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Many observational studies estimate causal effects using methods based on
matching on the propensity score. Full matching on the propensity score is an
effective and flexible method for utilizing all available data and for creating
well-balanced treatment and control groups. An important component of the
full matching algorithm is the decision about whether to impose a restriction on
the maximum ratio of controls matched to each treated subject. Despite the pos-
sible effect of this restriction on subsequent inferences, this issue has not been
examined. We used a series of Monte Carlo simulations to evaluate the effect
of imposing a restriction on the maximum ratio of controls matched to each
treated subject when estimating risk differences. We considered full matching
both with and without a caliper restriction. When using full matching with a
caliper restriction, the imposition of a subsequent constraint on the maximum
ratio of the number of controls matched to each treated subject had no effect on
the quality of inferences. However, when using full matching without a caliper
restriction, the imposition of a constraint on the maximum ratio of the number
of controls matched to each treated subject tended to result in an increase in
bias in the estimated risk difference. However, this increase in bias tended to be
accompanied by a corresponding decrease in the sampling variability of the esti-
mated risk difference. We illustrate the consequences of these restrictions using
observational data to estimate the effect of medication prescribing on survival
following hospitalization for a heart attack.
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1 INTRODUCTION

Matching-based methods are popular when using observational data to estimate the effects of treatments, exposures, and
interventions. Many matching-based methods use the propensity score, which is defined as the probability of receiving
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the active treatment conditional on observed baseline covariates.1 The most common implementation of propensity score
matching is pair-matching, in which pairs of treated and control subjects are formed who share a similar value of the
propensity score. Methods for forming matched pairs include nearest neighbor matching, with or without a caliper, and
optimal matching.2 Alternatives to pair-matching include many-to-one matching, and variable ratio matching.3,4

An alternative matching method is full matching, which constructs strata or matched sets consisting of either one
treated subject and at least one control subject or one control subject and at least one treated subject.5,6 Subsequent
analyses can incorporate weights that are derived from the stratification imposed by the matched sets. There are at least
two attractive features of full matching compared to other matching approaches. First, it retains all subjects in the analytic
sample. This contrasts with conventional matching methods in which some subjects are excluded from the final matched
sample. Because of this, it avoids bias due to incomplete matching, which can occur when some treated subjects are
excluded from the matched sample.7 Second, full matching permits estimation of either the average treatment effect (ATE)
or the average treatment effect in the treated (ATT), whereas conventional pair-matching only allows for estimation of
the ATT.

Recent studies have explored methodological issues related to the use of full matching. These include evaluating
its performance for estimating the effect of treatments on binary outcome and extending it for use with survival or
time-to-event outcomes.8,9 Furthermore, the sensitivity to full matching to mis-specification of the propensity score model
was assessed.10 However, one important issue related to the implementation of full matching remains to be determined.
As described above, full matching constructs matched sets consisting of either one treated subject and at least one con-
trol subject or one control subject and at least one treated subject. In the conventional implementation of full matching
there is no constraint on the size of the matched sets. For example, in Hansen’s application of full matching to estimate
the effect of coaching on the SAT, the composition of the matched sets ranged from six exposed subjects matched to one
control subject to 161 control subjects matched to one exposed subject.6 Hansen suggests that there are two potential
drawbacks to placing no restrictions on the size of the matched sets. First, the estimated treatment effect may be strongly
dependent on the specification of the propensity score. Second, it can result in estimated treatment effects with decreased
precision compared to what would be observed with smaller matched sets, essentially leading to a few subjects being par-
ticularly influential in subsequent analyses. The second drawback is echoed by Stuart and Green, who suggest that not
constraining the size of the matched sets can result in an inflation of the standard error (SE) of the estimated treatment
effect.11

Accordingly, the objective of the current paper is to examine the impact of constraining the size of the matched sets
when using full matching to estimate risk differences. The paper is structured as follows: in Section 2, we briefly describe
propensity scores, full matching, and statistical methods for estimating the effect of treatment on binary outcomes when
using full matching. In Section 3, we describe a series of Monte Carlo simulations to examine the effect of restricting
the size of matched sets on the performance of full matching when estimating risk differences. Section 4 reports the
results of these simulations. In Section 5, we provide a case study in which we illustrate the use of full matching for
estimating the effect of discharge prescribing of medication in patients who were discharged from hospital following
admission for a heart attack. Finally, in Section 6, we summarize our findings and place them in the context of the existing
literature.

2 STATISTICAL METHODS

We provide a brief review of: (i) the propensity score; (ii) full matching; (iii) full matching with constraints; (iv) using full
matching to estimate risk differences.

2.1 The propensity score

In an observational study of the effect of treatment on outcomes, the propensity score is the probability of receiving
the treatment of interest conditional on measured baseline covariates: e = Pr(Z = 1| X), where X denotes the vector of
measured baseline covariates and Z denotes treatment status (Z = 1 for treated and Z = 0 for control).1 There are four
ways in which the propensity score is typically used for estimating the effects of treatments or interventions: matching,
stratification, weighting, and covariate adjustment.1,12,13 The use of propensity score methods rests upon the assumption
of strongly ignorable treatment assignment.1 This assumption has two components. The first, known as the assumption of
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“no unmeasured confounders” states that treatment assignment is independent of the potential outcomes conditional on
the measured baseline covariates. In other words, the observed covariates include all prognostically important covariates
that are related to treatment assignment. The second, known as the assumption of “positivity,” states that all subjects
have a non-zero probability of receiving either treatment.

