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Abstract: Alcohol-related liver disease is a public health care burden globally. Only 10–20% of
patients with alcohol use disorder have progressive liver disease. This study aimed to identify lipid
biomarkers for the early identification of progressive alcohol-related liver disease, which is a key
step for early intervention. We performed untargeted lipidomics analysis in serum and fecal samples
for a cohort of 49 subjects, including 17 non-alcoholic controls, 16 patients with non-progressive
alcohol-related liver disease, and 16 patients with progressive alcohol-related liver disease. The serum
and fecal lipidome profiles in the two patient groups were different from that in the controls. Nine
lipid biomarkers were identified that were significantly different between patients with progressive
liver disease and patients with non-progressive liver disease in both serum and fecal samples. We
further built a random forest model to predict progressive alcohol-related liver disease using nine
lipid biomarkers. Fecal lipids performed better (Area Under the Curve, AUC = 0.90) than serum lipids
(AUC = 0.79). The lipid biomarkers identified are promising candidates for the early identification of
progressive alcohol-related liver disease.

Keywords: random forest; EPA; sphingomyelin; steatosis; alcohol-associated liver disease

1. Introduction

Chronic alcohol consumption induces steatosis through the acceleration of hepatic
lipogenesis, deceleration of lipid breakdown, and defective export of hepatic lipids [1]. The
majority of patients with alcohol use disorder develops hepatic steatosis. Alcohol-related
steatosis is reversible upon cessation of alcohol consumption. However, only 10–20% of
patients with heavy and daily drinking will develop progressive liver disease and cirrhosis.
Various modifiers affect the progression of alcohol-related liver disease, such as the pattern
of alcohol consumption, gender, age, race, genetics, nutritional factors, drugs, obesity,
smoking, and viral infections [1]. Although the progression of alcohol-related liver disease
is generally characterized from the histological point of view, the mechanisms that underlie
the histological progression are still not well understood. In addition, there is currently
no early prediction marker available to identify those who will develop liver fibrosis or
cirrhosis. The ability to distinguish progressive liver disease from non-progressive liver
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disease would allow for the early and aggressive treatment of the underlying alcohol use
disorder, which is an integral part for therapy of alcohol-related liver disease.

As a common hepatic change due to alcohol abuse, steatosis can invoke metabolic
changes. The liver plays a key role in lipid metabolism, such as taking up fatty acids
from dietary intake or the synthesis of fatty acids, which can be used as energy sources
through β-oxidation or substrates for triglyceride biosynthesis in hepatocytes [2]. Fatty
acid β-oxidation is inhibited by ethanol, increasing the availability of long-chain fatty acids
and enhancing their esterification [3]. Dysregulation of lipid influx and efflux induced by
ethanol further leads to the accumulation of lipids in hepatocytes.

Tracer studies demonstrated that alcohol consumption induces alterations in de novo
lipogenesis [4,5]. Chronic alcohol consumption increased hepatic free fatty acids, ceramide
metabolites, and decreased the level of acyl-CoA in a mouse model [6]. In addition, tissue-
specific changes in fatty acids induced by ethanol were also reported in a mouse model [7].
Dysregulation of the serum lipid profile was found in a patient cohort of 59 excessive
alcohol drinkers [8]. Although the serum lipidome has been studied to some extent, the
fecal lipidome is not well characterized in patients with alcohol use disorder. It is not clear
whether fecal lipids can be used to predict progressive alcohol-related liver disease. In
addition, fecal samples present an advantage over serum samples, as they can be collected
in a non-invasive way.

In the present study, we performed a serum and fecal lipidomics analysis in a cohort
of 49 subjects, including non-alcoholic controls and patients with non-progressive and
progressive alcohol-related liver disease. We aimed to: (1) reveal the alteration of serum and
fecal lipids in two patient groups compared with control subjects; (2) identify serum and
fecal lipid biomarkers that distinguish between progressive and non-progressive alcohol
use disorder; and (3) build a random forest model to predict progressive alcohol-related
liver disease.

