 2008; Yamamoto et al., 2003b). The 

TLR/MYD88 interaction results in recruitment of interleukin-1 receptor-associated kinase 

(IRAK) 4, IRAK2, and IRAK1 (Lin et al., 2010), forming a multifunctional supramolecular 

organizing center termed myddosome, which regulates the activation of transcription factors 

such as AP-1 (via mitogen-activated protein kinases [MAPK]) and nuclear factor kappa B 
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(NF-κB) (Fitzgerald and Kagan, 2020; Tan and Kagan, 2019; Tan et al., 2015). Similarly, 

TLR3 and TLR4 recruit TRIF to form the triffosome, which in addition to NF-κB, activates 

interferon regulatory factor (IRF) 3 via the ubiquitin ligase TNF receptor-associated factor 3 

(TRAF3) (Fitzgerald and Kagan, 2020; Häcker et al., 2006; Kagan et al., 2008).

The myddosome activates the ubiquitin ligase TRAF6 (Cao et al., 1996), which initiates 

signaling events that result in NF-κB stimulation (Fitzgerald and Kagan, 2020; O’Neill 

et al., 2013). Some of these events are essential for transcription of NF-κB target genes. 

For instance, NF-κB is trapped in the cytosol in complex with inhibitor proteins, such 

as IκB-α, masking its nuclear localization sequence. Myddosome activation induces 

IκB-α phosphorylation and K48-ubiquitination and degradation, enabling NF-κB nuclear 

translocation (Silverman and Maniatis, 2001; Hayden and Ghosh, 2008). Other events 

have regulatory roles, such as phosphorylation at the NF-κB transactivation domain, which 

modulates its affinity to transcription enhancers (Chen and Greene, 2004). Different NF-κB 

proteins are involved in expression of a specific set of genes, such as RelA in TNF-α 
expression (Collart et al., 1990) and c-Rel in IL-12 (Sanjabi et al., 2000). TRIF and MYD88 

signaling are integrated, so there is synergism in TLR4-mediated NF-κB activation. Both 

adaptors regulate cytokine expression (Adachi et al., 1998; Yamamoto et al., 2003a), but 

little is known about the molecular mechanisms that enables this integration. Downstream of 

TLR4, TRAF6 is the only known node that links MYD88 and TRIF to NF-κB (Cao et al., 

1996; Sato et al., 2003), but how TRIF activates TRAF6 is not well understood.

How MYD88/IRAK-4/-2/-1 complexes are formed and the level of redundancy in their 

components remain subjects of debate. IRAK4 is essential for myddosome signaling, and 

it is assumed that Irak4−/− phenocopies MyD88−/− (Suzuki et al., 2002; Picard et al., 2003; 

Bernuth et al., 2008; Béla et al., 2012; von Bernuth et al., 2012; Pattabiraman et al., 2018). 

IRAK-1 and -2 show considerable overlap: either can be recruited to the myddosome (Lin 

et al., 2010), and their activities can be redundant (Kawagoe et al., 2008; Pauls et al., 2013). 

How IRAK4 kinase activity fits in this model is also unclear. Myddosome recruitment 

activates IRAK4 (Ferrao et al., 2014), which phosphorylates IRAKs 1 and 2, turning on 

their autophosphorylation activities (Cheng et al., 2007; Kawagoe et al., 2008). However, 

IRAK1 can auto-phosphorylate even when IRAK4 kinase activity is impaired (Qin et al., 

2004), but it is unknown if IRAK2 has a similar mechanism. At endogenous protein levels, 

IRAK2 can be detected in the myddosome (Tan et al., 2015; Tan and Kagan, 2019), whereas 

IRAK1 recruitment is only detectable upon IRAK4 inhibition (De Nardo et al., 2018). 

This raises the possibility that enhanced IRAK1 recruitment compensates for the defective 

IRAK4 kinase activity. Macrophages deficient in IRAK4 kinase activity fail to produce 

pro-inflammatory cytokines in response to most TLR agonists, but TLR4-mediated cytokine 

production is only partially affected (Kawagoe et al., 2007; Pennini et al., 2013; Tae et 

al., 2007). Potentially there are IRAK1/2 compensatory mechanisms in cells expressing 

kinase-dead IRAK4 that require further investigation in the context of TLR4.

The current models are based on studies focused on receptors that signal through MYD88 

only. The synergism between TRIF and MYD88 in TLR4 signaling is unique (Adachi et 

al., 1998; Gohda et al., 2004; Sasai et al., 2010; Sato et al., 2003; Verstak et al., 2014), 

thus generalizations based on other receptors may not apply to TLR4. Here we studied the 
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hierarchical requirements for IRAKs 1, 2, and 4 (scaffold versus kinase) in TLR4-mediated 

NF-κB activation. We found that the IRAK4 scaffold integrates TRIF and MYD88 signaling 

at the point of TRAF6 activation. We have therefore identified a key signaling hub that 

coordinates MYD88 and TRIF in response to TLR4 activation.

RESULTS

IRAKs 1 and 2 are partially redundant in TLR4 but not in TLR7 signaling

Study of TLR2 signaling suggests that IRAKs 1 and 2 have redundant roles early, but late 

responses are IRAK2 dependent (Kawagoe et al., 2008). Here, we sought to investigate 

whether the same conclusions can be draw in the context of other TLRs. IRAK1 was 

shown dispensable for production of TNF-α and IL-12 upon stimulation with either LPS 

(TLR4 agonist) or R848 (TLR7 agonist). In contrast, at 6 and 24 h post-stimulation, 

IRAK2 deficiency resulted in complete and partial impairment of TNF-α and IL-12 

responses to R848 and LPS, respectively. Importantly, up to 2 h post-stimulation, TNF-

α and IL-12 produced by wild-type (WT), Irak1−/−, and Irak2−/− bone marrow-derived 

macrophages (BMDM) were similar (p > 0.05 one-way ANOVA) in LPS-stimulated cells. 

In R848-stimulated cells, however, Irak1−/− and Irak2−/− BMDMs produced similar levels 

of TNF-α early, but IL-12 production was deficient in Irak2−/− BMDMs. Little to no 

cytokine production was observed in Irak1−/−Irak2−/− cells (Figures 1A–1D). Hence, at 

later time points, IRAK1 and IRAK2 show some redundancy in TLR4 but not TLR7. 

Co-immunoprecipitation of MYD88 from cells stimulated with LPS or R848 for 60 min 

showed that both IRAK-1 and -2 are detectable in the myddosome, although IRAK1 is 

weakly detected and requires a long exposure (Figures 1E, 1F, and S1). Furthermore, in 

Irak1−/− BMDMs, IRAK2 is recruited to the myddosome unimpaired, whereas in LPS-, but 

not R848-stimulated cells, we observed increased recruitment of IRAK1 to the myddosome 

from Irak2−/− macrophages. Protein inputs from co-immunoprecipitation assays suggest that 

myddosome signaling is normal in the single knockout cells: myddosome activation leads 

to loss of IRAK1 signal and a shift in IRAK2 molecular weight (due its phosphorylation), 

events that are not observed in MyD88−/− BMDMs. Here, we observe that upon LPS and 

R848 stimulation, Irak1−/− macrophages have a shift in IRAK2 molecular weight, and 

Irak2−/− BMDMs lose the IRAK1 signal in its protein input (Figures 1E and 1F).

Signaling events downstream of TLR/MYD88 activation further suggest IRAK-1 and 

-2 early redundancy. No differences were observed in RelA phosphorylation, IκB-α 
phosphorylation and degradation, RelA nuclear translocation, RelA DNA-binding, and 

MAPK activation in either Irak1−/− or Irak2−/− BMDMs stimulated with LPS or R848 

(Figures 1G–1O and S2). The redundancy between these two IRAKs becomes clear 

when these events are studied in Irak1−/−Irak2−/− BMDMs. These cells are severely 

impaired in NF-κB phosphorylation, nuclear translocation, and DNA-binding induced 

by either LPS or R848 (Figures 1G–1O and S2). JNK activation was also reduced in 

LPS-stimulated Irak1−/−Irak2−/− BMDMs, while ERK and p38 activation showed a small 

but not statistically significant decrease in activation (Figures S2G–S2K). Consistent with 

early IL-12 production, Irak2−/− macrophages were deficient in c-Rel nuclear translocation 

upon R848 stimulation, whereas LPS-stimulated macrophages translocated c-Rel normally 
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(Figures 1H, 1I, 1K, and 1N). Interestingly, LPS- and R848-stimulated Irak1−/−Irak2−/− 

BMDMs showed IκB degradation despite lack of nuclear translocation and cytokine 

production (Figures 1 andS2). It is at the moment unclear how this might occur, but it is 

possible that deficiencies in NF-κB post-translational modifications impact nuclear import.

