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Abstract: All eukaryotic cells are composed of the cytoskeleton, which plays crucial roles in coor-
dinating diverse cellular functions such as cell division, morphology, migration, macromolecular
stabilization, and protein trafficking. The cytoskeleton consists of microtubules, intermediate fila-
ments, and actin filaments. Cofilin, an actin-depolymerizing protein, is indispensable for regulating
actin dynamics in the central nervous system (CNS) development and function. Cofilin activities are
spatiotemporally orchestrated by numerous extra- and intra-cellular factors. Phosphorylation at Ser-3
by kinases attenuate cofilin’s actin-binding activity. In contrast, dephosphorylation at Ser-3 enhances
cofilin-induced actin depolymerization. Cofilin functions are also modulated by various binding
partners or reactive oxygen species. Although the mechanism of cofilin-mediated actin dynamics
has been known for decades, recent research works are unveiling the profound impacts of cofilin
dysregulation in neurodegenerative pathophysiology. For instance, oxidative stress-induced increase
in cofilin dephosphorylation is linked to the accumulation of tau tangles and amyloid-beta plaques
in Alzheimer’s disease. In Parkinson’s disease, cofilin activation by silencing its upstream kinases
increases α-synuclein-fibril entry into the cell. This review describes the molecular mechanism of
cofilin-mediated actin dynamics and provides an overview of cofilin’s importance in CNS physiology
and pathophysiology.

Keywords: cofilin; cofilin-1; cytoskeleton; neurodegeneration; actin; neuron; Alzheimer’s disease;
schizophrenia; LIMK1; SSH1

1. Introduction

Neurons contain a cytoskeleton consisting of microtubules, neurofilaments, and actin
filaments. Microtubules are composed of tubulin proteins and other polypeptides and
provide the essential organization of organelles. Neurofilaments, which are class IV inter-
mediate filaments, offer structural support to axons and influence nerve conduction velocity.
Actin filaments (F-actin) are composed of globular actin monomers (G-actin). Dynamic
transition can occur between G-actin and F-actin, and the polymerization-depolymerization
events are spatiotemporally regulated in response to numerous extracellular and intracel-
lular stimuli. Actin is an ATPase, and both G-actin and F-actin can bind to ATP. When
ATP-bound G-actin monomers assemble into a polymer, ATP hydrolyzes rapidly to gener-
ate ADP-Pi actin, slowly releasing the inorganic phosphate producing ADP-actin subunits.
Consequently, actin filaments exhibit considerable asymmetry with a plus end (barbed
end or growing end) and a minus end (pointed end or shrinking end) dominated by
ATP- and ADP-actins, respectively. ATP-G-actin monomers are preferentially polymer-
ized to the barbed end whereas, ADP-actin subunits are depolymerized from the pointed
end. The actin dynamics is precisely controlled by various actin-binding proteins (ABPs)
such as actin-related protein 2/3 complex (Arp2/3), cortactin, formin, profilin, and actin-
depolymerizing factor (ADF)/cofilin (reviewed in [1]).
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Three ADF/cofilin family members are expressed in mammals: ADF, cofilin-1, and
cofilin-2 (reviewed in [2,3]). The first member ADF (also known as destrin), encoded by the
gene DSTN in humans, was initially identified in the chick brain [4]. Cofilin was discovered
as an actin-interacting protein in the porcine brain [5,6]. Later, Ono et al. identified two
mammalian variants of cofilin, non-muscle type (also known as cofilin-1 and n-cofilin) and
muscle type (also known as cofilin-2 and m-cofilin) [7]. In humans, cofilin-1 and cofilin-2
are encoded by the genes CFL1 and CFL2, respectively. Different isoforms of ADF/cofilin
have qualitatively similar but quantitatively different effects on actin dynamics [8]. To
be noted, both ADF and cofilin show cooperative binding with actin filaments [9,10].
Interestingly, cofilin-1 comprises almost 90% of the total ADF/cofilin family in CNS [11].
For simplicity, we will use the term ‘cofilin’ to mention cofilin-1 hereafter.