2. Results
2.1. Patient Cohort

A total of 17 non-alcoholic controls, 16 patients with non-progressive alcohol-related
liver disease, and 16 patients with progressive alcohol-related liver disease, based on our
clinical classification, were included in this study. CK-18-M65 supported this classification,
with 33% of patients in the non-progressive, and 93% in the progressive, alcohol-related liver
disease group showing levels below or above 400 U/L, respectively. Patient characteristics
are summarized in Table 1. Patients with steato-hepatitis or steato-fibrosis had a preserved
synthetic liver function and showed no clinical signs of liver decompensation. There was
no significant difference in age, body mass index, and gender between control subjects
and the two patient groups. Compared with patients with non-progressive liver disease,
patients with progressive liver disease showed significantly higher levels of ALT, AST, GGT,
total bilirubin, CAP, and CK18-M65 (Table 1).

2.2. Serum Lipidome

Hierarchical clustering of the serum lipidome showed the profile of serum lipids from
control subjects was different from patients with non-progressive and progressive liver dis-
ease (Figure 1A, Supplementary File). A partial least square discriminant analysis (PLSDA)
showed that control groups were separated from the two patient groups (Figure 1B). A
Kruskal–Wallis rank sum test for component 1 showed a p-value of 1.2 × 10−6 between three
groups (Nemenyi-tests for pairwise comparison between non-progressive liver disease
vs. controls p-value = 0.0006; progressive liver disease vs. controls p-value = 1.6 × 10−6;
progressive liver disease vs. non-progressive liver disease p-value = 0.41). For component
2, the comparison between the three groups showed a p-value of 0.002 (Nemenyi-tests for
pairwise comparison between non-progressive liver disease vs. controls p-value = 0.038;
progressive liver disease vs. controls p-value = 0.0019; progressive liver disease vs. non-
progressive liver disease p-value = 0.61).
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Figure 1. Serum lipidome. (A) Heatmap of the serum lipidome in the control and two patient 
groups. (B) Partial least squares-discriminant analysis of the serum lipidome. (C) Volcano plot of 
the serum lipidome in control subjects and patients with non-progressive liver disease. Different 
colors represent different lipid classes. Fold change: non-progressive liver disease (n = 16)/controls 
(n = 17). (D) Volcano plot of the serum lipidome in control subjects and patients with progressive 
liver disease. Different colors represent different lipid classes. Fold change: progressive liver disease 
(n = 16)/controls (n = 17). (E) Venn diagram of significant serum lipids (adjusted p-value < 0.05). Dark 
blue: number of unique significant lipids between non-progressive liver disease and controls; Red: 
number of unique significant lipids between progressive liver disease and controls; Dark green: 
shared significant lipids. 

Figure 1. Serum lipidome. (A) Heatmap of the serum lipidome in the control and two patient
groups. (B) Partial least squares-discriminant analysis of the serum lipidome. (C) Volcano plot of
the serum lipidome in control subjects and patients with non-progressive liver disease. Different
colors represent different lipid classes. Fold change: non-progressive liver disease (n = 16)/controls
(n = 17). (D) Volcano plot of the serum lipidome in control subjects and patients with progressive
liver disease. Different colors represent different lipid classes. Fold change: progressive liver disease
(n = 16)/controls (n = 17). (E) Venn diagram of significant serum lipids (adjusted p-value < 0.05).
Dark blue: number of unique significant lipids between non-progressive liver disease and controls;
Red: number of unique significant lipids between progressive liver disease and controls; Dark green:
shared significant lipids.
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Table 1. Subject characteristics.