2.2 Full matching

Full matching forms strata or matched sets consisting of either one treated subject and at least one control subject or one
control subject and at least one treated subject.5 An optimal full match is a full match that minimizes the mean within
matched-set differences in the propensity score between treated and control subjects. For the remainder of the paper, we
will use the term full matching to refer to optimal full matching. A refinement of optimal full matching is optimal full
matching with a caliper restriction, in which treated and control subjects can only be included in the same matched set
if their propensity scores differ by less than a pre-specified distance.14

To estimate effects using the full matching structure weights can be derived from the stratification imposed by the
full matching. One set of weights permits estimation of the ATE, while a second set of weights permits estimation of the
ATT. Weights that permit estimation of the ATT are constructed as follows: treated subjects are assigned a weight of one,
while each control subject has a weight proportional to the number of treated subjects in its matched set divided by the
number of controls in the matched set.15,16 The control group weights are scaled such that the sum of the control weights
across all the matched sets is equal to the number of uniquely matched control subjects. As the current paper focuses on
estimation of the ATT, we refer the reader elsewhere for a description of ATE weights for use with full matching.17

2.3 Full matching with constraints on the maximum ratio of control subjects
to treated subjects

As noted above, full matching forms matched sets consisting of either one treated subject and at least one control subject
or one control subject and at least one treated subject (with or without a caliper restriction). However, in the conventional
full matching algorithm there is no constraint on the size of the individual matched sets. The full matching algorithm
can be modified to impose a constraint on the maximum ratio of control subjects to treated subjects within each matched
set.6 While full matching with no constraint will result in the inclusion of all subjects in the resultant full matching
stratification the imposition of a constraint (either a constraint on the number of control subjects matched to each treated
subject or a caliper restraint) can result in the exclusion of some subjects from the resultant full matching stratification.

2.4 Using full matching to estimate treatment risk differences

Full matching on the propensity score can be used to estimate the effect of treatment on binary outcomes.8 This approach
involves computing the marginal probabilities of the occurrence of the outcome. Using the weights induced by full
matching, one can estimate the probability of the occurrence of the outcome in treated subjects and in control subjects,
separately. These denote the marginal probabilities of the occurrence of the outcome, reflecting the probability of the out-
come in the treated population (if using the ATT weights) if all these subjects were treated and if all these subjects received
the control condition. Formally, define P1 = E[Y (1) = 1] = 1

N1

∑N
i=1 wiYiZi and P0 = E[Y (0) = 1] = 1

N0

∑N
i=1 wiYi(1 − Zi),

where N1 and N0 denote the number of treated and control subjects, respectively, and wi denotes the weight induced by
full matching. The full matching estimator of the risk difference is P1 −P0.

3 MONTE CARLO SIMULATIONS TO EXAMINE THE EFFECT OF
CONSTRAINTS ON THE SIZE OF MATCHED SETS ON THE PERFORMANCE
OF FULL MATCHING

We conducted a series of Monte Carlo simulations to examine the effect of constraining the ratio of the number of controls
to treated subjects in each matched set on estimation of the marginal risk difference when the target estimand is the ATT.
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We considered a range of scenarios that varied in terms of the extent of confounding and the prevalence of treatment.
The performance of estimation of the risk difference was assessed using the following criteria: (i) bias in estimating the
true treatment effect; (ii) the standard deviation (SD) of the estimated risk differences across simulation replicates; and
(iii) the mean squared error (MSE) of the estimated treatment effect. These simulations were similar in design to those
used in a previous study that compared the performance of full matching with pair-matching on the propensity score and
inverse probability of treatment weighting (IPTW) using the propensity score.8

3.1 Simulating baseline covariates

We simulated data for a super-population of 1 000 000 subjects. For each subject, we simulated 10 baseline covariates (X1,
… , X10) from independent standard normal distributions.

3.2 Simulating treatment status

For each subject in the super-population we randomly generated a treatment status (Z = 1 treated vs Z = 0 control) using
the logistic model described in formula (1).

logit(Pr(Z = 1)) = 𝛽0 + 𝛽1X1 + 𝛽2X2 + 𝛽3X3 + 𝛽4X4 + 𝛽5X5 + 𝛽6X6 + 𝛽7X7+
𝛽8X8 + 𝛽9X9 + 𝛽10X10 (1)

The intercept, 𝛽0, in the treatment-selection model was chosen using a bisection approach so that the preva-
lence of treatment was equal to the desired value (this will be one of the factors allowed to vary in the simula-
tions). The regression coefficients in the treatment-selection model, 𝛽1 through 𝛽10 were set equal to log(k× 1.05),
log(k× 1.10), log(k× 1.20), log(k× 1.25), log(k× 1.50), log(k× 1.75), log(k× 2.00), log(k× 1.50), log(k× 1.25), and
log(k× 1.10) respectively. The parameter k affects the strength of the treatment-selection model (this will be one
of the factors allowed to vary in the simulations). As k increases, the strength of the treatment-selection process
increases.

3.3 Simulating binary outcomes

A binary outcome Y was simulated for each subject in the super-population using the logistic model described in
formula (2).

logit(Pr(Y = 1)) = 𝛼0 + 𝛼treatZ + 𝛼1X1 + 𝛼2X2 + 𝛼3X3 + 𝛼4X4 + 𝛼5X5 + 𝛼6X6 + 𝛼7X7+
𝛼8X8 + 𝛼9X9 + 𝛼10X10 (2)

The regression coefficients, 𝛼1 through 𝛼10 were set equal to 2, 1.75, 1.50, 1.25, 1.10, 1.05, 1.50, 1.75, 2, and 1.25,
respectively. The intercept, 𝛼0, was selected using a bisection approach so that the marginal probability of the outcome
if all subjects were untreated was 0.20. We used a bisection approach to select 𝛼treat so that the marginal population risk
difference in treated subjects was −0.02 (ie, the ATT was the target estimand).