Cofilin can bind to both G-actin and F-actin, exhibiting stronger affinities for the
ADP-bound actins than the ATP- or ADP-Pi-bound forms [12]. Cofilin binding to F-actin
induces actin subunit rotation, enhances Pi release along the filament, and promotes
filament severing in a concentration-dependent manner [8,13,14] (Figure 1). Severing is
rapid at a low cofilin/actin ratio and suppressed at a high cofilin/actin ratio. Interestingly,
only a few cofilin molecules can induce actin filament fragmentation, predominantly
at the pointed end of the cofilin domain [15,16]. Severing generates newer ends of the
filament where cofilin may accelerate the disassembly of ADP-actins from the pointed
end [16]. On the contrary, higher cofilin concentrations can favor actin polymerization
through nucleation [13]. Thus, cofilin is capable of controlling actin dynamics through both
polymerization and depolymerization.

Conceivably, regulation of cofilin activity is immensely complex where diverse stimuli
in the cell microenvironment orchestrate the cytoskeleton dynamics in physiological and
pathophysiological conditions [17,18]. For instance, two guidance cues, nerve growth
factor (NGF) and netrin-1, were found to activate cofilin, increase free actin barbed ends,
and promote growth cone protrusion [19]. Meyer et al. (2005) showed that insulin-like
growth factor I (IGF-I) enhances neuroblastoma cell motility through activation of cofilin
and its upstream regulators [20]. Tilve and colleagues (2015) observed an extracellular
synuclein-induced cofilin inactivation and dysregulation of neuronal actin dynamics [21].
At the molecular level, cofilin activity is modulated by phosphorylation-dephosphorylation,
binding to other regulatory proteins, and redox modifications. We have discussed essential
cofilin regulators in the next section. For further details, interested readers are referred to
many outstanding reviews describing the roles and regulations of cofilin in actin dynam-
ics [22–27].
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Figure 1. Actin dynamics regulation by cofilin. At low cofilin/actin ratios, cofilin severs F-actin and increases 
the ADP-actin monomer dissociation rate. Actin polymerization is favored in the presence of nucleotide ex-
change regulators (e.g., profilin, CAP). At high cofilin/actin ratios, cofilin stabilizes F-actin where all the sub-
units have undergone cofilin-induced rotation. Cofilin can also induce nucleation. Inactive p-cofilin does not 
significantly bind to F-actin, and actin severing or depolymerization is low.  
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Figure 1. Actin dynamics regulation by cofilin. At low cofilin/actin ratios, cofilin severs F-actin and increases the ADP-
actin monomer dissociation rate. Actin polymerization is favored in the presence of nucleotide exchange regulators (e.g.,
profilin, CAP). At high cofilin/actin ratios, cofilin stabilizes F-actin where all the subunits have undergone cofilin-induced
rotation. Cofilin can also induce nucleation. Inactive p-cofilin does not significantly bind to F-actin, and actin severing or
depolymerization is low.

2. Signaling Mechanisms for Cofilin Activation and Inactivation

The Ser-3 residue in cofilin is a conserved phosphorylation site [28,29]. Cofilin is
activated via dephosphorylation at Ser-3 by slingshot family proteins (SSHs; SSH1, SSH2,
and SSH3) through the Ca2+/calmodulin-dependent calcineurin activation pathway [30,31].
On the other hand, cofilin is deactivated via phosphorylation at Ser-3 by LIM domain
kinases (LIMKs) and dual-specificity testis-specific protein kinases (TESKs) [32,33]. Major
proteins modulating cofilin activity are listed in Table 1, and critical signaling mechanisms
are summarized in Figure 2.
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Table 1. Short overview of the functional modulators of cofilin.

Enzymes Gene Name Isoforms/Alternative
Names Roles in Cofilin Regulation Pathway References

Slingshot phosphatase SSH
SSH1
SSH2
SSH3

Dephosphorylate cofilin;
dephosphorylate coronins [31,34]

Coronins CORO
Coronin 1A
Coronin 1B
Coronin 2A

Induce cofilin activation via SSH1
dephosphorylation,

Interact with 14-3-3zeta protein
[35,36]

14-3-3zeta protein YWHAZ
Protein kinase C

inhibitor protein 1
(KCIP-1)

Downregulates cofilin activity via SSH1
deactivation and LIMK activation [37,38]

Protein kinase D
enzymes (PKDs) PRKD

PKD1
PKD2
PKD3

Decrease cofilin dephosphorylation by
promote 14-3-3zeta protein binding with
SSH1 and by inducing LIMK1 activation

[39]

Chronophin (CIN) PDXP Pyridoxal phosphate
phosphatase

Interacts and inhibits Hsp90-mediated
LIMK activation, hence induce

cofilin phosphorylation
[40,41]

