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INTRODUCTION
In reporting surgical outcomes, publications often emphasize 
patient-related variables, including disease severity, co-mor-
bidities, and physiological parameters.1–4 Less studied is the 

correlation between surgeons, objective analysis of surgical skills, 
and their relationship with patient outcome.5–7 In surgical skill 
acquisition, trainees have often recognized master surgeons who 
have unique technical skills that correlate with intra- and periop-
erative success. Although the inherent attributes and experience 
of a surgeon may account for these differences, quantitative anal-
ysis of such remains elusive. With the advent of artificial intel-
ligence and data modeling on sensor-enabled surgery tools, the 
following questions arise: can a data-driven force profile quantify 
a surgeon’s technique or finesse, adding an objective parameter to 
predict intra- and perioperative variability? And can a surgeon’s 
force profile be the surgeon’s signature and identity?

In robot-assisted surgery, ensuring surgeon identification is 
important for secure signal transmission as a requisite for safe 
and successful surgery. One safeguard can be anomaly detection 
through machine learning of a “surgical signature” for the pri-
mary surgeon to impede the alteration of robotic manipulation 
by a malevolent hacker. Deviation of robot maneuver from the 
movement patterns of the primary surgeon can trigger an iden-
tity verification process before authorizing further actions.8,9 
Static and dynamic physical traits (eg, body shape, eye move-
ment, and gait features) are recognized as biometrical signatures 
for person detection that can be measured through visual and 
motion sensors.10–14 Similarly, tool orientation and dynamics, 
such as velocity and tissue force, for each surgeon can construct 
a signature correlating with the surgeon’s skill level.9,15

In our previous studies, we developed a novel data framework 
and application, called the SmartForceps System, which creates 
a digitized environment for real-time intraoperative monitoring, 
recording, and secure upload of surgical procedures.16–19 Our oper-
ating room data intelligence paradigm uses the characteristics of 
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Objective: To investigate the notion that a surgeon’s force profile can be the signature of their identity and performance.
Summary background data: Surgeon performance in the operating room is an understudied topic. The advent of deep learning 
methods paired with a sensorized surgical device presents an opportunity to incorporate quantitative insight into surgical perfor-
mance and processes. Using a device called the SmartForceps System and through automated analytics, we have previously 
reported surgeon force profile, surgical skill, and task classification. However, an investigation of whether an individual surgeon can 
be identified by surgical technique has yet to be studied.
Methods: In this study, we investigate multiple neural network architectures to identify the surgeon associated with their time-series tool-tis-
sue forces using bipolar forceps data. The surgeon associated with each 10-second window of force data was labeled, and the data were 
randomly split into 80% for model training and validation (10% validation) and 20% for testing. Data imbalance was mitigated through 
subsampling from more populated classes with a random size adjustment based on 0.1% of sample counts in the respective class. An 
exploratory analysis of force segments was performed to investigate underlying patterns differentiating individual surgical techniques.
Results: In a dataset of 2819 ten-second time segments from 89 neurosurgical cases, the best-performing model achieved a 
micro-average area under the curve of 0.97, a testing F1-score of 0.82, a sensitivity of 82%, and a precision of 82%. This model was 
a time-series ResNet model to extract features from the time-series data followed by a linearized output into the XGBoost algorithm. 
Furthermore, we found that convolutional neural networks outperformed long short-term memory networks in performance and 
speed. Using a weighted average approach, an ensemble model was able to identify an expert surgeon with 83.8% accuracy using 
a validation dataset.
Conclusions: Our results demonstrate that each surgeon has a unique force profile amenable to identification using deep learning 
methods. We anticipate our models will enable a quantitative framework to provide bespoke feedback to surgeons and to track 
their skill progression longitudinally. Furthermore, the ability to recognize individual surgeons introduces the mechanism of correlating 
outcome to surgeon performance.
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tool-tissue interaction force and surgical maneuvers as an objective 
metric for assessing and reporting surgical competency compared 
with an expert surgeon. Accurate data collection of individual sur-
geons and surgeon identification stratified by skill provides a richer 
context for an individualized performance report. This study builds 
upon the SmartForceps System by investigating the notion that a 
surgeon’s force profile can be the signature of their identity and 
performance.17–21 Here we present evidence for a surgeon identi-
fication system to catalog a correlational linkage between surgical 
finesse and surgeon through 3 classes of deep learning algorithms.

