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Abstract: The aim of the work was to obtain hybrid coatings containing silver, copper, and zinc
nanoparticles on the TiAlV medical alloy via a sol–gel process. The developed layers were designed
to bring about a bactericidal and fungicidal effect, as well as for protection against surgical scratches
during the implantation of implants used in veterinary medicine. In this work, the authors focused
on evaluating the microstructure (SEM + EDS); the structure (XRD, FTIR); and the surface properties,
such as wettability, free surface energy, and roughness of layers with various concentrations of
metallic nanoparticles (2 and 5 mol %). Our results confirmed that the sol–gel method enables the
easy manufacturing of hybrid layers endowed with different porosity values as well as various shapes
and sizes of metallic nanoparticles. A higher concentration of nanoparticles was observed on the
surface containing 5 mol % of metallic salts. The highest degree of homogeneity was obtained for
the layers containing silver nanoparticles. In addition, the silver nanoparticles were round and had
the smallest dimensions, even below 20 nm. The FTIR and XRD structural studies confirmed the
presence of an organosilicon matrix containing all three types of the metallic particles. We conclude
that the higher concentration of nanoparticles influenced the alloy surface parameters.

Keywords: TiAlV alloy; silver; copper; zinc nanoparticles; composite hybrid layers; sol–gel; structural
and surface properties

1. Introduction

Titanium and its alloys have been widely used in medicine for many years. Their
applicability is based on the advantageous physical and chemical properties and good
biocompatibility with human cells and tissues. Light, strong, and completely biocompatible
titanium is one of the few materials that naturally meet the requirements of implantation in
the human body. Titanium alloys have a much higher strength/mass ratio in comparison
to stainless steel, their main competitor on the medical market.

The most frequently used titanium alloys are the ones with aluminum and vanadium
(Ti6Al4V); with aluminum and niobium (Ti6Al7Nb); with aluminum and iron (Ti5Al2.5Fe);
with niobium and zirconium (Ti13Nb13Zr); and with molybdenum, zirconium, and iron
(Ti12Mo6Zr2Fe) [1–4]. Titanium and its alloys are most commonly used for orthopedic
implants, such as hip joint prosthesis [5], knee implants [6], implants for external or internal
stabilization of bone fractures [7], tiles, bolts, nails for osteosynthesis, spine stiffening
devices [8], pins, bone tiles, bolts, intramedullary nails and external stabilizers [9,10],
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carbonized frames, and dental implants [11]. Titanium is also regularly used in the case
of heart pacemakers and defibrillators, as a carrier structure for replacing the heart valve,
and for intravascular stents [12]. Titanium is also used to develop external devices, as well
as for orthotic terminals, artificial limbs, and surgical tools.

The Ti6Al4V alloy has optimal mechanical properties, very good corrosion resistance,
and a two-phase structure α + β. The alloy is obtained by introducing an aluminum
additive that reduces the specific gravity of titanium and strengthens a solid solution. Then,
vanadium is introduced as a stabilizing element of the β phase [13]. However, the release of
vanadium to the physiological environment is problematic, as it causes cytotoxic reactions
and consequently neurogenic and carcinogenic disorders [14,15].

There are several approaches to reduce the penetration of ions in the environment and
thus to increase the corrosion resistance and improve the tribological properties of titanium
alloys. Firstly, the alloy elements may be carefully selected. Secondly, the alloys may
be covered with protective layers. Thirdly, several techniques of surface processing may
be applied. With regard to the layer formation mechanism, the modification techniques
consist among others chemical and physical processes. Chemical methods include: chemical
treatment, electrochemical treatment (anodic oxidation), sol–gel, chemical vapor deposition
(CVD), and biochemical modification. In the case of physical methods, the formation of the
surface layer on titanium alloys is mainly attributed to the thermal, kinetic, and electrical
energy. These techniques comprise thermal spraying, physical vapor deposition (PVD),
glow discharge plasma, and ion implantation [16–18].