LIM kinases LIMK LIMK1
LIMK2 Phosphorylate and inactivate cofilin [42,43]

TES kinases TESK TESK1
TESK2 Phosphorylate and inactivate cofilin [44,45]

Reelin RELN
Isoform 1
Isoform 2
Isoform 3

Increase cofilin phosphorylation by
inducing LIMK1 activation [46,47]

SH3 protein interacting
with Nck, 90 kDa (SPIN90) KCKIPSD

54 kDa
vimentin-interacting

protein
(VIP54)

Inhibits cofilin activity by binding [48]

Cortactin CTTN Amplaxin;
oncogene EMS1

Downregulates cofilin activity
by binding [49]

Adenylyl cyclase-
associated proteins (CAPs) CAP CAP1

CAP2
Enhance cofilin activity by synergizing

cofilin activity [50]

Though all three mammalian SSHs have cofilin phosphatase activity, SSH1 is the most
effective in activating cofilin [30]. The N-terminal domain of SSH1 interacts with cofilin,
where the Cys-393 residue of SSH1 is critical in removing the phosphate group from cofilin
Ser-3 [51,52]. SSH1 can also dephosphorylate LIMK1 and attenuate LIMK1′s enzymatic
activity towards cofilin [53]. Singla et al. (2019) showed that growth factor induction in
macrophages can activate cofilin and regulate actin dynamics through an SSH1-dependent
pathway [54]. In addition, SSH1 has independent F-actin-stabilizing and bundling activities
and promotes the disassembly of F-actin [34].

Coronins are F-actin-binding proteins, which also interact with microtubules and
modulate cell motility and actin dynamics. SSH1 can dephosphorylate Coronins. In-
versely, coronins may dephosphorylate SSH1 and induce cofilin activation at the leading
edge [35,36]. Coronin-1B directs SSH1 towards lamellipodia and thereby regulates the
activity of cofilin via dephosphorylation [35]. Coronin-2A binds and colocalizes with
SSH1 at focal adhesions [36]. Depletion of coronin-1B inhibits SSH1-induced lamellipodial
dynamics and cofilin activation, while coronin-2A depletion increases the p-cofilin level
and diminishes cell migration and focal adhesion. Coronin-2A depletion can be rescued by
expressing active cofilin in cell-free assays and cultured cells [36].
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Figure 2. Signaling mechanisms regulating cofilin activity in the CNS. Cofilin can be dephosphorylated at the Ser-3 residue
by SSHs and CIN. Cofilin Ser-3 phosphorylation is mediated by LIMKs and TESKs. These phosphatases and kinases can
be activated or inhibited by diverse upstream regulators. Cofilin activity is enhanced through binding with CAP2 dimers
(upper left), while binding with SPIN90 or cortactin decreases cofilin activity (upper right).

LIM-kinases are actin-binding proteins, which phosphorylate cofilin specifically at Ser-
3, attenuating the actin-binding, severing, and depolymerizing activities of cofilin [32,33],
reviewed in [24]. LIMK1 inactivates cofilin under control of ras-related C3 botulinum toxin
substrate 1 (Rac1), while LIMK2 phosphorylates cofilin in response to Rho and Cell Division
Cycle 42 (Cdc42) rather than Rac1 [42,55]. Downregulation of LIMK1 suppresses the
lamellipodium formation induced by Rac1 or insulin. Therefore, both LIMK1 and LIMK2
phosphorylate cofilin through the Rac1/PAK and Rho/Cdc42 pathways, respectively.

TESKs are structurally related to LIM-kinases with a kinase domain and a unique
C-terminal proline-rich domain. TESK1 can phosphorylate cofilin at Ser-3 in vitro and
in vivo to affect actin organization [44]. When active cofilin was expressed in HeLa cells,
rhodamine-phalloidin (a conjugate dye used to stabilize actin filaments in vitro) staining
was markedly decreased by cofilin-mediated actin depolymerization, and this phenomenon
was reversed by co-expression of TESK1 with cofilin [56]. Using TESK1 knockout mice,
Wang et al. (2018) showed that TESK1 kinase activity is critical in cofilin-induced actin
depolymerization [57]. TESK2 was also found to mediate cofilin phosphorylation and the
formation of actin stress fibers in cultured cells [45].