Non-Alcoholic
Controls

Non-Progressive
Liver Disease

Progressive Liver
Disease p-Value

Clinical parameter

Total n 17 16 16
Age, years, n = 48 38 (27–71) 37 (27–58) 41 (28–59) 0.470

Body Mass Index (BMI), kg/m2, n = 48 22 (19–29) 22 (19-31) 24 (18–31) 0.381
Gender (male), n (%), n = 48 14 (88) 11 (69) 14 (88) 0.292

Laboratory parameter

Albumin (g/dL), n = 27 4.7 (4.2–5.2) 4.7 (3.9–5.2) 0.558
Alkaline phosphatase (U/L), n = 28 65 (38–101) 81 (47–113) 0.072

ALT (U/L), n = 32 19 (11–37) 78 (37–184) <0.001
AST (U/L), n = 32 25 (15–36) 81 (46–283) <0.001

Total bilirubin (mg/dL), n = 29 0.3 (0.2–1.1) 0.5 (0.3–0.9) 0.031
GGT (U/L), n = 29 31 (4–213) 139 (11–952) 0.012

Platelet counts (×109/L), n = 28 268 (165–339) 220 (21–434) 0.270
Creatinine (mg/dL), n = 29 0.8 (0.5–1.0) 0.8 (0.6–1.2) 0.406

International normalized ratio, n = 29 1.0 (0.9–1.2) 0.9 (0.8–1.0) 0.115
Fibroscan (kpa), n = 32 4.8 (3.1–6.6) 6.0 (3.2–7.0) 0.122

CAP, (dB/m), n = 32
CAP > 250 dB/m, n (%)

254 (148–325)
9 (56)

314 (222–381)
15 (94) <0.001

Fecal albumin (µg/L), n = 43 16.9 (4.7–66.6) 56.8 (10.5–504.4) 31.2 (2.2–98.1) 0.002
CK18-M65 (U/L), n = 38 166 (104–282) 332 (158–616) 592 (316–1576) <0.001
sCD14 (ng/mL), n = 38 1376 (1074–1810) 1710 (1046–2570) 1745 (1191–2266) 0.033

Values are presented as medians with ranges in parentheses (·). ALT, alanine aminotransferase; AST, aspartate
aminotransferase; GGT, gamma-glutamyl-transferase; CAP: controlled attenuation parameter. Fecal albumin:
Non-progressive liver disease vs. controls: p-value < 0.001; Progressive liver disease vs. controls: p-value = 0.209;
Progressive liver disease vs. Non-progressive liver disease: p-value = 0.118. CK18-M65: Non-progressive
liver disease vs. controls: p-value = 0.084; Progressive liver disease vs. controls: p-value < 0.001; Progressive
liver disease vs. Non-progressive liver disease: p-value = 0.006. sCD14: Non-progressive liver disease vs.
controls: p-value = 0.053; Progressive liver disease vs. controls: p-value = 0.040; Progressive liver disease vs.
Non-progressive liver disease: p-value = 0.991.

Out of 1266 annotated serum lipids, 481 showed a p-value < 0.05 and 288 showed an
adjusted p-value < 0.05 when comparing patients with non-progressive liver disease with
controls (Figure 1C). When comparing patients with progressive liver disease with controls,
640 serum lipids showed a p-value < 0.05 and 519 showed an adjusted p-value < 0.05
(Figure 1D). A total of 250 serum lipids were found to be significantly different (adjusted
p-value < 0.05) in both patients with non-progressive liver disease and in patients with
progressive liver disease compared with controls (Figure 1E). Compared with control
subjects, 38 serum lipids were significantly different (adjusted p-value < 0.05) only in
patients with non-progressive liver disease; meanwhile, 269 serum lipids were significantly
different (adjusted p-value < 0.05) only in patients with progressive liver disease (Figure 1E).