The mentioned above, sol-gel is a chemical method used to synthesize ceramic or
glass materials in a relatively low temperature [19] through hydrolysis and condensation
of metal alkoxide precursors. One of its advantages is the low heating temperature that
does not result in thermal stresses in the material. This method is therefore used to obtain
bioactive layers (e.g., hydroxyapatite, bioglass) that protect the metallic implant surface,
improving the implant–bone integration via better adhesion and cell proliferation [20]. In
addition, this technique is low-cost, and it allows for the coating of elements of geometrically
complex shapes [21]. On the other hand, the sol–gel method results in a fragile inorganic
component that can be eliminated by introducing organically modified precursors. This
method allows for the creation of flexible hybrid organic–inorganic materials with the
possibility of tailoring and modifying their composition, structure, and thickness to the
desired application [22,23].

An important problem appearing when using medical implants is a bacterial infection
leading to chronic infections and prolonged antibiotic therapy. In some cases, it is even nec-
essary to remove the implant, triggering another operation and additional stress and pain
for a patient, leading to longer hospitalization. It is also connected with higher costs of treat-
ment and rehabilitation. In many cases, an issue is the bacterial resistance to an antibiotic
therapy. In the sol–gel method, the bactericidal effect can be ensured, inter alia, by intro-
ducing antibacterial agents such as silver, copper, and zinc [24]. The sol–gel technique
offers a unique opportunity to incorporate antibacterial components into a pure organically
modified silica matrix. By dissolving Ag/Cu/Zn nitrates in the silica sol, one can obtain
a metal-doped coating on various surfaces by the simple coating technique, such as dipping,
spraying, or spinning [25–28]. When designing hybrid layers with biocidal properties, one
should also remember that the process of developing materials itself is extremely important.
Both the precursors and the synthesis conditions have to be precisely selected in order to
ensure adequate physicochemical and biological properties. These factors are crucial in
order to obtain homogeneous and resistant layers that meet the mechanical and biological
requirements, such as biocompatibility and bactericidal activity [29].

The presented study describes an attempt to develop the homogeneous organic–
inorganic layers containing nanoparticles of biocidal metals (silver, copper, zinc) on the
substrate of the Ti6Al4V alloy. The sol–gel technique was used to protect the modified
substrates against corrosion and scratching protection and to ensure antibacterial action
while maintaining the biocompatibility of materials. This article is the first part of the
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research investigating the characteristics of the microstructural and surface properties of
the obtained layers. In the next work, we will describe the bactericidal properties and
confirm the biocompatibility of the developed layers.

In this work, scanning electron microscopy (SEM), X-ray diffractometry (XRD), Fourier
transform infrared (FTIR) spectroscopy, profilometry, wettability, and confocal microscopy
were employed to analyze the surface chemical compositions, microstructure, phases,
and surface properties.

2. Results and Discussion

The organic–inorganic sol–gel materials with increasing amounts of Ag/Cu/Zn were
successfully synthesized and applied as coatings onto the TiAl4V discs. As anticipated,
NPs formed as a result of chemical reactions in sols, and subsequent thermal treatment of
coating was observed in the layers. The SEM surface observations confirmed the presence
of metallic nanoparticles on the surface of the TiAlV alloy. In the case of layers containing
silver nanoparticles, a homogeneous distribution of spherical nanoparticles was revealed
over the entire observed surface (Figure 1a,b). The silver particles size was estimated on
the basis of 10 measurements made with the automatic function of measuring the particle
diameter with a microscope ruler. The AgNP particle diameter was 5–20 nm for the layers
containing both 2 and 5 mol % of the silver nitrate precursor. The average EDS chemical
analysis performed in the area of 285 × 285 µm confirmed the presence of silver in the
layers. The silver content constituted about 1% by weight for the layers with 2 mol %
of the precursor. Observations of the silver-doped layers at a magnification of 10,000×
showed that the layers were homogeneous, and no porosity or presence of agglomerates
was observed (Figure 1c,f). In the case of layers containing 5 mol % of the precursor, a higher
proportion of silver nanoparticles was observed (Figure 1e). This was also confirmed by
the EDS analysis, which showed the 2% weight of AgNPs for the layers with 5 mol % of
the precursor.