3.4 Factors in the design of the Monte Carlo simulations

Our Monte Carlo simulations used a full factorial design in which two factors were varied. The first factor was the magni-
tude of the effect of covariates on treatment-selection. To do so, we allowed the scalar k (defined above in the coefficients
for the treatment-selection model) to range from one to four in increments of one. The second factor was the prevalence
of treatment, which took on the following six values: 0.10 to 0.60 in increments of 0.10. We thus examined 24 (4× 6)
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different scenarios. For each of the 24 scenarios, we drew 1000 random datasets, each consisting of 1000 subjects, sampled
without replacement from the super-population.

In the primary set of simulations described above, the true risk difference was −0.02 and we conducted full matching
in samples of size 1000. We considered three secondary sets of simulations. In the first two of these sets of secondary
simulations, we set the true risk difference to 0 and−0.04, while keeping the size of the samples at 1000. We thus examined
a null effect (0), a moderate effect (−0.02), and a strong effect (−0.04). These are equivalent to relative risk reductions of
0%, 10%, and 20%. In the third set of secondary simulations, we set the size of the samples to 500 while keeping the true
risk difference at −0.02.

3.5 Statistical analyses in sampled datasets

In each of the sampled datasets, we estimated the propensity score using a logistic regression model to regress treatment
assignment on the 10 variables X1 through X10. In each of the sampled datasets, we created 40 matched samples using
full matching. First, 19 matched samples were created using optimal full matching using the estimated propensity score.
We allowed the constraint on the maximum number of controls per treated subject to range from 2 to 20, increments of
1. Thus, in the first matched sample, we constrained the matched sets to contain at most two controls per treated subject,
while in the 19th matched sample, we constrained the matched sets to contain at most 20 controls per treated subject. We
then repeated the above process using full matching with a caliper restriction. Subjects were matched on the logit of the
propensity score with the restriction that matched treated and control subjects could not have a difference in the logit of
the propensity score of more than 0.2 of the SD of the logit of the propensity score. As with the first set of matched samples,
we created 19 matched samples using the different constraints on the maximum number of controls per treated subject
in each of the matched sets. Individuals who were not included in a matched set due to this restriction were dropped
from the analysis. For comparative purposes we created two additional matched samples in which no constraints were
placed on the maximum number of matched controls per treated subject (one created without a caliper restraint and one
created with a caliper restraint). Thus, using each sampled dataset, we constructed a total of 40 matched samples using
full matching.

In each of the 1000 sampled datasets for a given scenario, we assessed balance in each of the 10 measured baseline
covariates before matching and after matching in each of the 40 matched samples (balance was assessed separately in
each of the 40 matched samples constructed using full matching). We estimated the absolute standardized difference for
each of the 10 baseline covariates.18 For each covariate we then determined the mean absolute standardized difference
across the 1000 sampled datasets, both before and after matching.

Let 𝜃 denote the true treatment risk difference that was built into the data-generating process, and let 𝜃i denote the
estimated risk difference in the ith simulated sample (i = 1, … ,1000). The mean estimated risk difference was estimated
as 𝜃 = 1

1,000

∑1,000
i=1 𝜃i, while the relative bias was computed as 100 × 𝜃−𝜃

𝜃
. The MSE was estimated as 1

1,000

∑1,000
i=1 (𝜃i − 𝜃)2.

We also computed the SD of the estimated risk differences across the 1000 sampled datasets.
All analyses were conducted in the R statistical programming language (version 3.5.0). Full matching was imple-

mented using thematchit function from the MatchIt package (version 3.0.2).15,16 Full matching with a caliper restriction
was implemented using the fullmatch function in the optmatch package (version 0.9-10).

3.6 Bootstrapping for estimating the SE of estimated risk differences

We conducted a limited set of Monte Carlo simulations to examine the performance of the bootstrap for estimating the SE
of the estimated risk difference.19 These simulations are an extension of those that we reported previously.8 We restricted
the current simulations to two of the settings described above with a true risk difference of −0.02 and sample sizes of 500
and 1000. Furthermore, we only used full matching without a caliper restriction and with no constraint on the maximum
number of controls matched to each treated subject. In the previous examination of bootstrapping with full matching,
we restricted our simulations to scenarios with k = 1 in the treatment-selection process.8 In the current simulations,
we considered all four values of k, as well as the two different sample sizes. From each simulated sample drawn from
the super-population, we drew 200 bootstrap samples. In each bootstrap sample we estimated the propensity score and
then used full matching to estimate the risk difference. The SE of the estimated risk difference in the simulated sample
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was estimated as the SD of the estimated risk difference across the 200 bootstrap samples. A confidence interval for the
estimated risk difference was constructed using standard normal theory methods using the estimated SE.

Two analyses were conducted across the 1000 simulation replicates. First, we computed the ratio of the mean estimated
SE across the 1000 simulation replicates to the SD of the estimated risk difference across the 1000 simulation replicates.
If the bootstrap is performing as anticipated, this ratio should be close to one. Second, we determined the proportion
of estimated confidence intervals that contained the true risk difference. Given our use of 1000 simulation replicates,
empirical coverage rates lower than 0.9365 or greater than 0.9635 are statistically significantly different from the nominal
rate of 0.95 based on a standard normal theory test.