2.3. Fecal Lipidome

Hierarchical clustering of the fecal lipidome showed that the profile of fecal lipids from
control subjects was different from the two patient groups (Figure 2A, Supplementary File).
A PLSDA plot showed control groups were generally separated from the two patient
groups (Figure 2B). A Kruskal–Wallis rank sum test for component 1 showed a p-value
of 5.7 × 10−7 between the three groups (Nemenyi-tests for pairwise comparison between
non-progressive liver disease vs. controls p-value = 0.0081; progressive liver disease vs.
controls p-value = 2.7 × 10−7; progressive liver disease vs. non-progressive liver disease
p-value = 0.052). For component 2, a comparison between the three groups showed a
p-value of 0.0008 (Nemenyi-tests for pairwise comparison between non-progressive liver
disease vs. controls p-value = 0.24; progressive liver disease vs. controls p-value = 0.00048;
progressive liver disease vs. non-progressive liver disease p-value = 0.087).
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Figure 2. Fecal lipidome. (A) Heatmap of the fecal lipidome in the control and two patient groups.
(B) Partial least squares-discriminant analysis of the fecal lipidome. (C) Volcano plot of the fecal
lipidome in control subjects and patients with non-progressive liver disease. Different colors rep-
resent different lipid classes. Fold change: non-progressive liver disease (n = 16)/controls (n = 17).
(D) Volcano plot of the fecal lipidome in control subjects and patients with progressive liver disease.
Different colors represent different lipid class. Fold change: progressive liver disease (n = 16)/controls
(n = 17). (E) Venn diagram of significant fecal lipids (adjusted p-value < 0.05). Red: number of unique,
significant lipids between progressive liver disease and controls; Dark green: shared significant lipids.

Out of 1219 fecal lipids, 218 showed a p-value less than 0.05 and seven showed an
adjusted p-value less than 0.05 when comparing patients with non-progressive liver disease
with controls (Figure 2C). When comparing patients with progressive liver disease with
controls, 357 fecal lipids showed a p-value < 0.05 and 121 showed an adjusted p-value
less than 0.05 (Figure 1D). Compared with controls, seven fecal lipids were found to be
significantly different (adjusted p-value < 0.05) in both patients with non-progressive liver
disease and in patients with progressive liver disease; meanwhile, 114 fecal lipids were
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found to be significantly different (adjusted p-value < 0.05) only in patients with progressive
liver disease (Figure 2E).

2.4. Lipid Biomarkers for Progressive Liver Disease

In order to find the biomarkers that can distinguish progressive liver disease from
non-progressive liver disease, we compared serum and fecal lipids in the two patient
groups. A total of 93 serum lipids showed p-values < 0.05, with 10 decreased in progressive
liver disease and 83 increased in progressive liver disease compared with non-progressive
liver disease (Figure 3A). One serum lipid, SM (d36:0), was significantly increased in
progressive liver disease, with an adjusted p-value < 0.05 (Figure 3A). A total of 106 fecal
lipids showed p-values < 0.05, with 96 decreased and 10 increased in progressive liver
disease compared with non-progressive liver disease (Figure 3B). One fecal lipid, PC
35:1; PC17:0-18:1, was significantly increased in progressive liver disease with an adjusted
p-value < 0.05 (Figure 3B). Notably, nine lipids were found to be significantly different
in both the serum and feces (p-value < 0.05) (Figure 3C). These lipids were increased
in the serum of patients with progressive liver disease compared with non-progressive
liver disease (Figure 3D). In the fecal samples, five out of nine lipids were increased;
meanwhile, the remaining four lipids were decreased in patients with progressive liver
disease compared with non-progressive liver disease (Figure 3E).

Metabolites 2022, 12, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 3. Comparison between progressive liver disease and non-progressive liver disease. (A) Vol-
cano plot of the serum lipidome for the two patient groups. Different colors represent different lipid 
class. Fold change: progressive liver disease (n = 16)/non-progressive liver disease (n = 16). (B) Vol-
cano plot of the fecal lipidome for the two patient groups. Different colors represent different lipid 
class. Fold change: progressive liver disease (n = 16)/non-progressive liver disease (n = 16). (C) Venn 
diagram of significant fecal lipids (p-value < 0.05). (D) Heatmap of nine serum lipid biomarkers. (E) 
Heatmap of nine fecal lipid biomarkers. SM: sphingomyelin; PC: phosphatidylcholine; FA: fatty 
acid; AC: acylcarnitine. 