The surface observations of the layers containing copper nanoparticles revealed the
presence of particles measuring 100–500 nm in diameter (Figure 2a,b,d,e). The particles
were not distributed homogeneously—there were areas with no particles at all, as well as
areas with spherical agglomerates of 500 nm (Figure 2e). The particles with the appearance
of flocculent clouds dominated on the layers surface. In the case of layers containing 2 mol
% of copper nitrate precursor, the layer appeared to be smooth and uniform, with no signs
of microcracking or porosity (Figure 2c). On the other hand, for the layers containing 5 mol
% of copper precursor, both an increase in the content of copper particles and an increase
in their diameter was observed. The areas with high concentration of nanoparticles were
visible at the magnification of 10,000× (Figure 2f). The average EDS analysis performed
in the area of the layers 285 × 285 µm revealed a copper concentration of 0.5 wt % for the
TiAlV/h2Cu layer and 1.6 wt % for the TiAlV/h5Cu layer.

The microstructural observations of the zinc-doped layers revealed the presence of
zinc nanoparticles measuring 20–85 nm in diameters for the layers with 2 mol % zinc
nitrate precursor (Figure 3a,b) and 60–140 nm for the layers with 5 mol % precursor. There
were also the areas with local concentration of zinc nanoparticles observed. At 10,000×
magnification (Figure 3c), no porosity was noticed, and the surface of the layer was smooth.
On the other hand, for the TiAlV/h5Zn layers, the network porosity with round pores
appeared, with a pore size of about 700–900 nm (Figure 3d–f). The average EDS analysis
performed for the areas analogous to the silver and copper layers confirmed the chemical
presence of zinc of 0.8% by weight for the TiAlV/h2Zn layer and 5.3% by weight for the
TiAlV/h5Zn layer. The ZnNPs nanoparticles were present both in the pores and on the
network surface.
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Figure 1. SEM images and EDS spectra of titanium alloy (TiAlV)-covered sol–gel hybrid layer
containing silver nanoparticles; (a–c) containing 2% AgNPs, and (d–f) containing 5% AgNPs.
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Figure 2. SEM images and EDS spectra of titanium alloy (TiAlV)-covered sol–gel hybrid layer
containing copper nanoparticles; (a–c) containing 2% CuNPs, and (d–f) containing 5% CuNPs.
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Figure 3. SEM images and EDS spectra of titanium alloy (TiAlV)-covered sol–gel hybrid layer
containing zinc nanoparticles; (a–c) containing 2% ZnNPs, and (d–f) containing 5% ZnNPs.
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The films, prepared with AgNO3, regardless of the concentration, exhibited AgNPs
5–20 nm in diameter, and only the number of Ag clusters increased with the increasing
AgNO3 content. In the case of the Cu- and Zn-doped coatings, the nanoparticle size and
number increased with the increasing initial components concentration. The formation of
the Ag/Cu/Zn particles suggested that a reduction of the ionic form to colloidal metal
had occurred. It was reported that the functional groups (amine, thiocyanate) as well as
the organically modified silanes acted as a complexing and reducing agent for metal ions
in sol–gel-derived SiO2 coatings. In this study, we also expected that the organic groups
of the used organically modified silane (TMSPM) would act as a redactor and lead to the
metal colloid formation during the proposed thermal treatment in air [30–33].

In order to confirm that the base sample contained TiAlV alloy, we employed the
XRD measurements. The diffractogram in Figure 4a indicated the presence of high peaks,
originating from hexagonal (P63/mmc) and trigonal (P3m1) space groups, which were
ascribed to metallic alloys TiV and TiAlV, respectively. These results stayed in line with
our previous studies [34]. Figure 4b shows the diffractogram of the base sample with
the antibacterial layer consisting of the SiO2 matrix with silver nanoparticles (5%). Since
the peaks from TiV and TiAlV were of high intensity, it was only possible to see small
reflections coming from silver, especially at around 32.2◦, 37.1◦, and 43.4◦.