4 MONTE CARLO SIMULATIONS: RESULTS

4.1 Construction of the full matching stratification

In each stratification induced by full matching we computed: (i) the size of the resultant sample; (ii) the maximum
weighted induced by the stratification; (iii) the largest number of control subjects matched to one treated subject. We
determined the mean of these quantities across the 1000 simulation replicates for each scenario. Results regarding the
mean size of the resultant sample are summarized in Figures A1 (no caliper restriction) and A2 (caliper restriction) in
the supplemental online appendix. There is one panel for each of the four different strengths of the treatment-selection
model. We have superimposed horizontal lines denoting the mean sample size when full matching with no constraint was
imposed on the maximum number of controls per treated subject (note that the maximum size of the matched samples
was 1000). When matching without a caliper, imposing a constraint on the maximum number of controls matched to each
treated subject resulted in the exclusion of subjects from the resultant matched sample when the prevalence of treatment
was less than or equal to 30%. When no such constraint was imposed, all subjects were included in the matched sample.
When a caliper restriction was also imposed, then imposing a constraint on the maximum number of controls matched
to each treated subject resulted in a reduction in the size of the matched sample, with the magnitude of the reduction in
sample size being inversely proportional to the prevalence of treatment.

The mean maximum weight across the 1000 simulation replicates are reported in Figures A3 (no caliper restriction)
and A4 (with a caliper restriction) in the supplemental online appendix. In both settings, imposing a constraint on the
maximum number of controls matched to each treated subject resulted in a decrease in the maximum weight, as expected.

The maximum number of control subjects matched to each treated subject are reported in Figures A5 (no caliper
restriction) and A6 (with a caliper restriction) in the supplemental online appendix. With or without a caliper restriction,
the imposition of a constraint on the maximum number of control subjects matched to each treated subject resulted in
a substantially smaller maximum number than if no such constraint is imposed. In examining this number when no
constraint is imposed, we observe that there are matched sets containing more than 100 control subjects, regardless of
the strength of the treatment-selection process.

4.2 Balance of baseline covariates

The mean absolute standardized differences for each of the 10 baseline covariates across the 1000 original unmatched
samples are described in Figure A7 in the supplemental online appendix. There is one panel for each of the six preva-
lences of treatment. On each panel we have superimposed a horizontal line denoting a standardized difference of 0.1,
as some authors have suggested that standardized differences that exceed this threshold may be indicative of meaning-
ful imbalance.20 The intent of this figure is to inform the reader about the initial imbalance in the 10 baseline covariates
between the treated and control groups in the original sample. In each of the 24 scenarios there was substantial imbalance
in the 10 baseline covariates between the treated and control groups.

Due to the large number of matched sets formed (19 with a constraint on the maximum ratio of controls to treated
subjects and no caliper restriction; 19 with a constraint on the maximum ratio of controls to treated subjects and a caliper
restriction; 1 with no constraint on the maximum ratio of controls to treated subjects and no caliper restriction; 1 with no
constraint on the maximum ratio of controls to treated subjects and with a caliper restriction), we computed the maximum
mean absolute standardized difference across the 10 baseline covariates. The maximum mean absolute standardized
differences are reported in Figures A8 (no caliper restriction) and A9 (with caliper restriction) in the supplemental online
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appendix. In each figure there is one panel for each of the strengths of the treatment-selection process (as indexed by
the parameter k). We have plotted the maximum mean absolute standardized difference against the maximum ratio of
controls to treated subjects in the matched sets (ranging from 2 to 20), with one line for each of the six prevalences of
treatment. We have also added horizontal dashed lines denoting covariate balance when full matching with no constraint
on the maximum number of controls per treated subject in each matched set.

When using full matching with no caliper restriction (Figure A8), imposing a constraint on the ratio of controls per
treated subject tended to result in greater residual covariate imbalance compared to when no such constraint was imposed.
Furthermore, the degree of residual imbalance increased with the strength of the treatment-selection model. When the
prevalence of treatment was 10%, 20%, or 30%, the greatest residual imbalance was observed when the maximum ratio of
controls per treated subject in the matched sets was approximately equal to the ratio of control subjects to treated subjects
in the overall sample. When using full matching with a caliper restriction (Figure A9), the residual imbalance tended to
be the same regardless of the constraint on the maximum number of controls per treated subject. As above, the degree of
residual imbalance tended to increase with the strength of the treatment-selection model.

4.3 Relative bias in estimating marginal risk differences

Under the primary set of simulations (N = 1000 and risk difference = −0.02), the relative bias in estimating the marginal
risk difference is reported in Figures 1 (no caliper restriction) and 2 (with a caliper restriction). There is one panel for
each of the four different strengths of the treatment-selection model. We have superimposed horizontal lines denoting the
relative bias when full matching with no constraint was imposed on the maximum number of controls per treated subject.
When no caliper restriction was imposed (Figure 1), relative bias tended to be lowest when no constraint was imposed
on the maximum number of controls per treated subject. There were some values for the maximum number of controls
per treated subject that resulted in a very large relative bias. These large relative biases tended to be observed when the
maximum ratio of controls to treated subjects in the matched sets was approximately equal to the ratio of controls to
treated subjects in the overall sample. When a caliper restriction was imposed (Figure 2), imposing a constraint on the
maximum number of controls per treated subject tended to have no effect on relative bias compared to when no such
constraint was imposed. Furthermore, the relative bias did not vary according to the magnitude of this constraint on the
maximum number of controls per treated subject.

The corresponding results for the secondary sets of simulations are reported in Figures A10 and A11 (N = 1000 and
risk difference = 0), Figures A16 and A17 (N = 1000 and risk difference = −0.04), and Figures A22 and A23 (N = 500
and risk difference = −0.02) in the supplemental online appendix. Note that when the risk difference is equal to zero,
we report bias, rather than the relative bias. Qualitatively similar results were observed in each of these settings as in the
primary set of simulations.