CAPs are multi-domain actin-binding proteins having the capability of actin dynamics
regulation at multiple levels [58]. CAPs and cofilin synergize to enhance depolymerization
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of F-actin at the pointed end [50]. CAPs compete with cofilin to bind with G-actin and
promote its nucleotide exchange. Though two homologs of CAPs, CAP1 and CAP2, have
been described in mammals, in humans, CAP2 plays a crucial role in neuronal cells, most
notably in spine morphology [59]. CAP2 dimers/oligomers promote depolymerization
of cofilin-saturated fragments of F-actin [50,58]. Alterations in dendritic architecture and
spine morphology have been reported in CAP2 knockout neurons [60]. A recent study
reported CAP2 as a postsynaptic protein relevant to regulating synaptic transmission and
plasticity by shaping dendritic and spine morphology, which are all interconnected to actin
depolymerization through cofilin activity [60].

In addition to phosphorylation-dephosphorylation, cofilin activity is also altered by
several other mechanisms, including redox regulation. ROS can directly modulate cofilin
in two different ways. First, direct oxidation of cofilin at Cys-139/147 to sulfenic acid in
response to hydrogen peroxide (H2O2) impairs cofilin binding to actin [61]. Second, under
mild oxidative stress, ROS induces cofilin activation and an intermolecular disulfide bond
between Cys-147 and Cys-39, forming cofilin-actin oligomers [62,63] and may lead to rod
formation under an oxidative environment. Nonetheless, ROS can modulate cofilin by
oxidation and inhibiting its actin-severing action.

3. Cofilin Functions in the CNS Development
3.1. Neural Tube Morphogenesis

Neurulation in human embryos proceeds in two phases, primary and secondary. The
neural tube, the embryonic precursor of the CNS, is developed from the neural plate
(a section of the ectoderm) via primary neurulation [64] involving four overlapping stages:
neural induction, shaping, bending of the neural plate, and neural tube closure [65]. Neural
crest cells are generated from the neural tube during neurulation and take long migration
routes before settling and differentiating into distinct cell types. Gurniak et al. (2005)
showed that the cofilin-mutant mouse embryos fail to form the neural tube and exhibit
substantial aberration migration of neural crest cells [66]. Cofilin mutation results in malfor-
mation of actin structure and loss of polarity of the neural crest cells, which severely affects
neuronal development in mice [66]. Cofilin is indispensable for actin depolymerization
and actomyosin organization in the neural epithelium, which are critical for neural tube
formation [67,68]. A lack of secretory pathway calcium ATPase (SPCA1) in mouse embryos
shares similar neural tube deformation with cofilin mutants [69]. Interestingly, SPCA1
was found to direct cofilin colocalization with apical actin filaments in the neuroepithe-
lium. Thus, cofilin appears as an essential protein for proper neural tube closure during
embryonic development.

3.2. Neurite Formation

The formation of neurites, the immature projections arising from the neuronal cell
body, is a unique and significant step in neurogenesis. The brain’s development and
function largely depend on neurite formation, which requires many growth signals, recep-
tor stimuli, and a complex interplay among intracellular and extracellular signals. Actin
can function as a microtubule entry barrier in dendritic spines and guide microtubules
growing into filopodia [70]. Penetration of microtubules is determined by an adequate
balance between forward polymerization and backward transport by the retrograde flow
of lamellipodium actin [71]. Three steps are involved in axon elongation: protrusion, en-
gorgement, and consolidation. In protrusion, F-actin’s polymerization triggers elongation
of lamellipodia and filopodia, whereas F-actin depolymerization guides polymerized mi-
crotubules to elongate into the peripheral domain. In the consolidation step, the transition
of microtubules from polymerization to stabilization enables the formation of the neurite
shaft. Repeated cycles of these three steps lead to axon elongation. Again, the growth
cone’s lamellipodial extension and filopodial retraction are necessary for all three axon
elongation stages [71]. Cofilin is highly concentrated in dendritic spines and growth cones
of neurons [72]. It controls the number and length of filopodia in response to brain-derived
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neurotrophic factor (BDNF) [73]. At the rear of actin meshwork in the growth cone, cofilin
promotes actin monomers’ recycling to the leading edge for assembly. Cofilin thereby
enhances membrane protrusion by altering interactions of F-actin with microtubules [74].
Cofilin also facilitates bundling and penetration of microtubules into the growth cone and
restricts microtubule entry into dendritic spines.