2.5. Association of Lipid Biomarkers with Clinical Parameters 
We further examined the association of the nine lipid biomarkers with 14 clinical pa-

rameters. A Spearman correlation analysis showed that acylcarnitines, phosphatidylcho-
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Figure 3. Comparison between progressive liver disease and non-progressive liver disease. (A) Vol-
cano plot of the serum lipidome for the two patient groups. Different colors represent different lipid
class. Fold change: progressive liver disease (n = 16)/non-progressive liver disease (n = 16). (B) Vol-
cano plot of the fecal lipidome for the two patient groups. Different colors represent different lipid
class. Fold change: progressive liver disease (n = 16)/non-progressive liver disease (n = 16). (C) Venn
diagram of significant fecal lipids (p-value < 0.05). (D) Heatmap of nine serum lipid biomarkers.
(E) Heatmap of nine fecal lipid biomarkers. SM: sphingomyelin; PC: phosphatidylcholine; FA: fatty
acid; AC: acylcarnitine.
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2.5. Association of Lipid Biomarkers with Clinical Parameters

We further examined the association of the nine lipid biomarkers with 14 clinical pa-
rameters. A Spearman correlation analysis showed that acylcarnitines, phosphatidylcholine,
and sphingomyelins in the serum samples correlated with multiple clinical parameters,
including BMI, AST, ALT, GGT, alkaline phosphatase, total bilirubin, international nor-
malized ratio, platelet counts, fecal albumin, CAP, sCD14, and CK18-M65 (Figure 4A).
However, fatty acids in the serum samples did not correlate with any clinical parameters
(Figure 4A). In contrast, all of the nine lipid biomarkers in the fecal samples, including fatty
acids, were significantly correlated with multiple clinical parameters (Figure 4B).
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2.6. Prediction of Progressive Liver Disease

To distinguish progressive liver disease from non-progressive liver disease, we built a
random forest model using the identified nine lipid biomarkers (Figure S1). The area under
the curve achieved 0.79 when using nine serum lipids as variables (Figure 5A). Interestingly,
AUC achieved 0.90 when using nine fecal lipids as variables (Figure 5A). Among the nine
fecal lipids, the most important variable was eicosapentaenoic acid (EPA) (Figure 5B),
which was significantly increased (p-value < 0.05) in serum and feces from patients with
progressive liver disease compared with non-progressive liver disease (Figure 3D,E). The
fecal level of EPA was positively correlated with AST, ALT, GGT, CAP, and CK18-M65, and
negatively correlated with the international normalized ratio (Figure 4B).
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2.7. Microbial Lipid Pathways

Given that nine fecal lipids showed better predictive power than serum lipids, we
further investigated the potential contribution of gut microbiota to the host fecal lipidome.
A total of 26 microbial lipid pathways were detected by shotgun metagenomic analysis
(Figure 6A). A Lefse analysis showed that two microbial pathways were enriched in patients
with progressive liver disease compared with non-progressive liver disease, including the
LPSSYN-PWY superpathway of lipopolysaccharide biosynthesis and TEICHOICACID-
PWY teichoic acid (poly-glycerol) biosynthesis (Figure 6B).
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3. Discussion

Although alcohol-related steatosis is generally considered as rather benign and re-
versible, it can further develop into steatohepatitis with fibrosis and progression to cirrhosis.
The identification of effective and non-invasive biomarkers for progressive liver disease as
early as possible during the disease course is important as it likely impacts patient manage-
ment. In our present study, we identified lipid biomarkers in both fecal and serum samples.
Interestingly, fecal lipids performed better than serum lipids to predict progressive liver
disease (Figure 5A). Since fecal samples can be collected in a non-invasive way, they can
serve as an alternative for the currently widely used serum biomarkers. It is noteworthy
that the changing trajectory of fecal lipids could not fully represent the changing trajectory
of circulating lipids. As shown in Figure 3D,E, although the changing direction for five
lipids was consistent in both serum and fecal samples, including FA (14:1), FA (20:5), FA
(16:3), AC (12:0), and AC (16:0), the other four lipids showed an opposite changing direction
in serum and fecal samples.