We hypothesize that the observed bias that arises from the imposition of a constraint on the number of controls
matched to each treated subject has two potential sources. First, imposing a constraint on the maximum number of
controls matched to a treated subject can induce residual bias because the quality of the matches is not as good as if a
truly optimal match without such constraints was used. Second, we saw increasing bias with increasing strength of the
treatment-selection process. This increasing bias may reflect a greater dissimilarity between treated and control subjects.
Full matching without a caliper constraint forces the inclusion of all subjects, regardless of their dissimilarity, which can
allow for the residual bias to persist.

The large biases that we observed when the maximum ratio of controls to treated subjects in the matched sets was
approximately equal to the ratio of controls to treated subjects in the overall sample was a surprising observation. We
hypothesize that this may occur because there may be less capacity for full matching to generate well-balanced groups
when the ratio in the matched sample is the same as in the original data. It is possible that not much reordering can
happen in either direction (with treated or control subjects). An analogy may be what occurs with pair matching when
there are an equal number of treated and control subjects in the overall sample.

4.4 SD of the estimated risk differences across simulation replicates

Under the primary set of simulations (N = 1000 and risk difference = −0.02), the SD of the estimated risk differences
across the 1000 simulation replicates is reported in Figures 3 (no caliper restriction) and 4 (with a caliper restriction).
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F I G U R E 1 Relative bias (%) in estimated risk difference (no calipers) (N = 1000 & RD = −0.02) [Colour figure can be viewed at
wileyonlinelibrary.com]

When no caliper restriction was imposed (Figure 3), the sampling variability of the estimated risk difference when a
constraint was imposed on the maximum number of controls per treated subject tended to be no larger than when no such
constraint was imposed. When there was a moderate to strong treatment-selection process (k = 2, 3, or 4), the SD of the
risk difference tended to be minimized when the number of controls to treated subjects was constrained to approximately
equal the ratio of controls to treated subjects in the overall sample. Thus, in these settings, selecting a maximal number
of controls matched to treated subjects equal to that observed in the overall sample resulted in a substantial reduction
in the variability of the estimated treatment effect compared to when no such constraint was imposed. When a caliper
restriction was imposed (Figure 4), imposing a constraint on the maximum number of controls per treated subject tended
to have no effect on the variability of the sampling distribution of the estimated risk difference compared to when no such
constraint was imposed. Furthermore, the sampling variability of the estimated risk difference did not vary according to
the magnitude of this constraint on the maximum number of controls per treated subject.

The corresponding results for the secondary sets of simulations are reported in Figures A12 and A13 (N = 1000 and
risk difference = 0), Figures A18 and A19 (N = 1000 and risk difference = −0.04), and Figures A24 and A25 (N = 500 and
risk difference =−0.02) in the supplemental online appendix. Qualitatively similar results were observed in each of these
settings as in the primary set of simulations.

4.5 MSE of estimated risk differences

Under the primary set of simulations (N = 1000 and risk difference = −0.02), the MSE of the estimated risk differences
across the 1000 simulation replicates is reported in Figures 5 (no caliper restriction) and 6 (with a caliper restriction). In
general, when no caliper restriction was imposed (Figure 5), imposing a constraint on the maximum number of controls
per treated subject tended to result in an MSE that was equal to or greater than that obtained when no such constraint was

http://wileyonlinelibrary.com
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F I G U R E 2 Relative bias (%) in estimated risk difference (with calipers) (N = 1000 & RD = −0.02) [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 3 SD of estimated risk difference (no calipers) (N = 1000 & RD = −0.02) [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 4 SD of estimated risk difference (with calipers) (N = 1000 & RD = −0.02) [Colour figure can be viewed at
wileyonlinelibrary.com]

imposed. There were a few exceptions to this generalization, particularly when there was a very strong treatment-selection
process and the prevalence of treatment was modest. In those settings, using a constraint that was approximately equal
to the ratio of controls to treated subjects in the overall sample tended to minimize MSE. When a caliper restriction was
imposed (Figure 6), imposing a constraint on the maximum number of controls per treated subject tended to have no
effect MSE of the estimate risk difference compared to when no such constraint was imposed. Furthermore, the MSE
of the estimated risk difference did not vary according to the magnitude of this constraint on the maximum number of
controls per treated subject.

The corresponding results for the secondary sets of simulations are reported in Figures A14 and A15 (N = 1000 and
risk difference = 0), Figures A20 and A21 (N = 1000 and risk difference = −0.04), and Figures A26 and A27 (N = 500 and
risk difference = −0.02) in the supplemental online appendix. In general, qualitatively similar results were observed in
each of these settings as in the primary set of simulations.