Furthermore, several proteins such as neuronal Nogo-A, semaphorin 3A, and BDNF
have been found to regulate the growth cone through cofilin [74,75]. Overexpression
of cofilin or its phosphorylation-resistant mutant cofilin S3A (active cofilin mutant) can
stimulate more growth cone-like waves, which produce significantly longer axons. In
contrast, the inactivation of cofilin by LIMK1 overexpression disrupts the fan-like structure
of the growth cone, perturbing axon elongation and growth cone motility [76,77]. Such
defects can be recovered by overexpressing S3A or slingshot homolog (SSH), a protein
phosphatase [51]. Enhancement of actin filament turnover in vivo is critically regulated
by cofilin during neurite formation. Cofilin knockout mice exhibit severe abnormalities in
multiple brain regions resulting from a profound retrograde flow reduction [76].

3.3. Synaptic Plasticity

Long-term potentiation (LTP) and long-term depression (LTD) render durable synaptic
plasticity essential for learning and memory. For long-term plasticity, actin-dependent
cytoskeletal changes are pivotal in mediating qualitative and quantitative alterations of
dendritic spines and synapses (reviewed in [78]).

LTP induction in dendritic spines accompanies spine enlargement and translocation
of cofilin to spines [79]. In the LTP, dendritic spine upregulation depends on cofilin phos-
phorylation, while spine downregulation in the LTD relies on Ca2+-dependent calcineurin-
induced cofilin dephosphorylation [80]. Cofilin is co-localized with CAP2 dimers in the
postsynaptic spine, which are required for actin turnover regulation [60]. Functional loss
of cofilin causes aberrant spine enlargement, while overaction of cofilin increases actin de-
polymerization, leading to spine shrinkage or immature spine formation [81–83]. Synaptic
relocation of AMPA receptors (AMPARs) is crucial for both LTP and LTD [84]. Cofilin has
been found to mediate actin dynamics in postsynaptic trafficking of AMPARs following
LTP induction [81]. Moreover, the mobility of AMPARs requires cofilin activity during
memory extinction, where phosphorylation of cofilin causes impairment in memory ex-
tinction [85]. Therefore, optimum cofilin activity is essential to mediate structural and
functional changes in synaptic plasticity.

3.4. Axon Regeneration

Axonal distortion following external or internal injury or inflammation in the CNS
ensues neurodegeneration. Ironically, a failed regeneration of injured axons in the adult
CNS is contrasted with the vigorous axonal growth during embryonic development. Re-
generation failure is associated with extracellular inhibitory factors and downregulation
of neuron-intrinsic regenerative programs (reviewed in [86,87]). Unlike the developing
neurons, injured CNS neurons do not display growth cones following axon injury [88];
instead, dystrophic bulbs called ‘retraction bulbs’ are generated (Figure 3).

Stern et al. (2013) studied regeneration events in a mouse nerve injury model where
facial axotomy induced nuclear localization of cofilin [89]. Interestingly, activating injured
neurons with serum response factor (SRF) enhanced neurite formation and growth cone
structures with concomitant depletion of cofilin’s nuclear translocation. Citron kinase
(citron-K) is an inhibitor of neuronal regeneration [90]. Knockdown of citron-K increased
cofilin levels in rat dorsal root ganglion (DRG) cultures treated with CNS myelin extract
and fibroblast growth factor-2 (FGF2). It attenuated neurite outgrowth inhibition of DRG
neurons [90]. Tedeschi et al. (2019) showed that nerve conditioning lesions in rodents
induce rapid actin turnover and growth cone regeneration in both the PNS and CNS [91].
Conditioning enhanced SSH1 activity and reduced p-cofilin levels, which accompanied a
significant increase in the number of growth cone protrusions and filopodia. Intriguingly,
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conditioning-induced axon regeneration was dependent on the actin severing activity, but
not on the depolymerization activity of cofilin [91]. In addition, both actin reorganization
and axon regeneration were seen to be abolished in cofilin-deficient neurons after spinal
cord injury [91]. Therefore, accumulating evidence positions cofilin as a potential molecular
target for CNS axon regeneration.
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axonal retraction.