IRAK4 kinase activity is essential for signaling via TLR7, but not TLR4

Kinase-deficient IRAK4 (Irak4 Ki) macrophages still produce significant amounts of TNF-α 
and IL-12 in response to LPS, but not to other TLR ligands (Kawagoe et al., 2007; Pennini 

et al., 2013; Tae et al., 2007). Intriguingly, IRAK4 inhibition increases IRAK1 recruitment 

to the myddosome in response to LPS (De Nardo et al., 2018). These data suggest that 

enhanced recruitment of IRAK1 to the myddosome may explain why kinase-dead IRAK4 

is capable of cytokine production. To further investigate the redundancies between IRAKs 

1 and 2 in LPS-stimulated cells, we generated Irak1−/−Irak4 Ki and Irak2−/−Irak4 Ki mice. 

Stimulation with LPS for up to 24 h resulted in partial inhibition of TNF-α and IL-12 

production in Irak4 Ki BMDMs and complete impairment in Irak4−/− cells (Figures 2A–2D). 

Similar cytokine levels were produced by Irak4 Ki, Irak1−/−Irak4 Ki, and Irak2−/−Irak4 
Ki macrophages at all time points, further indicating IRAK1 and IRAK2 redundancy in 

response to LPS.

To understand the hierarchy of IRAK recruitment to the myddosome, we 

immunoprecipitated MYD88 from Irak4 Ki BMDMs stimulated with either LPS or R848 

for 60 min. While IRAK4 scaffold is required for IRAK1 and 2 recruitment (Kawagoe 

et al., 2007; Lin et al., 2010; Suzuki et al., 2002), loss of its kinase activity increased 

IRAK1 recruitment without affecting IRAK2, evidence that myddosome formation occurs 

independently of IRAK4 kinase activity. Protein inputs of Irak4 Ki BMDMs stimulated 

with either LPS or R848, however, revealed no IRAK1 loss of signal and deficient IRAK2 

phosphorylation, suggesting that despite myddosome formation, IRAK4 kinase activity is 

required for signaling to occur (Figures 2E and 2F). Enhanced IRAK1 recruitment was 

also observed in the myddosome of Irak2−/−Irak4 Ki cells. As observed in IRAK1 single 

knockouts, Irak1−/−Irak4 Ki recruited IRAK2 to the myddosome similarly to WT controls. 

Collectively, the data confirms that the IRAK4 scaffold is sufficient for recruitment of 

IRAKs 1 and 2 to the myddosome, but their activation likely requires IRAK4 kinase activity. 

Importantly, the IRAK4 scaffold is essential for IL-12 and TNF-α production downstream of 

TLR4 (Figures 2A–2F).

Enhancement of RelA phosphorylation in WT cells can be observed as early as 15 min after 

LPS stimulation, whereas this was only evident after 60 min in either Irak4 Ki, Irak1−/−Irak4 
Ki, or Irak2−/−Irak4 Ki macrophages. No RelA phosphorylation was observed in Irak4−/− 

BMDMs. IκB-α phosphorylation and degradation occurred slightly earlier in WT cells in 

comparison with IRAK4 mutant strains (Figure 2G).

IRAK4 kinase activity was, however, essential for TLR7 signaling. Irak4 Ki BMDMs 

stimulated with R848 for up to 24 h had severely deficient cytokine production (Figures 2C 

and 2D). Loss of IRAK4 kinase activity blocked RelA phosphorylation and delayed IκB-α 
phosphorylation and degradation, independently of IRAKs 1 or 2 (Figure S2). Irak4−/− 

BMDMs showed complete inhibition of RelA phosphorylation and IκB-α phosphorylation 
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and degradation. As observed with LPS, Irak4 Ki BMDMs stimulated with R848 assemble 

a myddosome with increased IRAK1 and normal IRAK2 recruitment (Figure 2F), with 

no IRAK1 loss of signal nor IRAK2 phosphorylation in the protein input. These data 

suggest that IRAK1/2 cannot compensate for deficient IRAK4 kinase, and the myddosome 

assembled is deficient. The remaining cytokine output upon LPS stimulation, but not R848, 

further suggests a compensatory role of TRIF in LPS-stimulated cells.

IRAK4 scaffold is essential for NF-κB activation in TLR4-activated macrophages

Despite myddosome formation, no TNF-α and IL-12 are detected in Irak4 Ki BMDMs 

stimulated with R848, suggesting that without IRAK4 kinase activity the myddosome is 

non-functional. LPS-stimulated Irak4−/− BMDMs, however, fail to produce cytokines, but 

Irak4 Ki macrophages show partial impairment. This led us to speculate that the IRAK4 

scaffold has a role in TLR4/TRIF signaling. To understand how this might occur, we 

compared LPS-stimulated WT, Irak4 Ki, Irak4−/−, MyD88−/−, Trif−/−, and MyD88−/−Trif−/− 

BMDMs. Both MyD88−/− and Trif−/− showed partial impairment in TNF-α and IL-12 

production, whereas no production was observed in MyD88−/−Trif−/− (Figures 3A and 

3B) (Adachi et al., 1998; Sato et al., 2003). No increase in RelA phosphorylation 

was observed in Irak4−/− or Trif−/− BMDMs, whereas MyD88−/− and Irak4 Ki showed 

delayed RelA phosphorylation (Figures 3C–3E). Trif−/−, MyD88−/−, Irak4−/−, and Irak4 
Ki showed delayed IκB-α phosphorylation and degradation (Figure 3C). RelA and c-Rel 

nuclear translocation were completely impaired in Irak4−/− and MyD88−/−Trif−/− BMDMs. 

Irak4 Ki and MyD88−/− behaved similarly, with partial nuclear translocation. Trif−/− 

BMDMs translocated RelA and c-Rel similar to WT cells (Figure 3F), as TRIF deficiency 

impacts gene transcription without affecting RelA nuclear translocation (Sakai et al., 

2017). Thus, TRIF or MYD88 deficiency severely impact cytokine production by different 

mechanisms, with MYD88 deficiency impacting NF-κB nuclear translocation directly, and 

TRIF impacting post-translational modifications, such as Ser-536 phosphorylation in RelA 

transactivation domain, required for interaction with transcription enhancers (Chen and 

Greene, 2004; Sakai et al., 2017). Interestingly, Irak4 Ki BMDMs mimicked the behavior 

observed in MyD88−/−. Stimulation with R848 or Pam2CSK4 (TLR2 agonist) led to no 

cytokine production in Irak4 Ki, Irak4−/−, MyD88−/−, and MyD88−/−Trif−/−, while Trif−/− 

and MyD88−/−Trif−/− BMDMs failed to respond to Poly(I:C), a TLR3 agonist (Fitzgerald et 

al., 2003a) (Figure S3).

To further distinguish the kinase versus scaffold function of IRAK4, we examined the 

effects of IRAK4 inhibition with PF-06650833 in MyD88−/− and Trif−/− BMDMs stimulated 

with LPS, R848, or Poly(I:C). As expected, IRAK4 inhibition suppressed cytokine 

production in R848-stimulated macrophages but did not affect Poly(I:C) stimulation 

(Figures S4A–S4E). IRAK4 inhibition had no effect on TNF-α and IL-12 produced by 

LPS-stimulated MyD88−/− and Irak4 Ki BMDMs. Cytokine production was abolished in 

Trif−/− macrophages treated with the IRAK4 inhibitor (Figures 3G and 3H). This in addition 

to the similarities between Irak4 Ki and MyD88−/− supports the hypothesis that IRAK4 

kinase activity is essential for NF-κB activation via MYD88. Importantly, the phenotype of 

Irak4−/− resembles that of MyD88−/−Trif−/− macrophages, suggesting a link between TRIF 

and the IRAK4 scaffold that may be myddosome independent (Figures 3, S3, and S4). 
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This IRAK4-dependent and MYD88-independent pathway may also require either IRAK1 

or IRAK2, as double-deficient IRAK1 and IRAK2 macrophages fail to produce TNF-α and 

IL-12 (Figure 1). Importantly, these results indicate a role for IRAK4 scaffold in the TRIF 

pathway of LPS-stimulated BMDMs.