4.6 Bootstrapping for estimation of SEs

Results of the simulations to examine the performance of the bootstrap for estimating the SE of the estimated risk differ-
ence and empirical coverage rates of bootstrap-based confidence intervals are reported in Table 1. In general, the bootstrap
estimate of the SE approximated the SD of the sampling distribution of the risk difference when the strength of the
treatment-selection process was weak to moderate (k = 1) and when the prevalence of treatment was between 0.3 and
0.6. The ratio was less than one when k> 1, indicating that the bootstrap estimate of the SE under-estimated the SD of
the sampling distribution of the risk difference in the presence of a strong treatment-selection process. Furthermore, the
magnitude of under-estimation increased as the strength of the treatment-selection process increased. When k = 1, the
empirical coverage rates of estimated 95% confidence intervals tended to be either conservative or approximately equal
to the advertised rate. When k≥ 2, empirical coverages rates were lower than the advertised rate. For both estimation of

http://wileyonlinelibrary.com


AUSTIN and STUART 111

5 10 15 20

0.
01

0.
02

0.
03

0.
04

Maximum ratio of controls to treated

M
S

E
 o

f e
st

im
at

ed
 r

is
k 

di
ffe

re
nc

e
Multiplier = 1

Pr(Z=1): 10%
Pr(Z=1): 20%

Pr(Z=1): 30%
Pr(Z=1): 40%

Pr(Z=1): 50%
Pr(Z=1): 60%

5 10 15 20

0.
01

0.
02

0.
03

0.
04

Maximum ratio of controls to treated

M
S

E
 o

f e
st

im
at

ed
 r

is
k 

di
ffe

re
nc

e

Multiplier = 2

5 10 15 20

0.
01

0.
02

0.
03

0.
04

Maximum ratio of controls to treated

M
S

E
 o

f e
st

im
at

ed
 r

is
k 

di
ffe

re
nc

e

Multiplier = 3

5 10 15 20

0.
01

0.
02

0.
03

0.
04

Maximum ratio of controls to treated

M
S

E
 o

f e
st

im
at

ed
 r

is
k 

di
ffe

re
nc

e

Multiplier = 4

F I G U R E 5 MSE of estimated risk difference (no calipers) (N = 1000 & RD = −0.02) [Colour figure can be viewed at
wileyonlinelibrary.com]

the SE and empirical coverage rates of 95% confidence intervals, there were no meaningful differences between when
samples were of size 500 compared to when samples were of size 1000.

5 CASE STUDY

5.1 Methods

The case study used data on patients hospitalized with acute myocardial infarction (or heart attack) who survived to
hospital discharge. We considered two different treatments: (i) receipt of a prescription for a statin lipid lowering med-
ication at hospital discharge; (ii) receipt of an angiotensin converting enzyme (ACE) inhibitor medication at hospital
discharge (each treatment was considered independently of the other treatment). These data were collected as part of
the Enhanced Feedback for Effective Cardiac Treatment (EFFECT) Study, an initiative intended to improve the quality
of care for patients with cardiovascular disease in Ontario.21 For the purposes of these analyses, subjects with missing
data on any of the variables listed below that were used to estimate the propensity score were excluded from the case
study. While methods for imputing missing data when using the propensity score have been described,22-28 we chose to
conduct a simple complete case analysis as our objective was simply to illustrate the choice of the maximum number
of controls matched to each treated subject using a convenience sample. Furthermore, we would also note that these
studies that examined the use of imputation when using propensity score methods focused on conventional matching
on the propensity score, stratification on the propensity score, and inverse probability of treatment weighting using the
propensity score. Research on the use of multiple imputation with optimal full matching merits investigation in future
research.
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F I G U R E 6 MSE of estimated risk difference (with calipers) (N = 1000 & RD = −0.02) [Colour figure can be viewed at
wileyonlinelibrary.com]

For the current study, the dichotomous outcome was survival to 3 years after hospital discharge. The study sample
for the case study consisted of 6978 subjects, of whom 2505 (35.9%) received a statin prescription at discharge and 4100
(58.8%) received an ACE inhibitor prescription at discharge. Of the study sample, 1554 (22.3%) patients died within 3 years
of hospital discharge.

For each of the two treatments, the propensity score was estimated using 36 baseline covariates: demographic char-
acteristics (age and sex); presenting signs and symptoms (acute cardiogenic shock, pulmonary edema); vital signs on
admission (systolic blood pressure, diastolic blood pressure, heart rate, respiratory rate); classic cardiac risk factors (dia-
betes, hyperlipidemia, hypertension, family history of coronary artery disease, and current smoker); comorbid conditions
and vascular history (stroke and/or transient ischemic attack, angina, cancer, dementia, peptic ulcer disease, previous
myocardial infarction, asthma, depression, peripheral arterial disease, previous coronary revascularization, chronic con-
gestive heart failure, hyperthyroidism, aortic stenosis); laboratory tests (glucose, white blood count, hemoglobin, sodium,
potassium, creatinine, and urea); cardiac measures (raised cardiac enzymes); results of echocardiogram (presence of ST
segment depression); and in-hospital cardiac procedures during the initial hospitalization (whether the patient under-
went a percutaneous coronary intervention). The propensity score was estimated using a logistic regression model in
which treatment status was regressed on these 36 baseline variables.

Full matching on the estimated propensity score was used to create a stratification of the study sample. We constructed
40 matched samples using full matching: 19 with a constraint on the maximum ratio of controls to treated subjects (rang-
ing from 2 to 20 in increments of 1) and no caliper restriction; 19 with a constraint on the maximum ratio of controls to
treated subjects (ranging from 2 to 20 in increments of 1) and a caliper restriction; 1 with no constraint on the maximum
ratio of controls to treated subjects and no caliper restriction; 1 with no constraint on the maximum ratio of controls to
treated subjects and with a caliper restriction.
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T A B L E 1 Estimation of SEs and 95% confidence intervals using bootstrapping

Ratio of SE to SD Empirical coverage rate

Prevalence of treatment
Treatment-strength
multiplier (k) N = 500 N = 1000 N = 500 N = 1000