Figure 4. XRD patterns of the TiAlV alloy (a); the TiAlV alloy with 5% silver nanoparticles in the
SiO2 matrix (b).

It must be noted that for a smaller content of metallic nanoparticles, similar observa-
tions were not possible. Thus, in order to confirm the presence of metallic nanoparticles in
other samples, we needed to conduct the measurements at the glassy (amorphous) base
(Figure 5). For all samples, the broad hump (at 2θ: 25–35◦) typical for the amorphous
phase was observed. Moreover, the diffractogram of the glass base revealed the presence
of a small peak, near 29◦ 2θ angle, assigned to crystalline SiO2 [35]. The XRD patterns of
the samples with silver, copper, and zinc nanoparticles showed that the main peak over-
lapped with the SiO2 reflection. What is more, this reflection increased with the increase
in the metallic nanoparticles content in the matrix. Nevertheless, despite the glassy base,
the visible reflections were small and low-intensity—a result of the grain nanosize (see the
SEM analysis).
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Figure 5. XRD patterns of the metallic nanoparticles in SiO2 matrix on the glassy base: Ag (a), Cu (b),
and Zn (c) at various percentage contents.

Figure 6 shows the FTIR spectra of the coatings in the 400–4000 cm−1 region. In all
the spectra, the wide band located in the 3100–3600 cm−1 spectral region was assigned
to the contribution of physically and/or chemically incorporated water, corresponding
to the OH symmetric stretching from asymmetrically hydrogen bonded water. The CH
alkyl stretching bands were observed in the 2890–2960 cm−1 region [36,37]. The peaks at
1636 and 1716 cm−1 were characteristic for the C=C and C=O vibrations in the methacrylate
group of TMSPM, respectively. Additionally, the vibrations bands at about 1454–1460,
1380, and 1290 cm−1 were assigned to the C-H bending vibration, the C-O-C skeletal
vibrations, and the C-C stretching vibrations, respectively [38,39]. It is likely that the band
at 1380 cm−1 also covered the CH3 rocking vibrations. The Si-O-Si structure formation was
supported by the presence of the strong asymmetric Si-O-Si stretching absorption at about
1020 cm−1, while the peak at 920 cm−1 reflected the contribution of the Si-O-Ti bond in the
material structure, confirming the reaction of TIP with silane compounds, which leads to
the cross-linked structure with incorporated Ti atoms [40,41]. The presence of additional
peaks of the Si-containing groups at 770 and 490 cm−1, which were, respectively, assigned
to the symmetric stretching and bending vibration modes of Si-O-Si bonds, also indicated
the spatial silica-based structure formation.

In addition, the slight shift of the carbonyl absorption band to the frequency lower
than 1720 cm−1, characteristic of carbonyl groups, revealed the formation of hydrogen
bonds with the silane (TEOS) hydroxyl groups as well as the fact that the interaction
between the carbonyl groups and metal nanoparticles probably occurred mainly through
a physical force.

The FTIR data revealing the presence of bands associated with organic groups and the
appearance of Si-O-Si and Si-O-Ti vibrations confirmed the copolymerisation of respective
compounds, resulting in the formation of a homogeneous organic–inorganic hybrid layer.
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Figure 6. FTIR spectra of titanium alloy (TiAlV)-covered sol–gel hybrid layer containing 2 and
5 mol % silver, copper, and zinc nanoparticles.

The TiAlV alloy modification with organic–inorganic layers had a significant impact
on their surface properties. Covering the alloy with the base layer (TiAlV/h) resulted in
an average increase in the contact angle by 0.5◦ and a decrease in the surface energy by
0.2 mN/m (Figure 7a,b). In the case of the silver-doped layers, an increase in the value of the
contact angle was observed, along with a higher nanoparticle content. For the 2% AgNPs
layers, the contact angle increased by an average of 6◦, and for the 5% AgNPs, the value
increased by an average of 17◦. Thus, a clear change from hydrophilic to hydrophobic
nature was observed in the layers, which correlated with the surface energy change. The
highest AgNPs caused an energy decrease by an average of 14.6 mN/m, as compared to
the pure alloy.