As an omega-3 polyunsaturated fatty acid, EPA was the most important variable in
our random forest model to predict progressive liver disease (Figure 5B). An increased
level of EPA was found in both serum and fecal samples of patients with progressive liver
disease compared with non-progressive liver disease (Figure 3D,E). The impact of EPA on
alcohol-related liver disease is not well-understood. However, in non-alcoholic fatty liver
disease, supplementation of EPA at 1.8 or 2.8 g/L showed no benefit in blood or hepatic
markers of non-alcoholic steatohepatitis in a phase II clinical trial with 243 subjects enrolled
at 37 sites in North America [9].

Three sphingomyelin species were increased in serum samples, while they were
decreased in the fecal samples of patients with progressive liver disease compared with
non-progressive liver disease (Figure 3D,E). Sphingolipids are ubiquitous constituents of
the cell membrane. Hydrolysis of membrane sphingomyelins by acid sphingomyelinases
produces ceramides, which serve as a second messenger in the sphingomyelin signaling
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pathway and regulate a wide range of cellular responses [10]. Acid sphingomyelinases
could be activated by alcohol, which has been proven to be a regulator of steatosis, fibrosis,
lipotoxicity, and endoplasmic reticulum stress [11].

Although lipid metabolism is mainly controlled by the host, intestinal microbes also
affect host lipid composition, including the production of sphingolipids, polyunsaturated
fatty acid-derived metabolites, and hydroxy fatty acids [12–15]. Bacterial biosynthesis
of saturated long chain fatty acids was reduced by chronic ethanol feeding in a mouse
model [16]. In the present study, we found that two microbial lipid pathways were en-
riched in progressive liver disease compared with non-progressive liver disease, including
lipopolysaccharide biosynthesis and teichoic acid (poly-glycerol) biosynthesis (Figure 6B).
An in vitro study in primary hepatocytes showed that lipopolysaccharide potentiated the
effects of the ethanol on the sphingomyelin cycle [17]. In addition, lipopolysaccharide
is an important mediator of alcohol-related liver disease. Bacterial lipopolysaccharide
translocates to the liver, which is facilitated by a disrupted gut barrier. Lipopolysaccharide
binds to its receptor Toll-like receptor 4 in the liver, which contributes to the progression
of alcohol-related disease [18]. Thus, increased microbial lipopolysaccharide biosynthesis
could contribute to disease progression. In addition to lipopolysaccharide, which is found
in the outer membrane of Gram-negative bacteria, the biosynthesis of teichoic acids was also
increased, which is mostly found within the cell wall of Gram-positive bacteria (Figure 6B).
Teichoic acids include both lipoteichoic acids and wall teichoic acids. Lipoteichoic acids are
the agonist of Toll-like receptor 2 [19]. The activation of Toll-like receptor 2 also contributes
to alcohol-related liver disease [20].

The limitations of this study include that the sample size is relatively small, the
information on polymorphism, alcohol dehydrogenase (ADH), or Cytochrome P450 2E1
enzymes in patients is not available; liver tissue in this patient cohort is not available either.
Although we used a cross-validation approach in the random forest model, our findings
need to be confirmed in an independent, larger patient cohort using targeted lipid analysis.
Despite this, we identified that lipid biomarkers, especially fecal lipids, showed great power
to predict progressive liver disease at an early stage. This will allow physicians to initiate
aggressive treatment of the underlying alcohol use disorder, which is currently the most
important intervention for alcohol-related liver disease.