0.1 1 1.12 1.16 0.979 0.979

0.1 2 0.97 0.92 0.917 0.890

0.1 3 0.87 0.88 0.854 0.852

0.1 4 0.89 0.80 0.799 0.809

0.2 1 1.12 1.10 0.962 0.969

0.2 2 0.92 0.88 0.869 0.860

0.2 3 0.81 0.79 0.765 0.756

0.2 4 0.82 0.74 0.774 0.747

0.3 1 1.03 1.04 0.959 0.956

0.3 2 0.87 0.84 0.823 0.822

0.3 3 0.79 0.78 0.752 0.726

0.3 4 0.77 0.75 0.739 0.723

0.4 1 1.01 1.03 0.944 0.951

0.4 2 0.85 0.86 0.799 0.800

0.4 3 0.73 0.74 0.695 0.731

0.4 4 0.73 0.71 0.661 0.665

0.5 1 1.01 1.02 0.939 0.950

0.5 2 0.81 0.77 0.775 0.769

0.5 3 0.74 0.71 0.691 0.682

0.5 4 0.70 0.67 0.605 0.605

0.6 1 1.02 0.96 0.942 0.940

0.6 2 0.76 0.76 0.707 0.710

0.6 3 0.67 0.65 0.578 0.599

0.6 4 0.66 0.63 0.571 0.566

Within each matched sample we computed absolute standardized differences of the mean for each of the 36 covariates
using the weights induced by the full matching. We also estimated the risk difference for the outcome comparing each of
the two treatments in each of the 40 matched samples.

All analyses were conducted in the R statistical programming language (version 3.5.0). Full matching was imple-
mented using the fullmatch function in the optmatch package (version 0.9-10).

5.2 Results

Covariate balance and estimated risk differences are reported in Figure 7. The top two panels report results for statin
treatment, while the lower two panels report results for ACE inhibitor treatment. For covariate balance we report the
maximum absolute standardized difference across the 36 baseline covariates. Each panel reports the relationship between
either balance (maximum absolute standardized difference) or the estimated risk difference and the maximum ratio of
treated to control subjects within each matched set. We have superimposed on each panel a horizontal line denoting either
the maximum absolute standardized difference or the estimated risk difference when no constraint on the maximum
ratio of controls to treated subjects within each matched sample.
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F I G U R E 7 Covariate balance and estimated risk differences in case study [Colour figure can be viewed at wileyonlinelibrary.com]

When considering statin treatment (vs no statin treatment), excellent covariate balance (all standardized differences
less than 0.1) was observed when using caliper matching (with or without a restriction on the maximum ratio of controls
to treated subjects in the matched sets) or when using matching without calipers and without a restriction on the maxi-
mum ratio of controls to treated subjects in the matched sets. In contrast to this, when using matching without calipers,
there was moderate residual covariate imbalance when the ratio of controls to treated subjects in the matched sets was
restricted to be three or less. When estimating the risk difference for statin treatment, estimates obtained using caliper
matching were essentially unchanged regardless of whether or not a restriction was placed on the maximum ratio of con-
trols to treated subjects in the matched sets. When using matching without calipers, the estimated risk difference was
substantially larger in magnitude when the maximum ratio of controls to treated subjects in the matched sets was four
or smaller.

When considering ACE inhibitor treatment (vs no ACE inhibitor treatment), the choice of constraint on the max-
imum ratio of controls to treated subjects in the matched sets had at most a negligible impact on balance of baseline
covariates (note the scale of this panel is different from that of the corresponding panel for statin treatment). Similarly,
absolute differences in the estimated risk difference were negligible across the different matching methods, regardless of
the constraint that was imposed.

6 DISCUSSION

We examined the impact of imposing a constraint on the maximum number of controls matched to each treated subject
on estimation of risk differences when using full matching. We found that, in general, bias was minimized when no
such constraint was imposed. In certain settings with a very strong treatment-selection process and a low prevalence of
treatment (≤30%), constraining the maximum number of controls matched to each treated subject to the ratio of controls
to treated subjects in the overall sample tended to result in estimated risk differences that had lower variability and lower
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MSE compared to when no such constraint was imposed. Thus, in some settings (characterized by a moderate to strong
treatment selection process combined with a low prevalence of treatment), the decision to impose a constraint on the
number of control subjects matched to each treated subject reflects the classic bias-variance trade-off. Bias was increased
when such a constraint was imposed, while the variability of the estimated treatment effect decreased. When full matching
with a caliper constraint was used, then imposing an additional constraint on the maximum number of controls matched
to each treated subject had no effect on estimation of risk differences.

The effect of constraining the maximum number of controls matched to each treated subject has received little atten-
tion in the literature. In an application of full matching to estimate the effect of adolescent marijuana smoking on adult
outcomes, Stuart and Green imposed such a restriction and used the ratio of control subjects to treated subjects in the
overall sample to inform the magnitude of this constraint.11 Their rationale for imposing such as restriction was that it
could improve the precision of the estimated treatment effect. Similarly, in an empirical application of full matching,
Hansen observed that imposing such a constraint resulted in estimates with improved precision.6 In our Monte Carlo
simulations, we observed that improved precision was indeed achieved by such a constraint. However, it came at the cost
of a substantial increase in bias in the estimated risk difference. MSE was minimized by imposing such a constraint only
when there was a very strong treatment-selection process and the overall prevalence of treatment was low to moderate
(≤30%).

As noted elsewhere, full matching has many attractive features.6,8,9,29 In particular, unlike conventional pair-matching,
it allows for the inclusion of all subjects in the matched sample. Many analyses that use full matching incorporate weights
that are induced by the stratification. The occurrence of extreme weights may be rarer than occurs with inverse probability
of treatment weights that are frequently used when using weighting to estimate causal treatment effects. The current
study addressed a void in the literature on full matching. By examining the impact of constraining the number of control
subjects matched to each treated subject, we have provided applied analysts with guidance on the implementation of full
matching so as to improve inferences of risk differences.