In the case of copper and zinc layers, a significant decrease in the contact angle
and an increase in the surface energy were observed. The values of both parameters
correlated with the content of metal nanoparticles. The smaller the proportion of metallic
nanoparticles, the lower the contact angle and the higher the surface energy. For the 2%
CuNP layers, the reduction of the contact angle was on average equal to 9◦, and the energy
increase was on average 0.3 mN/m. For the 5% CuNPs layers, the contact angle decrease
was 4◦ on average, and the average energy increase was 1.3 mN/m. As for the surface
energy, for the 2% ZnNPs layers, the decrease in the contact angle was on average 3.8◦,
and there were no changes in the surface energy value. For the layers containing 5%
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ZnNPs, the contact angle decreased by 1.5◦ on average, and the energy value increased by
1.4 mN/m on average.

Figure 7. Static water contact angle (a), surface free energy (b), and roughness parameters (c,d) of
titanium alloy (TiAlV)-covered sol–gel hybrid layer containing silver, copper, and zinc nanoparti-
cles. Statistically significant differences (p < 0.05) in the studied parameters between the different
coating types are indicated by different lower-case letters. Bars marked with the same letters are not
statistically different.

When analyzing the surface roughness, we observed that the modification of the TiAlV
alloy with the sol–gel layers significantly improved the samples’ surface smoothness. The
decrease in the Ra and Rq parameters was observed for all the tested layers in relation to
the base alloy. In the case of the pure hybrid layer, the Ra parameter decreased by 0.10 µm
on average, and the Rq parameter by 0.15 µm. The introduction of metallic particles into the
layers also reduced roughness parameters in comparison to pure alloy. Yet, only in the case
of the 5 mol % Ag layers was the even lower Ra parameter value (reduction by 0.04 µm)
recorded, as compared to the base layer. The addition of copper and zinc nanoparticles
increased the Ra parameter, as compared to the base layer. Similar behavior was observed
for the Rq parameter. The increase in the roughness of the layers containing copper and
zinc nanoparticles related to the size of the particles formed in the layer their uneven
distribution and the apparent porosity. Thus, the highest surface smoothness was obtained
for the layers containing silver nanoparticles, which correlated with the SEM observations.

The surface roughness examinations performed with a confocal microscope (Figure 8)
confirmed the convergence with the results obtained from the profilometer. The analogous
values of the Sa parameter were observed for all the tested samples. The modification of the
TiAlV alloy surface with the hybrid layers increased the surface smoothness. A significant
decrease in the Sa parameter was observed for all the layers, while the highest surface
smoothness was obtained for the 5% AgNPs layer, with the Sa parameter 0.373 µm lower
than the pure alloy. The attempts to estimate the wetting angle of the coatings containing
AgNPs, CuNPs, and ZnNPs showed that the influence of the surface topography was
predominant. Such a significant increase in the contact angle for the 5 Ag layer took place
most likely due to the high concentration and the uniform distribution of nanoparticles.
It was reported that the WCA (water contact angle) increased with the silica nanoparticle
concentration increase; however, in that study, the contact angle increase may have been
attributed to the surface roughness increase, contrary to our results [42]. As for the films
with CuNPs and ZnNPs, it was most probably the case that the creation of porosity (SEM
observation) made the samples more hydrophilic than the Ag-doped layers, due to the
capillary lift of liquids through this network of pores [43,44].
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Figure 8. Three-dimensional confocal microscope microphotographs with area roughness param-
eter (Sa) of titanium alloy (TiAlV)-covered sol–gel hybrid layer containing silver, copper, and zinc
nanoparticles. The scale in the charts is described in µm.