TRIF requires IRAK4 scaffold for TLR4-mediated NF-κB activation

We hypothesized that in LPS-stimulated Irak4 Ki BMDMs the cytokine output occurs 

due NF-κB activation via TRIF, while the MYD88 axis is non-functional. Based on the 

inhibitor experiments (Figures 3I and 3J), we expected that cytokine production in Irak4Ki/

Trif−/− would be close to zero, despite myddosome formation. Indeed, TNF-α and IL-12 

production in Irak4 Ki/Trif−/− BMDMs in response to LPS was undetectable (Figures 4A 

and 4B). Simultaneous loss of TRIF and IRAK4 kinase activity led to assembly of a 

myddosome containing IRAKs 1and 2 (Figure4C), but protein inputs revealed deficient 

IRAK2 phosphorylation and no IRAK1 loss of signal, further indicating that the myddosome 

assembled in Irak4 Ki BMDMs is non-functional. Importantly, TRIF itself does not impact 

myddosome formation or activity, as MYD88 co-immunoprecipitation in Trif−/− BMDMs 

revealed a pattern similar to WT cells, including IRAK1 loss of signal and IRAK2 increase 

in apparent molecular weight in the protein inputs. Irak4 Ki/Trif−/− failed to phosphorylate 

RelA and IκB-α (Figure 4D), and no RelA and c-Rel nuclear translocation was observed, 

as well as no RelA binding activity in the nuclear extracts (Figures 4E–4H). Irak4 Ki/Trif−/− 

macrophages, as expected, fail to respond to R848 and Poly(I:C) (Figures S4F–S4M).

It was previously reported that Irak4 Ki BMDMs are impaired in JNK phosphorylation, but 

not p38 or ERK (Tae et al., 2007). Here, we observed that at 15 min after LPS stimulation 

the residual p38 and ERK activation occurs via TRIF, as Irak4 Ki/Trif−/− macrophages 

do not activate these MAPKs. Importantly, Irak4−/− BMDMs failed to phosphorylate p38, 

ERK, and JNK, further evidence that TRIF requires the IRAK4 scaffold (Figures 4I–4M). 

The same study saw no effects of IRAK4 kinase activity on NF-κB activation, which is in 

conflict with our data. This discrepancy is likely due to LPS concentration: at 1 μg mL−1 

LPS (used in their study), Irak4 Ki BMDMs activate RelA similarly to WT cells. This RelA 

phosphorylation, however, requires TRIF and the IRAK4 scaffold, as Irak4 Ki/Trif−/− and 

Irak4−/− are impaired in RelA and MAPK activation (Figure S5).

TLR4 signals from the plasma membrane and from endosomes, and LPS stimulation 

increases TLR4 endocytosis in a CD14-dependent mechanism. This endocytic TLR4 is 

required for LPS-induced TRIF signaling (Kagan et al., 2008; Tan et al., 2015; Tanimura 

et al., 2008; Zanoni et al., 2011). Study of cell surface TLR4 revealed similar endocytosis 

in LPS-stimulated WT and Irak4 Ki, whereas Irak4−/− BMDMs showed a small decrease in 

endocytosis (Figures 5A and 5B). This decrease, however, was not sufficient to impact 

TRAF3 activation, as suggested by pull-down assay using beads containing tandem 

ubiquitin binding entities (TUBEs) (Figure 5C). LPS stimulation of IRAK-deficient and 

WT macrophages also resulted in similar levels of IRF3 phosphorylation (a readout of 

its activation) and C-C motif chemokine ligand 5 (CCL5) production (Figures 5D–5F). 

Similarly, deficiencies in IRAKs 1 and 2 did not impact TLR4 endocytosis, IRF3 activation, 

CCL5 production, and TLR3-mediated cytokine production (Figure S6). Accordingly, we 
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found no changes in CD14 endocytosis in IRAK-deficient BMDMs (Figures S6–S6J). Thus, 

the small decrease in TLR4 endocytosis observed in Irak4−/− BMDMs is insufficient to 

impact TRIF signaling, and the IRAK4 scaffold likely plays a role downstream of TLR4 

endocytosis. Additionally, these data suggests that the IRAK4 scaffold is not required for the 

TRIF/TRAF3/IRF3 pathway but is essential for NF-κB activation via TLR4/TRIF.

IRAK4 scaffold is required for MYD88 and TRIF activation of TRAF6

TRIF and MYD88 activate NF-κB via the E3 ubiquitin ligase TRAF6 (Cao et al., 1996; 

Sasai et al., 2010; Sato et al., 2003). Interestingly, TRIF-mediated TRAF6 activation is 

myddosome independent and occurs only downstream of TLR4 as TRAF6 is not required 

by TLR3 (Gohda et al., 2004). TRAF6 is, therefore, a unique node between TRIF and 

MYD88. IRAK2 and IRAK4 are important for TRAF6 activation via MYD88 (Suzuki et 

al., 2002; Keating et al., 2007; Pauls et al., 2013), and we hypothesized that downstream 

of TLR4/TRIF, TRAF6 activation also requires the IRAK4 scaffold and either IRAK1 or 

IRAK2.

TRAF6 is activated by auto-ubiquitination and is involved in NF-κB signaling via K63 

ubiquitination of specific targets, including IRAK1 (Cao et al., 1996; Conze et al., 2008). 

To investigate endogenous TRAF6 signaling, we performed pull-down assays using TUBE-

containing beads. Stimulation of WT BMDMs with LPS for up to 1 hr followed by TUBE 

pull-down revealed enrichment of ubiquitinated TRAF6 and IRAK1 between 15 and 60 

min post-stimulation, with no clear differences in the pool of K63-ubiquitinated proteins. 

R848 stimulation showed faster kinetics, with ubiquitinated TRAF6 and IRAK1 detectable 

between 5 and 30 min post-stimulation. The ubiquitination was followed by “degradation 

(or lack of antibody reactivity with)” of IRAK1 in input material (Figure 6A). We sought 

to evaluate the contribution of IRAK1 and IRAK2 to TRAF6 activation. Knockout of either 

IRAKs 1 or 2 revealed no impairment in TRAF6 activation by either agonist, whereas a 

marked deficiency was observed in the double knockout cells (Figure 6B), further evidence 

of early IRAK-1 and -2 redundancy (Figure 1).

Next, we investigated how the IRAK4 scaffold and kinase activities affect TRAF6 activity. 

LPS stimulation of Irak4 Ki BMDMs showed partial impairment in TRAF6 and IRAK1 

ubiquitination, whereas these events were below the detection limit in Irak4−/−. Upon 

R848 stimulation, however, loss of IRAK4 kinase activity was sufficient to block TRAF6 

activation (Figure 6C). These results are consistent with the hypothesis that the IRAK4 

scaffold is required for TRIF-mediated TRAF6 activation. To further test this hypothesis, 

we stimulated WT, Irak4 Ki, Irak4−/−, Trif−/−, MyD88−/−, and Irak4 Ki/Trif−/− BMDMs 

with LPS. Trif−/−, MyD88−/−, and Irak4 Ki cells showed partial impairment in TRAF6 and 

IRAK1 ubiquitination. TRAF6 activation in Irak4−/− and Irak4 Ki/Trif−/− macrophages was 

not detected (Figure 6D). To further elaborate on this, we evaluated the kinetics of TRAF6 

activation in WT, Irak4 Ki, Irak4−/−, Trif−/−, and MyD88−/− BMDMs. TRAF6 activation 

was observed at 15, 30, and 60 min after LPS stimulation in WT cells. Irak4 Ki, Trif−/−, 

and MyD88−/− macrophages displayed no TRAF6 activation at 15 min and diminished 

activation at 30 and 60 min, whereas Irak4−/− BMDMs showed only very weak detection of 

ubiquitinated TRAF6 and IRAK1 at 60 min (Figure 6E).
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These results are consistent with the hypothesis that the IRAK4 scaffold coordinates TRIF-

mediated TRAF6 activation, although a compensatory mechanism involving other molecules 

might exist. Taken together, these data suggest that in TLR4 signaling, activation of TRAF6 

by MYD88 and TRIF requires the IRAK4 scaffold and may also require either IRAK1 or 

IRAK2.

IRAK4 scaffold is essential for the response to Gram-negative bacteria

Mutations in IRAK proteins are commonly associated with deficient innate immune 

response and susceptibility to pyogenic bacterial infections, which can lead to sepsis (Picard 

et al., 2003; von Bernuth et al., 2012). To investigate whether the responses observed here 

with ultrapure LPS correlate with responses to a live pathogen, we conducted infection 

assays in BMDMs using Escherichia coli “Bort,” a strain with enhanced murine toxicity 

(Bortolussi et al., 1978). In this model, the production of cytokines is TLR4 dependent, with 

TNF-α and IL-12 production occurring via MYD88 and TRIF, and CCL5 predominantly via 

TRIF (Figures S7A–S7D). E. coli infection of WT, Irak1−/−, Irak2−/−, and Irak1−/−Irak2−/− 

BMDMs confirmed the IRAK1/2 redundancies. Loss of IRAK1 did not impact E. coli-
induced TNF-α and IL-12 production, whereas loss of IRAK2 led to decreased production. 

Simultaneous loss of IRAK-1 and -2 further decreased cytokine production. None of the 

mutations affected CCL5, evidence that IRF3 responses are unaffected (Figures 7A–7C).

Next, we focused on macrophages from IRAK4-deficient strains. In previous reports, pro-

inflammatory cytokine production induced by R848 or Gram-positive bacteria required 

IRAK4 kinase activity (Kawagoe et al., 2007; Tae et al., 2007; Pattabiraman et al., 2018). 