Our Monte Carlo simulations on the performance of the bootstrap with full matching extend those we reported
previously.8 In the previous simulations, which were limited to scenarios with a weak to moderate treatment-selection
process, we found that the bootstrap had relatively good performance. In the current extension to these simulations,
we found that in the presence of a strong treatment-selection process, the bootstrap resulted in poor estimates of the
SE of the risk difference and confidence intervals with sub-optimal coverage rates. We also found that sample size
had no meaningful impact on the performance of the bootstrap. The sub-optimal performance of the bootstrap high-
lights a limitation of using full matching when outcomes are binary: the lack of a formal variance estimator for the
estimated risk difference. However, the settings in which the bootstrap performed well (ie, those in which the odds
ratios for treatment selection were between 1.05 and 2) may represent scenarios that are common in applied research.
These results complement earlier findings on the use of the bootstrap with propensity-score matching. Previously, it
had been shown that the bootstrap should not be used with pair-matching when matching with replacement,30 while
the bootstrap performed well when using pair-matching without replacement.31 Methods for estimating the variance
of the estimated risk difference and to improve the performance of the bootstrap with full matching merit further
investigation.

Optimal full matching may be seen by some as an alternative to IPTW. To the best of our knowledge, only four stud-
ies have formally compared the performance of full matching with that of IPTW.8-10,32 The first focused on the use of
full matching with time-to-event or survival outcomes.9 In the presence of strong confounding, both methods resulted
in essentially unbiased estimation of the true hazard ratio, when the ATT was the target estimand. In the presence of
moderate confounding, the use of full matching resulted in minor bias (<5%) when the prevalence of treatment was low.
However, full matching resulted in estimates that displayed less variability than did IPTW in the presence of moderate
confounding. Furthermore, the MSE of the estimated log-hazard ratio was comparable between the two approaches. The
second study focused on settings with binary outcomes and when the ATT was the target estimand.8 Full matching tended
to result in estimates of the risk difference with less bias than did IPTW. The relative performance of the two methods
when assessed using MSE was inconsistent, with the results depending on the prevalence of treatment. The third study
examined scenarios with time-to-event outcomes when the propensity-score model was mis-specified and when the ATE
was the target estimand.10 In this study, it was observed that IPTW tended to result in more subjects with extreme weights
than did full matching. The fourth study compared the performance of a variety of propensity score methods and meth-
ods for estimating the propensity score when outcomes are rare.32 Extreme weights were found to affect both IPTW and
full matching. A final point of comparison is the nature of weights generated from each approach. IPTW allows for the
estimation of unique weights for each subject. Full matching, in contrast, will result in the same weights for all controls
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matched to the same treated subject (and all treated subjects matched to the same control subject). It is possible that
unique weights for each subject may lead to too much coarseness, and if the model is wrong, then the weights may be
more variable than they should be. Full matching gives some smoothing to these values and may lead to less reliance on
individual values (which may have been inaccurately estimated).

The current study is subject to certain limitations. The primary limitation was our reliance on Monte Carlo simulations
to assess the effect of constraints on the matching algorithm on estimation of the risk difference. Due to computational
limitations, we restricted our attention to a limited number of scenarios. However, these scenarios included a wide range
of treatment prevalences, a range of strengths of the treatment-selection process, a range of risk differences, and different
sample sizes. Thus, the included scenarios reflect a range of scenarios that are encountered in applied research. Further-
more, analytic calculations in this context are not feasible. A second limitation was that, while we examined the variability
of the estimated risk differences across simulation replicates, we did not conduct an extensive formal assessment of the
estimation of SEs of the risk difference. As discussed in a previous paper, formal estimators of the SE of the risk difference
when using full matching have not been developed.8 However, we conducted a limited assessment of the performance of
the bootstrap for estimating the SE of the estimated risk difference. We found that this approach performed well when
the prevalence of treatment was moderate and the strength of the treatment-selection process was weak to moderate. A
third limitation was that we restricted our attention to settings in which the propensity score model was correctly speci-
fied. In previous research, we examined the effect of mis-specification of the propensity score model on full matching and
inverse probability of treatment weighting.10 An examination of the effect of model mis-specification in conjunction with
a constraint on the number of control subjects matched to each treated subject is beyond the scope of the current study.
A fourth limitation is that we have focused on the ATT as the target estimand. While full matching can also be used to
estimate the ATE, our impression is that it is typically used to estimate the ATT (possibly because matchit provides the
ATT weights and not the ATE weights). The impact of constraints on the number of controls matched to each treated
subject on estimation of the ATE is beyond the scope of the current study. We speculate that comparable results would be
observed when estimating the ATE. A final limitation was that we focused our attention on estimation of risk differences
for binary outcomes. Binary outcomes are common in biomedical research.33 However, examination of estimation of dif-
ferences in means for continuous outcomes and differences in survival for time-to-event outcomes merits examination in
future research.

In conclusion, when using full matching with a caliper restriction, imposing a second restriction on the max-
imum ratio of the number of control subjects matched to each treated subject had no effect on the quality of
inferences about the risk difference. When no caliper restraint was imposed, the imposition of a constraint on the
maximal ratio of the number of controls matched to each treated subject tended to result in an increase in bias
in the estimated relative risk. However, this could be accompanied by a decrease in the sampling variability of the
estimated risk. Thus, the choice of whether or not to impose such a constraint reflects the traditional variance-bias
tradeoff.
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