3. Materials and Methods
3.1. Material Manufacturing

Metallic substrates (disks with a diameter of 1 cm) made of the TiAlV alloy were manu-
factured and delivered by Medgal (Księżno, Poland). Composite hybrid (organic-inorganic
silicate) sols for coating their surface were prepared by the sol–gel method. The chemical
compositions of layers were designed with 2 and 5 mol % concentrations of metallic pre-
cursors, respectively. The coating solution was prepared using the following precursors:
TEOS (tetrethylorthosilicate, Si(OC2H5)4); TMSPM (3-(Trimethoxysilyl) propyl methacry-
late, H2C=C(CH3)CO2(CH2)3Si(OCH3)3); TIP (titanium (IV) isopropoxideTi(OC3H7)4);
and nitrates AgNO3, Cu(NO3)2×3H2O, and Zn(NO3)2×6H2O (Sigma Aldrich, Krakow,
Poland) as a source of metallic ions.

First, the metallic precursor was dissolved in propanol, serving as a solvent. The
solution was mixed for 30 min in a magnetic stirrer. Next, TEOS, TMSPM, and TIP were
successively added to the solution. Having introduced each of the reagents, we then stirred
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the solution for 20 min. The aqueous solution of the HNO3 nitric acid was used as a reaction
catalyst. The volume ratio of all the components to the propanol solvent was 1:8. Prior to
layering, the solution aging time was 24 h, and the viscosity equaled 6 cP. The obtained sol
was stored in a sealed container, with no access to UV and VIS radiation in order to limit
the Ag+ reduction. The discs were washed with propanol. The layers were applied by the
dip coating technique with the 50 mm/min withdrawal speed, and then the coated discs
were drying in ambient conditions for 24 h. Next, the applied layers were stabilized by the
two-step thermal treatment at 80 ◦C for 10 min and 130 ◦C for 15 min.

The following nomenclature was adopted to standardize the names of the samples in
this work (Table 1).

Table 1. Samples nomenclature.

Sample Characteristic Sample Nomenclature

Titanium alloy Ti-6Al-4V TiAlV
Titanium alloy Ti-6Al-4V with pure hybrid layer TiAlV/h

Titanium alloy Ti-6Al-4V with hybrid layer containing 2 mol % AgNPs TiAlV/h2Ag
Titanium alloy Ti-6Al-4V with hybrid layer containing 5 mol % AgNPs TiAlV/h5Ag
Titanium alloy Ti-6Al-4V with hybrid layer containing 2 mol % CuNPs TiAlV/h2Cu
Titanium alloy Ti-6Al-4V with hybrid layer containing 5 mol % CuNPs TiAlV/h5Cu
Titanium alloy Ti-6Al-4V with hybrid layer containing 2 mol % ZnNPs TiAlV/h2Zn
Titanium alloy Ti-6Al-4V with hybrid layer containing 5 mol % ZnNPs TiAlV/h5Zn

3.2. Material Examinations
3.2.1. Scanning Electron Microscopy

The detailed microstructure examination of the materials was carried out by means of
the Nova NanoSEM 200 scanning electron microscope (FEI, Eindhoven, The Netherlands)
with the Genesis XM X-ray microanalysis system (EDAX, Tilburg, The Netherlands) fea-
turing the EDAX Sapphire Si(Li) EDS detector. The observations and measurements took
place in low vacuum conditions using a Helix detector (SE) with the accelerated voltage of
10–18 kV.

3.2.2. XRD X-ray Diffractometry

The XRD patterns of the samples were obtained using Malvern PANalytical Empyrean
diffractometer (Worcestershire, UK) equipped with a copper lamp (monochromatic radia-
tion with 0.1530598 nm CuKα1 and 0.1544938 nm CuKα2 lines) and a PiXcel3D detector.
All the samples were measured in Programmable Divergence Slit (PDS) mode in two ways:
(1) silver, copper, and zinc nanoparticles in the SiO2 matrix were spread on the metallic
(TiAlV) alloy; (2) silver, copper, and zinc nanoparticles in the SiO2 matrix were spread on
the glass plate.

The data analysis was carried out using X’pert High Score software with PDF + 2021
database, and it was supported by the Rietveld analysis using GSAS + EXPGUI software [45,46].

3.2.3. Fourier Transform Infrared Spectroscopy, FTIR

The structural changes caused by the chemical modification of the substrates with the
sol–gel layers were investigated using the BTS-RAD FTS 3000 Excalibur spectrophotometer
(Bio-Rad, Hertfordshire, UK). The ATR technique (MIRACLE attachment equipped with ZnSe
doped diamond crystal) was used. The tests were carried out in the range of 400–4000 cm−1

with a resolution of 4 cm−1.