4. Cofilin Dysregulation and Neurodegenerative and Psychiatric Disorders

Since cofilin is an essential regulator of cytoskeletal and neuronal functions, disruption
of its structure and function has profound implications in several neurological disorders
(Figure 4). Cofilin dysregulation in rodent models exhibited many neurological symptoms,
including cognitive impairment, memory dysfunction, and sleep deprivation [92]. On
the other hand, excess phosphorylation of cofilin can induce dendrite reduction and
neurodegeneration in Alzheimer’s disease (AD) and schizophrenia [93].
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Figure 4. Dysregulation of cofilin in neurodegenerative and psychiatric disorders. Upper (cofilin dysfunction in PD): Alpha-
synuclein can induce cofilin hyperphosphorylation leading to synaptic aberration. Alpha-synuclein can also interact with
cofilin to form cofilin-alpha-synuclein fibrils and enhance neurotoxicity. Lower left (cofilin dysfunction in schizophrenia):
Functional loss of 14-3-3 decreases the p-cofilin level and NMDA function. Lower right (cofilin dysfunction in AD): Aβ

oligomers can activate SSHs and induce cofilin hyperdephosphorylation, which enhances cofilin-actin rod formation in the
presence of excess ROS. Cofilin-actin rods can further accelerate the formation of tau tangles and Aβ plaques.

4.1. Alzheimer’s Disease (AD)

AD is a chronic neurodegenerative disease that starts slowly and worsens gradu-
ally over time. The most common symptoms are associated with signs of dementia and
behavioral disorders. Both familial and sporadic AD types can be induced by diverse
factors such as aging, oxidative stress, neuroinflammation, and synaptic disruption [94,95].
The two most common pathophysiologic hallmarks of AD are (1) deposition of extracel-
lular beta-amyloid (Aβ) (in senile plaques) and (2) phospho-tau containing intracellular
neurofibrillary tangles “tau tangles” (paired helical filaments) (reviewed in [96,97]).
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An appearance of amyloid-beta (Aβ)- and tau-dependent spine loss is a pathologic
feature that directly correlates with cognitive declines in AD [98]. Cofilin was found to
aggregate with Aβ oligomers in human AD brain tissues and mouse AD models [11,99].
Aβ interacts with many synaptic proteins such as NMDA receptors, PrPC (prion protein),
ephrin type B-2 receptor (EphB2), metabotropic glutamate receptor 5 (mGluR5), and
β-integrin [100]. Woo et al. (2015) showed, using both cultured neurons and in vivo
mouse models, that the ran-binding protein 9 (RanBP9) can mediate the accumulation
of cofilin-actin rods [101]. RanBP9 enhanced the PrPC-dependent Aβ-β1-integrin signal
and cofilin dephosphorylation by SSHs. The RanBP9-SSH1-cofilin axis promoted cofilin
translocation in the mitochondria and induced a cofilin-actin pathology leading to synaptic
and mitochondrial dysfunction [101,102]. Decreased cofilin expression by downregulation
of RanBP9 resulted in protection from memory and learning defects in a mouse model
of contextual fear conditioning, signifying roles of cofilin activity levels in hippocampal
learning and memory [101].

Cofilin activation in cultured neurons induced cofilin-rod formation, transform-
ing phosphorylated microtubule-associated protein tau (MAPT) into cytoskeletal inclu-
sions [103]. In Tau-P301S mice, active cofilin was found to promote tauopathy by specific
inhibition of the tau-microtubule interaction through direct competition with tau [104,105].
Moreover, synaptic dysfunction in tau-P301S hippocampal neurons was rescued through
genetic ablation of cofilin [104]. In the tau-P301S tauopathy mice, chronic administration of
LM11A-31, a small-molecule ligand for p75 neurotrophin receptor (p75NTR), prevented ac-
tivation of c-Jun N-terminal kinase (JNK) pathway and normalized cofilin phosphorylation
at Ser-3 [106]. Notably, LM11A-31 lessened the dendritic spine degeneration and improved
hippocampal behaviors, suggesting cofilin association in tauopathies [106].

Decreased CAP2 and increased cofilin levels were reported in hippocampal postsy-
naptic fractions in an AD mouse model [107]. Small hairpin RNA (shRNA)-mediated
down-regulation of CAP2 altered dendritic and spine morphologies in cultured neurons.
Additionally, induction of LTP in rat hippocampal neurons augmented CAP2 dimerization
and CAP2-cofilin association. This study also found a decreased hippocampal CAP2 pro-
tein level and a reduction in the ratio of CAP2/cofilin in AD patients compared to healthy
controls, implicating CAPs in AD pathophysiology [107].