4. Materials and Methods
4.1. Patients

A total of 32 alcohol use disorder (AUD) patients (Diagnostic and Statistical Manual
of Mental Disorders, Fourth Edition criteria) admitted for elective alcohol withdrawal to a
dedicated alcohol withdrawal unit were recruited for the study. Inclusion and exclusion
criteria has been described in our previous study [21]. Stool samples were collected from
the first bowel movement after admission. They were compared to a total of 17 nonalcoholic
controls, who were social drinkers and consumed less than 20 g of alcohol per day, matched
for gender, age, and BMI. During the two months preceding enrollment, nonalcoholic
controls or patients with alcohol use disorder did not take immunosuppressive medication
or antibiotics.

AUD patients were split into non-progressive liver disease and progressive liver
disease based on clinical parameters as described in our previous publication [21]. The
determination of blood cytokeratin 18, soluble CD14, and fecal albumin levels has been
described in our previous study [21].

4.2. Lipidomics Analysis

Serum and fecal sample extraction was performed as described in our previous pub-
lication [22]. Fecal samples (10 mg) were homogenized at 1500 rpm for 30 s using a
GenoGrinder 2010 (SPEX SamplePrep, Metuchen, NJ, USA). Serum samples (20 µL) were
extracted without homogenization. Lipidomics data acquisition was performed as de-
scribed in our previous publication [22]. LC-MS raw data files were converted to ABF
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files using ABF converter (https://www.reifycs.com/AbfConverter/, accessed on 4 March
2021) and then processed by MS-DIAL version 2.94 [23] and MS-FLO [24] as described in
our previous publication [22]. For compound identification, retention time-m/z libraries
and MS/MS spectra databases were used as uploaded to MassBank of North America.
Features present in at least 50% of samples in each group were reported.

4.3. Shotgun Metagenomics Analysis

Due to the sample availability, fecal DNA was extracted from stool samples in seven
control subjects, 16 patients with non-progressive liver disease, and 15 patients with
progressive liver disease using a FastDNA Spin Kit for Soil (MP-Biomedicals, Irvine, CA,
USA) as described in our previous publication [25]. Illumina HiSeq 4000 generating 150 bp
paired-end reads was used for shotgun metagenomics sequencing. Quality control of reads
was performed using KneadData version 0.7.2 (https://huttenhower.sph.harvard.edu/
kneaddata/, accessed on 4 March 2021), followed by The HMP Unified Metabolic Analysis
Network 2 (HUMAnN2) version 0.11.1 (https://huttenhower.sph.harvard.edu/humann2/,
accessed on 4 March 2021) for the profiling of microbial pathways [26]. MetaCyc database
was used for the fecal microbial pathway analysis [27]. Each of the HUMAnN2 abundance
output was normalized into relative abundance. A linear discriminant analysis (LDA) effect
size (LEfSe) was used in this study for the biomarker discovery [28].

4.4. Statistical Analysis

R (version 3.6.2) (https://cran.r-project.org/bin/windows/base/old/3.6.2/, accessed
on 4 March 2021) was used for statistical analysis. A Kruskal–Wallis and Mann–Whitney–
Wilcoxon test was used for the comparison of three groups and two groups, respectively.
The Benjamini–Hochberg procedure was used to control the false discovery rate. Heatmap
and PLS-DA plots were generated using MetaboAnalyst 4.0 [29]. The Spearman correlation
was conducted to correlate clinical parameters with serum or fecal lipids. A random forest
model was built on the H2O platform (https://www.h2o.ai, accessed on 6 April 2021) to
predict the progressive liver disease using serum and fecal lipids. The lipidomics dataset
was split into training and test datasets (80:20 stratified splits). We performed a stratified
5-fold cross-validation on the training set to choose the tuning parameters for the model.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12050433/s1, Figure S1: Boxplot of nine fecal lipids used
for the prediction of progressive liver disease. Supplementary File: Serum and fecal lipidome.
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