3.2.4. Surface Wettability

The static water contact angle (WCA) was used to assess the surface wettability via the
sessile drop method with the automatic drop shape analysis system DSA 10 Mk2 (Kruss
GmbH, Hamburg, Germany). The constant temperature and humidity conditions were
maintained throughout the tests, while the UHQ-water droplets of 0.25 µL were applied
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on each pure and dry sample. We calculated the apparent contact angle as an average of
30 measurements and expressed it as the mean ± standard deviation (SD).

3.2.5. Surface Free Energy

The free surface energy was determined by testing the contact angles of two measuring
liquids: ultra-pure distilled water (UHQ PURE Lab., Vivendi Water, Paris, France) and
diiodomethane. The measurements were carried out on the DSA 10 Mk2 optical apparatus
(Kruss GmbH, Hamburg, Germany) at room temperature. The test pattern was identical to
the contact angle test. The obtained photos of drops of two measuring liquids established
the free surface energy on the basis of the values of the dispersion and polar components.
The value was the arithmetic average obtained from 30 measurements. The results are
presented with standard deviations (SD).

3.2.6. Roughness

The arithmetical mean roughness (Ra) and the root mean square roughness (Rq) of the
investigated materials were evaluated by means of the contact profilometer HOMMEL-
ETAMIC T1000 wave (Jenoptik AG, Jena, Germany). The arithmetical mean roughness
values were an average of 10 measurements with traverse length 4.8 mm according to the
EN ISO 4288 expressed as the mean ± standard deviation (SD).

3.2.7. Confocal Microscopy

The surface topography of samples was observed using the laser confocal microscope
Lext OLS 4000 (Olympus, Tokyo, Japan) with the magnification 50×. The scanned area was
640 × 640 µm.

3.2.8. Statistical Analysis

The results were analyzed using one-way analysis of variance (ANOVA) with Duncan’s
posthoc tests, which were performed with Statistica 13.1 software (TIBCO Software Inc.,
Palo Alto, CA, USA). The results were considered statistically significant when p < 0.05.

4. Conclusions

The conducted microscopic studies proved that it was possible to obtain hybrid lay-
ers with the different microstructures of the layers themselves and various nanoparticle
morphologies. The layers obtained by the sol–gel technique differed depending on the
precursor used. The conducted research confirmed that silver, copper, and zinc nanopar-
ticles differed in shape and size. The studies showed that silver nanoparticles were the
most evenly distributed in the organosilicon matrix, while copper and zinc nanoparticles
formed agglomerates, and zinc caused layer porosity. The FTIR and XRD structural studies
confirmed the silicon matrix and metal nanoparticle presence, respectively. The TiAlV
alloy layer modification changed the surface properties, such as wettability, surface en-
ergy, and roughness. The layers containing silver nanoparticles increased the value of
the contact angle, thus lowering the surface energy. The layers containing copper and
zinc nanoparticles showed different behavior. The modification of the titanium alloy with
hybrid layers certainly affected the roughness parameter, causing its significant decrease.
Thus, the performed tests proved that it was possible to smooth the alloy surface and
protect it against surgical scratches and scrapes during the same process.

Author Contributions: M.Z. was responsible for conceptualization, validation, formal analysis, SEM
analysis, data curation, writing—original draft preparation, and writing—review and editing. K.C.-K.
was responsible for conceptualization, validation, hybrid layer preparation, and writing—original
draft preparation. K.M. was responsible for performing surface and structural measurements. K.W.
was responsible for performing XRD analysis and writing—original draft preparation. M.G. was
responsible for performing confocal microscopy observation. All authors have read and agreed to the
published version of the manuscript.



Int. J. Mol. Sci. 2022, 23, 2283 14 of 15

Funding: This work was carried out within INKUBATOR INNOWACYJNOŚCI 4.0, MNiSW/2020/
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