METHODS
This study was conducted to determine whether machine-learn-
ing algorithms could predict individual surgeons using time-se-
ries surgical tool-tissue force data. Predictions were made using 
3 classes of machine-learning algorithms: (1) recurrent neural 
network, (2) convolutional neural network (CNN), and (3) 
CNN as a feature selector for a gradient-boosted tree. The mod-
els were validated by applying the top-performing model to a 
prospective dataset spanning 2 years across 2 surgical centers.

Data Recording and Cloud Analysis

The SmartForceps System (developed at Project neuroArm, 
University of Calgary, Calgary AB, Canada) displays and records 
real-time tool-tissue force data. Audio recordings of each sur-
geon’s voice accompanied force recordings, which indicated the 
duration of force application and specific task names. Force 
recordings included tool-tissue forces from the left and right 
prong of a sensorized bipolar forceps called the SmartForceps 
at a 20 Hz sampling rate. A supervised dataset was created 
from this data by labeling each force recording. Health Canada 
(ITA 329641 Class II, 2021) approved the technology used in 
this study, which was reviewed and approved by the Conjoint 
Health Research and Ethics Board of the University of Calgary, 
Calgary, Alberta, Canada (REB19-0114). A detailed description 
of the technology development, the preclinical trial, and the clin-
ical phase of the study has been published.17–23

An analysis of tool-tissue interaction force data was con-
ducted on 89 neurosurgery cases (50 cases with manual labeling 
of data, 39 patients with automated predicted labels based on 
previously developed machine-learning models), consisting of 
18 meningioma, 20 glioma, 4 hemangioblastoma, 22 schwan-
noma, 1 carotid plaque, 1 choroid plexus papilloma resection, 
and 23 miscellaneous cases. These recordings corresponded to 
7.8 hours of tool-tissue forces, with 563,849 force data points. 
Six surgeons performed the cases: 1 surgeon with more than 
30 years of experience and 3 final year neurosurgical residents 
with post-graduate years level exceeding 5 years from Foothills 
Hospital, Calgary; 1 surgeon with 19 years of experience and 1 
final year neurosurgical resident from the University of Alberta 
Hospital, Edmonton.

Cloud architecture compliant with the Health Insurance 
Portability and Accountability Act and Personal Information 
Protection and Electronic Documents Act regulations were 
implemented to retain and process intraoperative de-identified 
data in transit using transport layer security and at rest using 
advanced encryption standard (AES-256) through reliance on 
Microsoft Azure platform (Microsoft USA). This further autho-
rized the use of organizational credentials for secure authen-
tication. We also developed web and mobile applications for 
monitoring and analyzing force-related data/features, which can 
be accessed at smartforceps-app.azurewebsites.net.

Workflow Architecture

A workflow architecture was developed and implemented 
to create data analytics and surgeon signature identification 

models (Fig. 1). It provided a framework for developing surgeon 
recognition models through cloud implementation for data 
warehousing and preprocessing, including deep learning-based 
segmentation and feature engineering. Our framework can 
model nonstationary time-series data with changing mean, vari-
ance, and frequency characteristics without assuming underly-
ing patterns in force data.

Surgeon Signature Recognition Model

Using deployed models of phase 1 analytics of the 
SmartForceps platform,18 force profiles of individual surgeons 
were identified using a combination of manually and auto-
matically generated segments with surgeon ID labels. Post-
hoc tags were applied to surgeon data to correct data records 
from multiple surgeons using the device in 1 surgical case. 
All time-series data were standardized and split into 200-
point windows by the surgeon, corresponding to 10 seconds 
of recorded forces. This created 472, 468, 476, 466, 471, and 
466 force segment windows for surgeons 1 to 6, respectively. 
These surgeons associated with these windows were encoded 
as one-hot vectors, and the data were randomly split into 80% 
for model training and validation (10% validation) and 20% 
for testing. Data imbalance, as a challenge in creating pre-
diction bias toward majority classes, was mitigated through 
subsampling from more populated classes with a random size 
adjustment based on 0.1% of sample counts in the respective 
class. Exploratory analysis of force segments was performed 
to investigate underlying patterns differentiating individual 
surgical techniques.