Our LPS data, however, highlighted a substantial difference between loss of the IRAK4 

scaffold and kinase activity (Figures 2–4). E. coli infection experiments further corroborate 

this interpretation where Irak4 Ki macrophages produced lower amounts of TNF-α and 

IL-12 than WT cells but were absent in Irak4−/−cells. BMDMs from Irak4 Ki/Trif−/− 

secreted neither TNF-α nor IL-12. In contrast, similar quantities of CCL5 were produced in 

all mutants except Irak4 Ki/Trif−/− and Trif−/−, which were deficient (Figures 7D–7F). The 

differences in cytokine output in these experiments are not due to cell viability or bacterial 

load, as they remained similar in all cell types (Figures S7E–S7H).

Interestingly, cytokine output in E. coli-infected Irak1−/−Irak2−/− BMDMs was higher than 

that observed in Irak4−/− BMDMs or in LPS-stimulated Irak1−/−Irak2−/− BMDMs (Figures 

1 and 7), despite absence of RelA activation (Figures 7G and 7K). Although the reason 

for this discrepancy is unknown, it possibly involves other pathways that are active in 

Irak1−/−Irak2−/− BMDMs but not in in Irak4−/−. For instance, activation of MAPKs ERK and 

p-38 is absent in Irak4−/− but not in Irak1−/−Irak2−/− macrophages stimulated with LPS or 

infected with E. coli (Figure S2, Figures 4I–M, Figures 7G–7K).

Cytokines such as IL-12 stimulate the production of interferon-γ (IFN-γ) by lymphocytes 

(Trinchieri, 1995), which enhances the response of macrophages to Gram-negative bacteria 

(Schroder et al., 2004). Stimulation of total splenocytes with E. coli led to severe 

impairment in IFN-γ production in Irak1−/−Irak2−/−, Irak4−/−, and Irak4 Ki/Trif−/−, with 

an intermediate production in Irak4 Ki splenocytes (Figure 7L). IFN-γ-primed BMDMs 

from Irak1−/−Irak2−/−, Irak4−/−, and Irak4 Ki/Trif−/− mice showed deficient bacteria 
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clearance, which correlated with lower nitric oxide (NO) production (Figures 7M and 7N). 

Collectively, the data suggest that deficiency in IRAK4 scaffold or combined deficiency of 

TRIF and IRAK4 kinase activity impairs the host response to Gram-negative bacteria.

DISCUSSION

Our current assumptions about how IRAKs work are based on overexpression studies 

and/or research focused on TLRs that signal through a single adaptor. These approaches are 

extremely valuable but need further validation when applied to TLR4, which synergistically 

uses MYD88 and TRIF and their respective bridging adaptors MAL and TRAM. Removal 

of any single adaptor severely impacts TRAF6-mediated NF-κB activation (Adachi et al., 

1998; Fitzgerald et al., 2001, 2003b; Gohda et al., 2004; Sasai et al., 2010; Sato et al., 2003; 

Verstak et al., 2014; Yamamoto et al., 2003b).

First, we investigated the redundancies between IRAK1 and IRAK2. Previous work 

suggested that in the context of TLR2, loss of IRAK2 does not impact early signaling 

events due compensatory mechanisms involving IRAK1 (Kawagoe et al., 2008). IRAK2 

was, however, necessary for a “late response,” shown by cytokine measurements. Similarly, 

stimulation of BMDMs carrying IRAK2 E525A (deficient in TRAF6 activation) with R848 

or Pam3CSK4 does not impact early signaling, likely due to IRAK1 redundancy (Pauls 

et al., 2013). Here we explored the same questions in the context of TLR4 and TLR7 

and reached similar conclusions. Early signaling events are largely unaffected by either 

IRAK-1 or -2, and only loss of both proteins inhibited TRAF6 and NF-κB activation. 

We did, however, observed divergences regarding TLR-4 and -7 in “late phase” signaling 

and showed cytokine production is not completely absent in LPS-stimulated Irak2−/− 

macrophages, but it is in Irak1−/−Irak2−/−. This contrasts to TLR7, where loss of IRAK2 

is enough to completely block cytokine production. These observations suggests that IRAK2 

is essential for MYD88 signaling, whereas NF-κB activation via TLR4/TRIF can utilize 

either IRAK-1 or -2 to bypass this dependency.

Myddosome formation at the cell membrane occurs within minutes of stimulation. These 

early membrane-bound complexes are short-lived and act as a nucleating step that 

presumably results in formation of stable signaling complexes that sustain NF-κB activation 

(Tan and Kagan, 2019; Tan et al., 2015; Latty et al., 2018; Moncrieffe et al., 2020; Deliz-

Aguirre et al., 2021). Upon LPS stimulation, IRAK1 is recruited to the myddosome of WT 

and Irak2−/− macrophages, while R848-stimulated Irak2−/− failed to recruit IRAK1. This 

enhanced IRAK1 co-immunoprecipitation could occur due increased myddosome stability 

and failure to propagate signal (De Nardo et al., 2018). This suggests that despite differences 

in IRAK1 recruitment, the LPS-induced myddosome assembled in Irak2−/− BMDMs cannot 

sustain NF-κB activation, and the residual cytokine production occurs via TRIF, which is 

not involved in TLR7 signaling (Yamamoto et al., 2003a). Since we observe a near complete 

inhibition in cytokine production in LPS-stimulated Irak1−/−Irak2−/− BMDMs, we speculate 

that sustained LPS-induced NF-κB activation via MYD88 requires IRAK2, while TRIF may 

require either IRAK1 or IRAK2.
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Next, we examined how IRAK-1 and -2 redundancies work in the context of IRAK4 kinase 

activity. IRAK4 inhibition increases myddosome stability and recruitment of IRAK-1 and 

-4, while partially impacting cytokine output (De Nardo et al., 2018; Kawagoe et al., 2007; 

Pennini et al., 2013; Tae et al., 2007). This led us to speculate that IRAK1/2 recruitment to 

the myddosome could partially compensate for loss of IRAK4 enzymatic activity. Despite 

enhanced myddosome stability in Irak4 Ki BMDMs, IRAK-1 or -2 do not individually 

affect cytokine responses. Importantly, loss of IRAK4 kinase activity greatly decreases 

IRAK1 and IRAK2 post-translational modifications, suggesting that the phosphorylation 

events triggered by IRAK4 cannot be compensated by downstream IRAKs. Since we 

and others observed that Irak4 Ki does not produce cytokines via MYD88-only TLRs, 

phenocopying MyD88−/− (Kawagoe et al., 2007; Pennini et al., 2013; Tae et al., 2007), 

we tested whether the same is true for TLR4. IRAK4 inhibition and stimulation of Irak4 
ki/Trif−/− cells demonstrates that residual cytokine production occurs via TRIF, despite 

myddosome formation. These observations suggest that additional loss of IRAK-1 or -2 in a 

Irak4 Ki background has no impact because this myddosome is hypofunctional. We cannot 

completely rule out the possibility that IRAK4 Ki-containing myddosomes have vestigial 

activity in other contexts: human IRAK4 D329A has no kinase activity, but IRAK4D329A 

fibroblasts stimulated with IL-1β show partial cytokine production and lower IRAK4/1 

interactions (De et al., 2018). It is possible that in this context IRAK1 and/or IRAK 2 

partially compensate for loss of IRAK4 kinase activity.

Irak4 Ki BMDMs showed partial inhibition in TLR4-dependent TNF-α and IL-12 induction, 

whereas these cytokines were nearly completely absent in LPS-stimulated Irak4−/− BMDMs 

(Tae et al., 2007). Irak4 Ki closely resembles MyD88−/−, with partial NF-κB nuclear 

translocation via TLR4, so we hypothesized that IRAK4 scaffold is required for NF-κB 

activation via TLR4/TRIF. LPS-stimulated Irak4−/− and MyD88−/−Trif−/− BMDMs showed 

no NF-κB nuclear translocation, in support of our hypothesis. This raises the possibility 

that in some contexts IRAK4 may signal independently of MYD88. Since we were able 

to rule out IRAK4 involvement in TLR4 endocytosis and TRIF/TRAF3/IRF3 activation, 

we focused our attention on TRAF6, a known node between MYD88 and TRIF in TLR4-

mediated NF-κB activation (Cao et al., 1996; Gohda et al., 2004; Sasai et al., 2010; 

Sato et al., 2003; Verstak et al., 2014). We found that TRAF6 activation is impaired in 

Irak4−/− and Irak4 ki/Trif−/−, while this level of inhibition is not observed in MYD88 

or TRIF knockouts. These data put IRAK4 between MYD88/TRAF6 (kinase activity 

required) and TRIF/TRAF6 (scaffold required). Though conflicting reports exist regarding 

the involvement of TRAF6 in TLR3 signaling (Gohda et al., 2004; Jiang et al., 2003; Sato et 

al., 2003), potential links between TRAF6 and TLR3 are unlikely to involve IRAK4 (Jiang 

et al., 2003; Kawagoe et al., 2007; Pennini et al., 2013; Tae et al., 2007).