4.2. Schizophrenia

Schizophrenia is a complex neuropsychiatric disorder with diverse symptoms, in-
cluding hallucination, delusions, restricted emotion, and other cognitive impairments
affecting memory, attention, and executive functions (review [108,109]). Synaptic dys-
functions such as altered synaptic plasticity and synapse formation have been reported
in schizophrenia [110,111]. Schizophrenia has been genetically associated with the opi-
oid binding protein/cell adhesion molecule (OPCML), which is abundantly expressed in
CNS, especially in the hippocampus and cerebral cortex [112]. OPCML polymorphisms
showed association with risks to schizophrenia and some other psychiatric disorders [113].
Opcml-deficient (Opcml−/−) mice also displayed abnormal sensorimotor gating and im-
paired cognitive behaviors similar to schizophrenia [114]. OPCML was found to interact
with EphB2 and control spine stability by regulating the ephrin-EphB2-cofilin signaling
pathway. Notably, a pharmacologic intervention with aripiprazole administration restored
the abnormal behaviors in Opcml−/− mice by increasing p-cofilin and facilitating spine
maturation [114]. This report suggests that decreased phosphorylation of cofilin might be
involved in schizophrenia pathophysiology.

Another study reported that functional inhibition of 14-3-3 protein in neurons in the
mouse nervous system lead to behavioral deficits corresponding to the core symptoms
of schizophrenia [115]. A low level of phosphorylated cofilin and NMDA hypofunction
were observed in the mutant mice, suggesting that disruption of the 14-3-3 protein function
might cause schizophrenia symptoms through an aberration of actin dynamics. The
authors suggested that the 14-3-3 protein indirectly regulates p-cofilin level through the



Int. J. Mol. Sci. 2021, 22, 10727 11 of 18

δ-catenin signaling pathway rather than altering p-cofilin through a direct protein-protein
interaction [115].

4.3. Ischemic and Hemorrhagic Stroke

Immediately after ischemic stroke, neuronal cell death occurs rapidly due to initial
loss of blood flow, increased oxidative stress by an overload of cytosolic Ca2+, increased
excitotoxicity, lack of oxygen, and glucose. Overload of Ca2+ activates NADPH-oxidase
(NOX) through PKC and nitric oxide (NO), leading to a high level of glutamate accumula-
tion in extracellular space (reviewed in [116,117]). Glutamate causes excitotoxicity at higher
doses by overstimulating NMDA, AMPA receptors, Ca2+ overload, and mitochondrial
dysfunction [118]. Several studies reported that both non-NMDA and NMDA receptors can
stimulate glutamate-induced cofilin dephosphorylation and rod formation [119–121]. Dur-
ing excitotoxic neuronal death, NMDARs stimulation promotes cofilin dephosphorylation
by the Ca2+-SSH1-cofilin pathway in cortical neurons where cofilin physiologically remains
phosphorylated. NMDA-induced cofilin dephosphorylation enhances cofilin translocation
in mitochondria and decreases p-cofilin level in the cytosol. Cofilin contributes to the
translocation of Bax into mitochondria. [122], promoting mitochondrial membrane depo-
larization and releasing apoptotic factors like cytochrome C. Acute knockdown of cofilin or
SSH1 exhibited a marked neuroprotective action on NMDA-mediated neuronal death [122].
Another recent study demonstrated that rod-induced microtubule-associated protein-2
(MAP2) degradation and cofilin-mediated apoptosis are reduced if cofilin is inhibited by
LIMK1 overexpression in the infarct cortex after stroke [123].

Moreover, cofilin oxidation may lead to oxidant-induced apoptosis [124]. Ischemic
and hemorrhagic stroke-induced oxidative stress might be a consequence of ROS-induced
cofilin oxidation, which translocates free cofilin into the mitochondria, thereby initiates
cytochrome C release leading to apoptosis [125]. During the acute phase of ischemic injury
and the initial phase of secondary injury to intracranial hemorrhage (ICH), inhibition of
elevated cofilin activation in the extracellular region either using pharmacological inhibitor
or via phosphorylation could diminish excitotoxicity-induced neuronal death (reviewed
in [126]).

Using a rat stroke model, Shu et al. (2019) suggested that rod formation disrupts
dendritic mitochondrial trafficking during ischemic conditions [120]. Accumulation of
rods induced impaired synaptic structure and blockade of dendritic trafficking in the
brain, whereas elevation of p-cofilin level successfully inhibited rod formation and rescued
synaptic structure [120].