To recognize and classify each surgeon, we analyzed multiple 
deep neural networks; we created a long short-term memory 
(LSTM) network, CNN, ResNet,24 InceptionTime,25 and Force 
Time-series Feature-based InceptionTime (FTFIT) network. The 
LSTM network consisted of a single LSTM layer with 100 LSTM 
units followed by 2 dense layers for classification. The CNN 
consisted of a convolutional layer followed by max pooling, 
another convolutional layer followed by max pooling, and then 
a dense layer for classification. All models were trained using 
backpropagation with the Adam optimizer. The ResNet archi-
tecture was inspired by previously published work.26 Following 
this analysis, the convolutional components of ResNet were 
used as a feature selector for the XGBoost algorithm to identify 
individual surgeons; we define this model as ResNet-XGBoost 
(Fig. 2). To improve the prediction power of the FTFIT model, 
a subset of 29 hand-crafted features (eg, descriptive statistics, 
heterogeneity, and entropy) were calculated for each window of 
200 data points and added as a third feature. These time-series 
features were extracted from segmented data after noise reduc-
tion, and the data were resampled to match a 200-point force 
data window, corresponding to 10 seconds of recorded forces.

For each machine-learning model, the following metrics were 
obtained: loss and accuracy for both training and validation data 
in each epoch; classification report including accuracy, sensitiv-
ity/recall, precision, F1-score, and area under the curve (AUC) 
for receiver operating characteristic. Models were trained on a 
Lambda Graphics Processing Unit workstation with an Intel 
Core i9-9820X (10 cores, 4.20 GHz turbo) Central Processing 
Unit, 2 Titan RTX with NVLink Graphics Processing Units, and 
64 GB of memory.

Validation Experiment

The validation dataset for the expert neurosurgeon was 
recorded in May 2023 (ie, 2 years after the original data col-
lection between October 2021 and May 2023). The best-per-
forming model from the surgeon signature recognition task was 
used to create 5 binary prediction models that compare Surgeon 
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1 against Surgeons 2 to 6. All 5 model outputs were combined 
into a single ensemble model by multiplying their respective 
model probabilities with experimentally determined weights. 
The weights w1i were set a priori to the weighted average accu-
racies obtained in training. The predicted surgeon was obtained 
by using an argmax operation on the weighted probabilities:

weighted probability =
6∑
i=2

w1i · (model probability)1i

predicted surgeon = argmax (weighted probability)

RESULTS
Force profile segments of each studied surgeon were visualized 
using force range, entropy, and maximum force. The scatter 
plot of data point distributions shows a distance-based density 
change across the force range and entropy (surgeon 1 = 1.98, 
surgeon 2 = 4.48, surgeon 3 = 1.29, surgeon 4 = 6.13, surgeon 
5 = 3.03, and surgeon 6 = 2.02). A positive correlation (ρ = 
0.91) can also be seen between force range and maximum force 
(Fig. 3).

The best performance was achieved using the ResNet-
XGBoost model with a micro-average AUC of 0.97 (Fig.  2). 
Model parameters included a learning rate of 0.001 and patience 
of 10 for early stopping with 200 moving windows and batch 
sizes of 128 (Table 1). At epoch 86 of 200, the model reached 

FIGURE 1.  Workflow architecture of SmartForceps platform for surgeon identification. A HIPAA- and PIEPDA-compliant platform was used to store and analyze 
the forces of tool-tissue interaction. As part of the artificial intelligence (AI) modeling architecture, InceptionTime, ResNet, and ResNet-XGBoost models were 
utilized for surgeon identification, followed by performance evaluation reports. Visualization was created with icons obtained from https://www.iconfinder.com. 
HIPAA indicates Health Insurance Portability and Accountability Act; PIEPDA, Personal Information Protection and Electronic Documents Act.

https://www.iconfinder.com
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minimum validation loss (validation loss = 0.5503 and training 
loss = 0.3123). The inference time on 564 test samples was 0.76 
seconds. For unseen instances (ie, testing dataset) of force data, 
the macro-average AUC of receiver operating characteristic was 
0.96, and the accuracy and weighted F-score both were 0.82 
(Table 1).