These findings beg the question: how does IRAK4 mediate TRAF6 activation via TLR4/

TRIF? One possibility involves TRAM. Upon LPS stimulation, TRAM and TRAF6 are 

found in the same molecular complex (Verstak et al., 2014), and biochemical evidence 

suggests that TRAM can physically interact with IRAK4 and IRAK1 (Bin et al., 2003). 

The nature of these interactions and whether they occur in physiological conditions remain 

unexplored. We also speculate that, in addition to IRAK4 scaffold, NF-κB activation via 

TLR4/TRIF may require either IRAK1 or IRAK2. We raise this hypothesis based on the 
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observations that LPS-treated Irak1−/−Irak2−/− BMDMs are impaired in TRAF6 and NF-κB 

activation, similar to Irak4−/− and MyD88−/−Trif−/− macrophages. TRAF6 binding motifs are 

absent in IRAK4 but present in IRAK1 and IRAK2 (Flannery and Bowie, 2010). Although 

IRAK2 is of major importance to TRAF6 activation (Keating et al., 2007), its deficiency 

can be compensated by IRAK1 in the first 2 hr after stimulation (Pauls et al., 2013). We 

hypothesize that IRAK1 is more efficient at compensating IRAK2 deficiencies in the TRIF/

TRAF6 than in the MYD88/TRAF6 pathway, since MYD88 activation leads to IRAK1 

degradation (Ferrao et al., 2014; Kubo-Murai et al., 2008). Interestingly, MAPK activation 

was not completely deficient in Irak1−/−Irak2−/− BMDMs, suggesting that TRAF6 activation 

and/or signaling downstream of TRAF6 might involve additional components. Generation of 

additional mouse strains such as Irak1−/−Irak2−/−Trif−/− are required to further study these 

previously overlooked interactions.

Signaling through TLR4 is more complex than other TLRs. Presumably this is because 

TLR4 is so critical to the host that it has developed multiple fail-safe signaling mechanisms. 

The reasons for this are unclear, but our findings suggest that the IRAK4 scaffold is central 

to protecting TLR4 responsiveness by integrating MYD88 and TRIF signaling, one of the 

key features in the TLR4 pathway.

Limitations of the study

This study focused on signaling events involving NF-κB and used the cytokines TNF-α 
and IL-12 as readout, as they are commonly used as surrogates for NF-κB activation. It is 

possible that other transcription factors can contribute to the expression of these and other 

cytokines.

The data presented in this article were obtained in vitro using mouse cells. Generalizations 

to other species, such as humans, and in vivo infections should be done carefully.

STAR⋆METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and resource requests can be directed to and will be 

fulfilled by the lead contact, Ricardo Gazzinelli (ricardo.gazzinelli@umassmed.edu).

Materials availability—Mouse lines generated in this study are available from the lead 

contact with a completed Materials Transfer Agreement.

Data and code availability

• The quantitative data and uncropped immunoblots generated in this study are 

available at Mendeley Data: https://doi.org/10.17632/tt3grr9zj7.1.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.
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EXPERIMENTAL MODELS AND SUBJECT DETAILS

Mice—WT C57BL/6, Irak1−/− (Thomas et al., 1999) and Irak2−/− (Wan et al., 2009) mice 

were obtained from The Jackson Laboratory. Tlr4−/−, Trif−/−, and MyD88−/− mice were 

provided by Dr. Shizuo Akira (Department of Host Defense, Osaka University, Osaka, 

Japan) (Adachi et al., 1998; Hoshino et al., 1999; Yamamoto et al., 2003a). Irak4−/− 

were provided by Dr. Tak Mak (Princess Margaret Cancer Centre, University of Toronto, 

Toronto, Canada) (Suzuki et al., 2002). Irak4 Ki mice were provided by Dr. Xiaoxia Li 

(Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 

Cleveland, USA) (Tae et al., 2007). MyD88−/−Trif−/−, Irak1−/−Irak2−/−, Irak1−/−Irak4 Ki, 

Irak2−/−Irak4 Ki, Irak4 Ki/Trif−/− were generated by in-house crossing. All mice were bred 

and maintained in pathogen-free conditions in accordance with the Institutional Animal Care 

and Use Committee (IACUC) at University of Massachusetts Medical School (UMMS). 8- 

to -12-week-old mice, male and female in similar proportions, were used in this work.

METHOD DETAILS

Chemicals—The following chemicals were routinely used in this work: NaF 

(Sigma-Aldrich), NaVO4 (Sigma-Aldrich), β-Glycerophosphate disodium (Santa Cruz), 

Nonidet P-40 Substitute (NP-40) (Boston Bioproducts), iodoacetamide (Sigma-Aldrich), 

dithiothreitol (DTT) (Boston Bioproducts), Dulbecco’s Modified Eagle Medium (DMEM) 

(Corning), Dulbecco’s Phosphate Buffered Saline (PBS) (Corning), Tris-HCl (Roche), NaCl 

(Sigma-Aldrich), glycerol (Fisher Scientific), Ethylenediamine tetraacetic acid (EDTA) 

(Boston Bioproducts) and Tween-20 (Boston bioproducts).

Cell culture and stimulations—For isolation of bone marrow cells and generation 

of BMDM, mice were sacrificed by CO2 exposure followed by cervical dislocation in 

accordance with UMMS IACUC guidelines. The skin was then sterilized with 70% 

isopropanol, the legs removed, the tibia and femur were collected and cleaned of muscle. 

The proximal and distal epiphysis were cut away and the bone marrow was flushed out 

of the bone using BMDM complete media (DMEM supplemented with 10% fetal bovine 

serum (R&D Systems), 5 mM L-Glutamine (GIBCO), 25 mM HEPES (Thermo-Fisher) and 

20% L929-conditioned media). For each animal, the bone marrow cells were placed in 3 

untreated 150 mm × 15 mm petri dishes (Corning) cultured at 37°C and 5% CO2 in BMDM 

complete media for 6 to 9 days, with the media replenished on day 5. For isolation of 

splenocytes, mice were sacrified as described above, the spleens were collected, macerated 

in a 100 μm nylon cell strainer, and the red blood cells lysed in ACK Lysing Buffer (Gibco) 

for 5 min at room temperatute. The splenocytes were then washed twice and resuspended in 

DMEM containing 10% FBS.

Stimulations were done with 100 ng mL−1 ultrapure LPS from E. coli O 111:B4 (Invivogen), 

1 μg mL−1 R848 (Invivogen), 10 μg mL−1 Poly(I:C) (Invivogen) or 200 ng mL−1 

PAM3CSK4 (Invivogen). For IFN-γ priming, BMDMs were incubated with 100 ng mL−1 

IFN-γ (BioLegend) for 20 h. Experiments using the IRAK4 inhibitor PF-06650833 (Tocris) 

included a pre-incubation step (30 min, 37°C and 5% CO2) with 200 nM of the inhibitor, 

followed by stimulation with the specific agonist in the presence of 200 nM PF-06650833.
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Preparation of whole cell lysates and nuclear extracts and NF-κB binding 
assay—For preparation of whole cell lysates, 4 × 106 cells were washed three times 

in cold PBS containing 25 mM β-Glycerophosphate disodium, 10 mM NaF and 1 mM 

NaVO4, and lysed for 10 min on ice with Tris-HCl 50 mM, NaCl 150 mM, EDTA 5 

mM, 1% NP-40, Halt Protease inhibitor (Thermo-Fisher) and Halt Phosphatase inhibitor 

(Thermo-Fisher). Alternatively, after stimulation and washes, nuclear extracts were prepared 

using NE-Per Nuclear and Cytoplasmic Extraction Reagents (Thermo-Fisher) as described 

by the manufacturer. Nuclear extracts were then used for immunoblot as described below. 

Alternatively, nuclear extracts were used in NF-kB (p65) Transcription Factor binding assay 

(Cayman Chemical). Briefly, 1 μg per well of nuclear extracts were added to the plate 

and the assay was performed according to the manufacturer’s instructions. RelA binding in 

LPS- or R848-treated samples was calculated by subtracting the OD of respective untreated 

control and normalized to WT.