Pharmacological induction of the 70 kDa heat shock protein (HSP70) has been sug-
gested as a potential therapeutic intervention for stroke [127]. The HSP70-deficient mice
exhibited an increased cofilin-actin rod and a larger lesion size in the ischemic border
zone. In contrast, HSP70 overexpression in transgenic mice reduced rod formation and
improved neurological symptoms following stroke [128]. These reports indicate that cofilin
is necessary during the recovery phase of stroke, and perturbed cofilin activity during this
period might negatively affect the regenerative process. Therefore, rod suppression via
cofilin modulation could emerge as an efficacious treatment approach for ischemic stroke.

4.4. Parkinson’s Disease (PD)

PD is another age-related neurodegenerative disorder characterized by the dopamin-
ergic neuron loss in the substantia nigra and by the presence of Lewy neurites (LNs) and
Lewy bodies (LBs) in cortical and subcortical neurons [129]. A significant component of
LBs and LNs is the misfolded alpha-synuclein (α-synuclein), a conventional protein widely
distributed in CNS, mainly in the presynaptic nerve terminals [130]. It has been suggested
that α-synuclein exerts its pathologic function in a cell-autonomous manner in the neuronal
cytoplasm and may amplify and propagate PD-related pathology [131].

Extracellular α-synucleins upregulate surface-exposed glucose-related protein of
78kDa (GRP78, an endoplasmic reticulum chaperone) that becomes clustered into mi-
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crodomains of the neuronal plasma membrane [132]. Interaction of α-synucleins and
GRP78 activates a signaling cascade, which could phosphorylate/inactivate cofilin and pro-
mote actin stabilization and stress fibers formation. Downregulation of GRP78 abolishes α-
synuclein-driven cofilin phosphorylation and actin stabilization. Alpha-synuclein has also
been correlated with PAK2 and Rac1 phosphorylation, which mediates cofilin phosphoryla-
tion via LIMK, implicating the Rac1/PAK2/LIMK/cofilin pathway in α-synuclein-induced
actin-alteration [132]. Interestingly, α-synuclein-induced cytoskeletal-associated defects
in axonal development could be prevented by cofilin activation in cultured hippocampal
neurons [21].

The pathological α-synuclein-fibrils are transmitted from the fibril-generating cells
to recipient cells and spread throughout the brain. Cofilin was found to facilitate the α-
synuclein-fibril uptake into recipient cells and the expansion of α-synuclein pathology [133].
The combined fibrils consisting of α-synuclein and cofilin are more compact and more
potent than aggregated α-synuclein-fibril. Though the underlying mechanism of cofilin-α-
synuclein-fibril interaction is unknown, it is deducible that in the presence of α-synuclein-
fibrils, cofilin may alter the membrane barrier by depolymerizing actin and form vesicles
to promote endocytosis [133]. Upregulation of cofilin by silencing ROCK1 and Rho was
found to increase α-synuclein-fibril entry, whereas cofilin downregulation decreased the α-
synuclein-fibril entry into the cell [134]. The authors suggested that the Rho-ROCK1-LIMK-
cofilin signaling pathway triggers α-synuclein-fibril uptake into the host cells, and the
pathogenic impact of α-synuclein in the actin cytoskeleton proceeds through cofilin [134].

Mutations of the parkin (PARK2) gene have been linked to autosomal recessive juvenile
parkinsonism and early-onset parkinsonism [135,136]. Lim et al. provided evidence on
functional interaction between parkin and LIMK1 in human dopaminergic neuroblastoma-
derived BE(2)-M17 cell line, where parkin overexpression enhances LIMK1-ubiquitination
and reduces the level of LIMK1-induced cofilin phosphorylation [137]. Further research
would be necessary to substantiate the roles of cofilin in the pathophysiology of early-
onset PD.

5. Conclusions

The findings generated from a plethora of studies implicate that proper balance in
cofilin activity is a prerequisite for actin turnover and CNS functions. Among various
regulatory pathways already discovered for cofilin, phosphoregulation through SSHs and
LIMKs is the most critical mechanism, where the Ser-3 residue of cofilin is the specific
target. Roles of cofilin Cys-39 and Cys-147 residues are also becoming apparent in the
context of ROS-induced rod formation in many neurodegenerative disorders. Newer
studies report different molecular pathways of cofilin through which cofilin dysregulation
and translocation in subcellular regions might be associated with various CNS disorders.

Recent advances in experimental techniques will significantly facilitate the understand-
ing of the signaling pathways of cofilin function in development and disease conditions.
Drugs or peptides targeting the critical amino acid residues of cofilin might be a new
potential therapeutic strategy for neurodegenerative disorders.
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