In validation experiments, ResNet-XGBoost was used for the 
ensemble binary model. The ensemble weights, set a priori to 
the weighted average accuracies obtained in training, were 0.73, 
0.73, 0.71, 0.58, and 0.97, for surgeons 1 versus 2 to 6, respec-
tively. The results showed an accuracy of 83.8% in identifying 
surgeon 1 among others, visualized in Fig. 4.

DISCUSSION
This study provides proof-of-concept evidence for a surgeon 
identification system defined by bipolar forceps tool-tissue force 
profile. We provide evidence that deep learning models can iden-
tify individual surgeons given their time-series force data. In 

particular, the ResNet-XGBoost (AUC = 0.97), InceptionTime 
(AUC = 0.96), and ResNet (AUC = 0.95) models offer robust per-
formance in identifying individual surgeons. These results sug-
gest that the force profile characterizes a surgeon’s signature and 
identity. They further support that profiles of tool-tissue force 
applications can be analyzed using a machine-learning approach. 
We thus present an original approach and finding for a surgeon 
identification system that catalogs correlational linkage between 
surgical finesse and surgeon, offering an automated platform to 
identify the nuances of surgery and surgeons by skill level.

A feature-based analysis of force profiles revealed a meaningful 
difference among surgeons for entropy, force range, and maxi-
mum force (P < 0.05). Tukey Honest Significant Difference tests 
showed significant differences among the binary combination of 
surgeons in the 3 features except for surgeon 1 versus 4 and sur-
geon 3 versus 6 in entropy, surgeon 2 versus 3, 5, and 6 and sur-
geon 6 versus 3 and 5 in maximum force, and surgeon 2 versus 5 
and 6 and surgeon 5 versus 6 in force range. The positive correla-
tion of maximum force and force range for surgeons emphasizes 

FIGURE 2.  Performance of ResNet-XGBoost model for surgeon recognition. A, ResNet-XGBoost model architecture. Our deep neural network consisted of 12 
convolutional layers followed by a linear output into the XGBoost algorithm, which predicts the surgeon associated with each segment. The network inputs are 
200 × 2 force segments, corresponding to the left and right bipolar prong force data. B, ROC curves of the ResNet-XGBoost algorithm on the testing dataset. 
C, Confusion matrix metrics of the ResNet-XGBoost algorithm on the testing dataset. T = transpose; all convolutional layers use 1D filters with two channels. 
ROC indicates receiver operating characteristic.
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that the higher force range is from positive force application (eg, 
coagulation) rather than negative forces (eg, retraction). The sig-
nificance of feature comparison results shows a potential avenue 
for further exploration of fusing custom-designed features into 
deep learning models.

Utilizing time-series data, machine-learning models were 
developed by fusing custom-designed features with the receptors 
of the InceptionTime network, that is, the FTFIT deep learning 
model. However, for the present data, the highest performance 
belonged to models without feature infusion, that is, ResNet 
and ResNet-XGBoost. Our results show that ResNet-XGBoost 
performed with the highest accuracy of 82% (F1-score of 82%, 
weighted average of 82%, AUC micro average of 0.97, and 
macro average of 0.96). Furthermore, models ingesting stan-
dardized data trained significantly faster and had comparable 
or higher accuracy than models trained on unstandardized data.

The performance of the model was evaluated using binary 
classifiers between various surgeons’ historical data and future 
data recordings. The slight decline in the accuracy from the 
ResNet-XGBoost model (acc = 82%) for all surgeons to our 
binarized ensemble model (acc = 84%) suggests that individual 
surgical technique transforms gradually over time. Based on our 
results, surgeon prediction models should be retrained every few 
months to account for these changes and optimize their perfor-
mance over time.