Immunoblot—Whole cell lysates or nuclear extracts were incubated with Pierce Lane 

Reducing Sample Buffer (Thermo-Fisher) at 100°C for 10 min, cooled on ice for 5 min, 

and loaded on polyacrylamide gels. Following electrophoresis, the proteins were transferred 

to 0.45 μm nitrocellulose membrane (Amersham Protran 0.45 NC) in wet conditions (25 

mM tris-base, 192 mM glycine, 20% methanol, pH 8.5). The membranes were blocked 

for 2 h at room temperature in blotting-grade blocker (Bio-Rad), incubated with primary 

antibody in TBS containing BSA 1% for 16 h at 4°C, washed three times for five minutes 

each with TBS containing 0.1% Tween 20 (TBS-T), incubated with secondary antibody 

in blotting-grade blocker for one hour and washed three times in TBS-T. Proteins were 

detected using Clarity Max ECL Substrate (Bio-Rad) and imaged in ChemiDoc MP Imaging 

System (Bio-Rad). Densitometric analysis were performed using ImageJ (NIH) (Schneider 

et al., 2012).

The following antibodies and dilutions were used for immunoblots: IRAK1 (Cell Signaling, 

4504S, 1:1000), IRAK2 (Abcam, ab62419, 1:500), TRAF6 (Abcam, ab33915, 1 in 500), 

TRAF3 (Abcam, ab239357, 1:400), MyD88 (R&D Systems, AF3109, 1:1000), phospho-

IRF3 (Cell Signaling, 4947, 1:1000), IRF3 (Cell Signaling, 4302, 1:1000), USF2 (Novus 

Biologicals, NBP1–92649, 1:750), c-Rel (Cell Signaling, 67489, 1:1000), phospho-IκB-α 
(Ser32) (Cell Signaling, 2859, 1:750), IκB-α (Cell Signaling, 4812S, 1:1000), phospho-

RelA/NF-κB (Ser 536) (Cell Signaling, 3033, 1:1000), RelA/NF-κB (Novus Biologicals, 

NB100–2176, 1:1000), Actin (Sigma-Aldrich, A2066, 1:3000), K63-linkage specific 

polyubiquitin (Cell Signaling, 5621S, 1:1000), phospho-SAPK/JNK (Thr 183/Tyr 185) 

(Cell Signaling, 4668T, 1:1000), phospho-p38 MAPK (Thr 180/Tyr 182) (Cell Signaling, 

4511T, 1:1000), phospho-p44/42 MAPK (Erk 1/2) (Thr 202/Tyr 204) (Cell Signaling, 

4370T, 1:2000), anti-Goat-IgG HRP-conjugated (R&D Systems, HAF017, 1:10000), and 

anti-Rabbit-IgG HRP-conjugated (Sigma-Aldrich, A0545, 1:10000).

MYD88 co-Immunoprecipitation—MYD88 co-immunoprecipitations were performed 

as described previously (Tan and Kagan, 2018). Briefly, 4 × 106 cells were stimulated with 

LPS (100 ng mL−1) or R848 (1 μg mL−1), washed three times in cold PBS containing 25 

mM β-Glycerophosphate disodium, 10 mM NaF and 1 mM NaVO4, and lysed for 10 min 
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on ice with 0.6 mL of IP lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 5% glycerol, 

2 mM dithiothreitol (DTT), 1% NP-40, Halt Protease inhibitor (Thermo-Fisher) and Halt 

Phosphatase inhibitor (Thermo-Fisher)). The lysates were then centrifuged at 14,000 × G 

for 10 min at 4°C, and the supernatants collected. A small fraction of the supernatants 

was kept for analysis of the protein input, whilst the remainder (550 μL) were used for co-

immunoprecipitation. 1 μL of anti-MyD88 (R&D Systems, AF3109) and 30 μL of Protein G 

Sepharose 4 Fast Flow (Millipore Sigma) pre-equilibrated with IP lysis buffer was added to 

each sample. The mix was then incubated with gentle agitation for 4 h at 4°C, washed three 

times with IP lysis buffer, and eluted with 50 μL of sample buffer (Pierce Lane Reducing 

Sample Buffer (Thermo-Fisher)). Immunoblots of eluted samples and protein inputs were 

then carried out as described under “Immunoblot”.

TUBE pull down—For enrichment of ubiquitinated proteins, 4 × 106 cells were stimulated 

with LPS (100 ng mL−1) or R848 (1 μg mL−1), washed three times in cold PBS containing 

25 mM β-Glycerophosphate disodium, 10 mM NaF and 1 mM NaVO4, and lysed for 10 

min on ice in 0.6 mL of TUBE lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 

1 mM EDTA, 1% NP-40, 10% glycerol, 10 mM iodoacetamide, Halt Protease inhibitor 

(Thermo-Fisher) and Halt Phosphatase inhibitor (Thermo-Fisher)). A small fraction of the 

supernatants was kept for analysis of the protein input, whilst the remainder were used for 

protein pull down. For this, 550 μL of protein lysate was added to 30 μL of TUBE2-Agarose 

(Life Sensors) pre-equilibrated in TUBE lysis buffer, and the mix was then incubated 

with gentle agitation for 3 h at 4°C. After three washes with TBS-T, the proteins were 

eluted with 50 μL of sample buffer (Pierce Lane Reducing Sample Buffer (Thermo-Fisher)). 

Immunoblots of samples eluted from the beads and their protein inputs were then carried out 

as described under “Immunoblot”.

Flow cytometry—TLR4 and CD14 endocytosis was quantified by flow cytometry as 

described previously (Perkins et al., 2018). Briefly, 1 × 106 viable BMDMs were incubated 

with LPS for the indicated time points (37°C, 5% CO2) at a volume of 2 mL in sterile 

flow cytometry polypropylene round-bottom tubes (Corning). After incubation, 2 mL of 

ice-cold FACS Buffer (PBS containing 0.5% FBS and 2 mM EDTA) was added, the cells 

were centrifuged (400 × G, 5 min, 4°C), and washed twice in FACS Buffer. The cells 

were then resuspended in 100 μL of FACS Buffer containing 20 μg mL−1 anti-CD16/32 

(Fcγ RII-Blocking antibody) (BioLegend, 101302), transferred to a 96-wells U-bottom plate 

(Corning) and incubated for 20 min on ice. The plates were then centrifuged (500 × G, 

5 min, 4°C), the supernatant discarded, and the cells resuspended in 100 μL of FACS 

Buffer containing 4 μg mL−1 PE-conjugated anti-TLR-4 (BioLegend, 145403), 1 μg mL−1 

APC-conjugated anti-CD14 (BioLegend, 123311) or 100 μL of FACS Buffer containing 

4 μg mL−1 PE-conjugated IgG2a κ-chain isotype-matched control (BioLegend, 400507) 

and incubated on ice for 30 min in the dark. After three washes, the samples were then 

resuspended in FACS Buffer and read on a LSR II flow cytometer (BD). Analysis were done 

on FlowJo v10 (BD), and percentage of surface TLR4 was calculated as follows: (MFIt=x – 

MFIisotype control)/(MFIt=0 – MFIisotype control).
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Infection assay, cellular viability, and intracellular bacteria quantification—2 × 

105 BMDMs per well were plated in sterile flat-bottom 96 well-plates and kept in BMDM 

complete media without antibiotics at 37°C and 5% CO2 for 16 h 1 × 106 splenocytes 

were plated in sterile flat-bottom 96 well-plates in DMEM containing 10% FBS without 

antibiotics.

E. coli strain “Bort” (ATCC 700973) was grown to stationary phase in LB broth (Sigma-

Aldrich) for 18 h at 37°C and 250 rpm and diluted in DMEM containing 10% FBS. The 

MOIs were confirmed retroactively by plating the bacteria in LB agar (Sigma-Aldrich).

The plates had their supernatants removed, washed once in DMEM containing 10% FBS, 

and infected with 200 μL of bacteria or left with media alone (uninfected controls), followed 

by plate centrifugation to facilitate contact between bacteria and cells (400 × G, 5 min, room 

temperature), and incubation (37°C, 5% CO2) for one hour. The supernatant was collected (1 

h post infection, hpi), the plates washed three times in media and the extracellular bacteria 

was killed by adding media containing 50 μg mL−1 gentamicin (Millipore Sigma) for one 

hour. Then, the supernatant was collected (2 hpi), the cells washed three times, media 

replenished with DMEM 10% FBS containing 10 μg mL−1 gentamicin and incubated for 

additional 4 h (6 hpi) and 22 h (24 hpi).

At 2, 6 and 24 hpi, viable intracellular bacteria were counted by lysing the cells in cold-PBS 

containing 0.5% Triton X-100 for 30 min and plating them in LB agar.

LDH activity was quantified as a surrogate for cellular death using the 2, 6 and 24 hpi 

supernatants, according to the manufacturer’s instructions (Cytotox 96 Non-Radioactive 

Cytotoxicity Assay, Promega). Controls with 100% LDH activity were obtained by lysing 

uninfected cells in cold-PBS containing 0.5% Triton X-100 for 30 min.

Cytokine and NO quantifications—For cytokine, chemokines and NO quantifications, 

2 × 106 cells were plated in flat-bottom 96-well plates (Corning) and stimulated with 

agonists for 24 h, unless stated otherwise. The supernatants were collected and kept at 

−80°C until analyzed. All cytokines and chemokines were measured by ELISA according 

to the manufacturer’s instructions: IL-12 p40−Mouse uncoated ELISA kit (Invitrogen, 

88-7120-88), Mouse CCL5/Rantes DuoSet ELISA (R&D Systems, DY478), Mouse 

TNF-alpha DuoSet ELISA (R&D Systems, DY410), Mouse Interferon-gamma DuoSet 

ELISA (R&D Systems, DY485). NO was measured in the supernatants according to the 

manufacturer’s instructions (Abcam, Nitric Oxide Assay Kit, colorimetric, ab65328).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests were performed using GraphPad Prism version 9 for macOS (GraphPad 

Software). Unless otherwise stated, experiments in this work employed one-way analysis of 

variance (ANOVA) with Tukey post-comparison tests using a confidence interval of 95%. 

Asterisk denotates statistical significance (p < 0.05). Error bars represent standard error of 

the mean (s.e.m.). Statistical details of experiments can be found in the figure legends.
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Highlights

• IRAK1 and IRAK2 are partially redundant in TLR4 signaling, but not in 

TLR7 signaling

• IRAK4 kinase activity is required for TLR4/MYD88 signaling

• TRIF and MYD88 require the IRAK4 scaffold for TRAF6 activation

• TRIF-mediated TRAF3 activation occurs independently of IRAKs
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Figure 1. IRAK-1 and -2 have early redundancy upon TLR-4 and -7 stimulation
(A–D) Quantification of TNF-α and IL-12 produced by WT, Irak1−/−, Irak2−/−, and 

Irak1−/−Irak2−/− BMDMs treated for up to 24 h with LPS (A and B) or R848 (C and D).

(E and F) Immunoblot analysis of MYD88 co-immunoprecipitation with IRAK-1 and -2 in 

WT, Irak1−/−, Irak2−/−, Irak1−/−Irak2−/−, and MyD88−/− BMDMs treated for 60 min with 

LPS (E) or R848 (F).

(G) Kinetic study of p-RelA, RelA, IκB-α, p-IκB-α, and β-actin by immunoblot of whole 

cell lysates from indicated BMDMs treated with LPS for up to 60 min.

(H–O) Immunoblot analysis of RelA and c-Rel in nuclear lysates from WT, Irak1−/−, 

Irak2−/−, and Irak1−/−Irak2−/− unstimulated, stimulated with LPS for 30 min (H) or R848 

for 15 min (L), densitometric analysis of stimulated samples (I, J, M, and N) and RelA 

DNA-binding affinity in nuclear extracts from BMDMs stimulated with LPS for 30 min (K) 

or R848 for 15 min (O). All stimulations were done with LPS 100 ng mL−1 or R848 1 μg 
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mL−1. *p < 0.05 in comparison to WT (one-way analysis of variance with Tukey’s multiple 

comparisons test). (A–D, I–K, M–O) Data from three independent experiments (mean and 

SEM). (E–H, L) Images are representative of three independent experiments.
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Figure 2. IRAK4 kinase activity is partially required for TLR4 signaling and essential for TLR7
(A–D) Quantification of TNF-α (A, C) and IL-12 (B, D) produced after stimulation of WT, 

Irak4 Ki, Irak1−/−Irak4 Ki, Irak2−/−Irak4 Ki, and Irak4−/− BMDMs with LPS (A and B) or 

R848 (C and D) for up to 24 h.

(E and F) Immunoblot analysis of MYD88 co-immunoprecipitation with IRAK-1 and -2 in 

WT, Irak4 Ki, Irak1−/−Irak4 Ki, Irak2−/−Irak4 Ki, and Irak4−/− BMDMs treated for 60 min 

with LPS (E) or R848 (F).

(G) Kinetic study of p-RelA, RelA, IκB-α, p-IκB-α, and β-actin by immunoblot of whole 

cell lysates from indicated BMDMs treated with LPS for up to 60 min. All stimulations 

were done with LPS 100 ng mL−1 or R848 1 μg mL−1. *p < 0.05 in comparison with WT 

(one-way analysis of variance with Tukey’s multiple comparisons test). (A–D) Data from 

three independent experiments (mean and SEM). (E–G) Images are representative of three 

(E) or four (G) independent experiments.
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Figure 3. TLR4 signaling in Irak4−/− BMDMs is more severely affected than in either Irak4 Ki or 
MyD88−/−

(A–H) Study of WT, Irak4 Ki, Irak4−/−, MyD88−/−, Trif−/−, and MyD88−/−Trif−/− BMDMs 

stimulated with LPS. (A and B) Quantification of TNF-α (A) and IL-12 (B) produced after 

LPS stimulation for 24 h. (C) Kinetic study of p-RelA, RelA, IκB-α, p-IκB-α, and β-actin 

by immunoblot of whole cell lysates from indicated BMDM strains stimulated with LPS for 

up to 60 min. (D and E) Immunoblot comparison of p-RelA/RelA in indicated BMDM 

strains stimulated with LPS (D) and densitometric quantification (E). (F) Immunoblot 

analysis of RelA and c-Rel in nuclear lysates of WT, Irak4 Ki, Irak4−/−, MyD88−/−, Trif−/−, 

and MyD88−/−Trif−/− BMDMs untreated or treated with LPS for 30 min and densitometric 

analysis of LPS-treated samples (G and H). (I and J) Quantification of TNF-α (G) and IL-12 

(H) produced by WT, Irak4 Ki, MyD88−/−, and Trif−/− BMDMs after LPS stimulation for 

24 h with or without IRAK4 inhibitor PF-06650833. All stimulations were done with LPS 

100 ng mL−1 with or without PF-066503 200 nM. *p < 0.05 in comparison with WT unless 

Pereira et al. Page 25

Cell Rep. Author manuscript; available in PMC 2022 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



otherwise indicated (one-way analysis of variance with Tukey’s multiple comparisons test). 

(A, B, E, and G–J) Data from three independent experiments (mean and SEM). (C, D, and F) 

Images are representative of three independent experiments.
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Figure 4. Residual cytokine production in LPS-stimulated Irak4 Ki BMDMs occurs via TRIF
(A–M) Study of WT, Irak4 Ki, Trif−/−, Irak4 Ki/Trif−/−, and Irak4−/− BMDMs stimulated 

with LPS. (A and B) Quantification of TNF-α (A) and IL-12 (B) produced after LPS 

stimulation for 24 h. (C) Immunoblot analysis of MYD88 co-immunoprecipitations of 

indicated BMDMs untreated or treated with LPS for 60 min. (D) Kinetic study of p-RelA, 

RelA, IκB-α, p-IκB-α, and β-actin by immunoblot of whole cell lysates from indicated 

BMDM strains stimulated for up to 60 min with LPS. (E) Immunoblot analysis of RelA 

and c-Rel in nuclear lysates of WT, Irak4 Ki, Trif−/−, Irak4 Ki/Trif−/−, and Irak4−/− BMDMs 

untreated or treated with LPS for 30 min and their densitometric quantifications (F and 

G) and RelA DNA-binding affinity in nuclear extracts from BMDMs stimulated with LPS 

for 30 min (H). (I–M) MAPK and RelA activation profile in WT, Irak4 Ki, Trif−/−, Irak4 
Ki/Trif−/−, and Irak4−/− BMDMs stimulated with LPS for 15 min. (I) Immunoblot and (J–M) 

densitometric analysis of LPS-treated samples. All stimulations were done with LPS 100 

ng mL−1. *p < 0.05 in comparison with WT unless indicated (one-way analysis of variance 

with Tukey’s multiple comparisons test). (A, B, F–H, J–M) Data from three independent 

experiments (mean and SEM). (C–E, I) Images are representative of three independent 

experiments.
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Figure 5. IRAK4 is not involved in TLR4 endocytosis or TRAF3 and IRF3 activation
(A and B) Study of TLR4 endocytosis in WT, Irak4 Ki, and Irak4−/− BMDMs and control 

Cd14−/− immortalized BMDMs, stimulated with LPS for up to 60 min. (A) Histogram of 

surface TLR4 in the indicated strains unstimulated, stimulated with LPS for 60 min, or 

unstimulated cells stained with isotype control antibody. (B) Quantification of surface TLR4 

after LPS stimulation for up to 60 min. (C) Immunoblot of ubiquitinated TRAF3 pulled 

down from indicated BMDMs treated with LPS for 30 min.

(D and E) Kinetic study of IRF3 phosphorylation by immunoblot analysis of whole cell 

lysates from WT, Irak4 Ki, Irak4−/−, and Trif−/− BMDMs (D) and densitometric analysis (E).