To the best of our knowledge, this is the first article to auto-
mate the identification of individual surgeons. Previous methods 

focusing on person recognition using gesture data have been 
reported.27,28 In contrast to our study, previous signature iden-
tification research primarily investigated security and safety to 
avoid unintended intrusions. For instance, 1 group developed 
RFnet, that is, a multi-branch 1D-CNN network, for classifying 
gestures using time-series data.28 The system could identify an 
authorized person with a potential application in smart homes 
for access prevention or personalizing privileges.28 Health and 
fitness data collected from wearable devices has been studied as 
a unique identifier of a person, which can pose a potential threat 
to targeted advertisement and violation of privacy rights.27 
Additionally, current literature on using deep learning methods 
in surgery sought to characterize surgeon skill level and surgical 
task identification using one or a combination of video object 
tracking or detection, spatiotemporal video descriptors, robotic 
kinematics, and virtual reality interfaces.29–35 Furthermore, 
limitations of previous studies include the use of the da Vinci 
Surgical System on bench-top surgical training models rather 
than direct manipulation of the surgical tools during clinical 
cases.36 In contrast to these studies, we use a unique data modal-
ity, surgical tool-tissue force time-series data, to automatically 
identify individual surgeons.

Identification of individual surgeons provides the opportunity 
to include this factor in explaining or accounting for variability in 
patient outcome.5–7,37–39 In so doing, this study introduces a quan-
titative paradigm to identify the defining features of individual 
surgeons and their surgical performance. Using this framework, 
we could quantify some of the nuances of surgical technique for 
the first time. Such a methodology that links tool-tissue force 
profiles corresponding to the surgeon via machine learning can 

FIGURE 3.  Distribution of surgeons’ force segments visualized using force 
range, entropy, and maximum force. Data point densities for each surgeon 
change over force range and entropy, and a positive correlation exists 
between range force and maximum force.

FIGURE 4.  Distribution of surgeon data and predictions in the validation 
dataset used in ensemble-based binary ResNet-XGBoost model. Identifying 
surgeon 1 was >80% accurate in the validation dataset collected 2 years after 
the training phase. A, The validation dataset was predicted to be surgeon 
1 in 81.6% of cases. B, In this figure, 83.8% of the validation dataset was 
predicted as surgeon 1.

TABLE 1.

Performance of Deep Learning Models for Surgeon Recognition

Metric LSTM CNN FTFIT ResNet InceptionTime ResNet-XGBoost 

Best-performing hyperparameters *lr = 0.001
Window = 200

batch size = 128

lr = 0.001
window = 200

filters/layer = 64
batch size = 128

lr = 0.0001
depth = 6

window = 200
batch size = 16

lr = 0.001
window = 200

batch size = 128

lr = 0.0001
depth = 6

window = 200
batch size = 16

lr = 0.001
window = 200

batch size = 128

Mean training time per epoch 13.7 s 0.23 s 2.30 s 2.54 s 2.00 s 1.40 s
Inference time
(on 469 test samples)

10.0 s 0.14 s 0.25 s 1.53 s 0.49 s 0.76 s

Accuracy 0.55 0.63 0.69 0.74 0.78 0.82
Sensitivity/recall 0.55 0.63 0.68 0.75 0.78 0.82
Precision 0.59 0.64 0.68 0.74 0.78 0.82
Testing F1-score 0.54 0.63 0.69 0.74 0.78 0.82
Micro-average AUC 0.86 0.88 0.93 0.95 0.96 0.97

*lr = learning rate.
AUC indicates area under the curve; CNN, convolutional neural network; FTFIT, Force Time-series Feature-based InceptionTime; LSTM, long short-term memory.
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well be the surgeon’s signature. Such a signature, quantitative 
and traceable, may provide a true basis for linking patient out-
come to the surgeon operating on a given procedure.

The strengths of this study include the incorporation of a 
novel data modality for a novel predictive task and the variety 
of state-of-the-art deep learning algorithms used. This included 
trainees in their final year, mentored by an attending surgeon at 
each site, thus creating a representative sample of force profiles 
across 2 sites. The models presented here were able to uniquely 
discern these individual surgeons. Limitations of this study 
include the small sample size of surgeons, given the early stage 
of technology integration. Although 89 cases were performed, 
more data is required to confirm the scalability of deep learning 
models in intelligently detecting the force profile of individual 
surgeons.

Ongoing work aims to validate our deep learning models 
using an expanded dataset with more surgeons and to describe 
the most predictive features which differentiate individual 
surgeons. Of interest is the potential for creating a ‘similarity 
index,’ which can compare the similarity of individual surgeons 
using bipolar forceps, allowing for professional collaboration 
and refined surgical performance feedback.
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