(F) Quantification of CCL5 produced by WT, Irak4 Ki, and Irak4−/−, MyD88−/−, Trif−/−, 

and MyD88−/−Trif−/− BMDMs after LPS stimulation for 24 h. All stimulations were done 

with LPS 100 ng mL−1. *p < 0.05 in comparison with WT (one-way analysis of variance 

with Tukey’s multiple comparisons test). (A) Data are representative of three independent 

experiments. Data from two (E) or three (B, F) independent experiments (mean and SEM). 

(C and D) Images are representative of two independent experiments.
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Figure 6. IRAK4 scaffold is required for TRAF6 activation, while IRAK1 and IRAK2 show 
redundancy
(A) Immunoblot of ubiquitinated TRAF6 and IRAK1 pulled down from WT BMDMs 

treated with LPS or R848 for up to 60 min.

(B–D) Immunoblot of ubiquitinated TRAF6 and IRAK1 pulled down from indicated 

BMDMs treated with LPS for 30 min or R848 for 15 min.

(E) Immunoblot of ubiquitinated TRAF6 and IRAK1 pulled down from indicated BMDMs 

treated with LPS for up to 60 min. All stimulations were done with LPS 100 ng mL−1 

or R848 1 μg mL−1. Images are representative of two (E) or three (A–D) independent 

experiments.
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Figure 7. IRAK4 scaffold is essential to the response against Gram-negative bacteria, while 
IRAK-1 and -2 show redundancy
(A–F) Production of TNF-α (A, D), IL-12 (B, E), and CCL5 (C, F) in BMDMs infected 

with E. coli Bort for up to 24 h at MOI 1. (A–C) WT, Irak1−/−, Irak2−/−, and Irak1−/−Irak2−/− 

BMDMs. (D–F) WT, Irak4 Ki, Trif−/−, Irak4 Ki/Trif−/−, and Irak4−/− BMDMs.

(G–K) Immunoblot of p-ERK, p-JNK, p-p38, p-RelA, and β-actin from WT, 

Irak1−/−Irak2−/−, and Irak4−/− BMDMs infected with E. coli Bort at MOI 1 for up to 60 

min (G) and densitometric analysis (H–K).

(L) Production of IFN-γ in splenocytes infected with E. coli Bort for 24 h at MOI 1.

(M and N) Viable intracellular bacteria counts (M) and NO production (N) in IFN-γ-primed 

BMDMs (100 ng mL−1, 20 h) infected with E. coli Bort for 6 h at MOI 10. (G) Image is 

representative of three independent experiments. Data from three (A–F, H–K, M, and N) 
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or two (L) independent experiments (mean and SEM). *p < 0.05 in comparison with WT 

(one-way analysis of variance with Tukey’s multiple comparisons test).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit mAb anti-IRAK1 (D51G7) Cell Signaling 4504S; RRID AB_1904032

Rabbit pAb anti-IRAK2 Abcam ab62419; RRID AB_956084

Rabbit Recombinant mAb anti-TRAF6 (EP591Y) Abcam ab33915; RRID AB_778572

Rabbit Recombinant mAb anti-TRAF3 (EPR22992-93) Abcam ab239357; RRID AB_2915900

Goat pAb anti-MyD88 R&D Systems AF3109; RRID AB_2146703

Rat mAb PE anti-mouse CD284 (TLR4) BioLegend 145404; RRID AB_2561874

Rat mAb anti-mouse CD16/32 BioLegend 101301; RRID AB_312800

Rat mAb anti-mouse CD14 BioLegend 123311; RRID AB_940574

Rat PE IgG2a k-chain isotype-matched control BioLegend 400507; RRID AB_326530

Rabbit mAb anti-phospho-IRF-3 (Ser396) (4D4G) Cell Signaling 4947; RRID AB_823547

Rabbit mAb anti-IRF-3 (D83B9) Cell Signaling 4302; RRID AB_1904036

Rabbit pAb anti-USF2 Novus Biologicals NBP1-92649; RRID AB_11007053

Rabbit mAb anti-c-Rel (D3B8S) Cell Signaling 67489; RRID AB_2799726

Rabbit mAb anti-phospho-IkBa (Ser32) (14D4) Cell Signaling 2859; RRID AB_561111

Rabbit mAb anti-phospho-NF-kB p65 (Ser 536) (93H1) Cell Signaling 3033; RRID AB_331284

Rabbit pAb anti-Actin Sigma-Aldrich A2066; RRID AB_476693

Rabbit mAb anti-IkB-a (44D4) Cell Signaling 4812S; RRID AB_10694416

Rabbit mAb anti-K63-linkage Specific Polyubiquitin (D7A11) Cell Signaling 5621S; RRID AB_10827985

Rabbit pAb anti-RelA/NF-kB p65 Novus Biologicals NB100-2176; RRID AB_535932

Rabbit pAb anti-Goat-IgG HRP-conjugated R&D Systems HAF017; RRID AB_562588

Goat pAb anti-Rabbit IgG (whole molecule) Peroxidase Sigma-Aldrich A0545; RRID AB_257896

Rabbit mAb anti-phospho-SAPK/JNK MAPK (81E11) Cell Signaling 4668T; RRID AB_823588

Rabbit mAb anti-phospho-p38 MAPK (D3F9) Cell Signaling 4511T; RRID AB_2139682

Rabbit mAb anti-phospho-p44/42 (Erk1/2) (D13.14.4E) Cell Signaling 4370T; RRID AB_2315112

Bacterial and virus strains

Escherichia coli (Migula) Castellani and Chalmers, C5 (Bort) ATCC ATCC 700973

Chemicals, peptides, and recombinant proteins

ACK Lysing Buffer Gibco A1049201

Blotting-Grade Blocker Bio-Rad 1706404

di-ABZI Invivogen tlrl-diabzi

Dithiothreitol (DTT, Cleland’s Reagent) Boston Bioproducts #P-765-10G

Dulbecco’s Modification of Eagle’s Medium Corning 10-013-CV

Dulbecco’s Phosphate-Buffered Saline Corning 21-031-CV

Ethylenediamine tetraacetic acid (EDTA) Boston Bioproducts #BM-150

Fetal Bovine Serum - Premium R&D Systems S11150

Gentamicin Millipore Sigma G1397

Glycerol Fisher Scientific BP229

Halt Phosphatase Inhibitor Cocktail (100x) Thermo-Fisher 1862495

Halt Protease Inhibitor Cocktail (100x) Thermo-Fisher 87786
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REAGENT or RESOURCE SOURCE IDENTIFIER

HEPES Thermo-Fisher 15630106

Interferon-Gamma, Recombinant BioLegend 575308

Iodoacetamide (IAA) Sigma-Aldrich I6125

L-Glutamine Gibco 25030-081

LB Broth (Miller) Sigma-Aldrich L3522

LB Broth with Agar (Miller) Sigma-Aldrich L3147

NaF Sigma-Aldrich 201154

NaVO4 Sigma-Aldrich 567540

NP-40 (Nonidet P-40 Substitute) Boston Bioproducts #P-877

Pam3CSK4 invivogen tlrl-pms

Penicilin Streptomycin Solution, 100x Corning 30-002-CI

PF-06650833 Tocris 6373

Pierce™ Lane Marker Reducing Sample Buffer Thermo-Fisher 39000

Poly(I:C) HMW Invivogen tlr-pic

Protein G Sepharose 4 Fast Flow Millipore Sigma GE17-0618-01

R848 (Resiquimod) Invivogen tlrl-r848

Sodium Chloride Sigma-Aldrich S5886

TMB Substrate Reagent Set BD 555214

Tris hydrochloride Roche 10812846001

TUBE2 Agarose LifeSensors UM-0402-1000

Tween-20 Boston Bioproducts #P-934

Ultrapure LPS, E. coli O111:B4 Invivogen tlrl-3pelps

β-Glycerophosphate disodium Santa Cruz sc-203323

Critical commercial assays

CytoTox 96(R) Non-Radioactive Cytotoxicity Assay Promega G1780

Clarity Max Western ECL Substrate Bio-Rad 1705062

NE-Per™ Nuclear and Cytoplasmic Extraction Reagents Thermo-Fisher 78833

IL-12/IL-23 p40 (Total) Mouse Uncoated ELISA Kit Invitrogen 88-7120-88

Mouse CCL5/RANTES DuoSet ELISA R&D Systems DY478

Mouse IFN-gamma DuoSet ELISA R&D Systems DY485

Mouse TNF-alpha DuoSet ELISA R&D Systems DY410

NF-κB (p65) Transcription Factor Assay Kit Cayman Chemical 10007889

Nitric Oxide Assay Kit (Colorimetric) Abcam ab65328

Deposited data

Raw data This paper https://doi.org/10.17632/tt3grr9zj7.1

Software and algorithms

GraphPad Prism Graphpad Software www.graphpad.com

FlowJo BD www.flowjo.com

ImageJ NIH imagej.nih.gov/ij/
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