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Environmentally-Controlled Near 
Infrared Spectroscopic Imaging of 
Bone Water
Ramyasri Ailavajhala1, Jack Oswald1, Chamith S. Rajapakse2 & Nancy Pleshko   1

We have designed an environmentally-controlled chamber for near infrared spectroscopic imaging 
(NIRSI) to monitor changes in cortical bone water content, an emerging biomarker related to bone 
quality assessment. The chamber is required to ensure repeatable spectroscopic measurements of 
tissues without the influence of atmospheric moisture. A calibration curve to predict gravimetric water 
content from human cadaveric cortical bone was created using NIRSI data obtained at six different 
lyophilization time points. Partial least squares (PLS) models successfully predicted bone water content 
that ranged from 0–10% (R = 0.96, p < 0.05, root mean square error of prediction (RMSEP) = 7.39%), 
as well as in the physiologic range of 4–10% of wet tissue weight (R = 0.87, p < 0.05, RMSEP = 14.5%). 
Similar results were obtained with univariate and bivariate regression models for prediction of water in 
the 0–10% range. Further, we identified two new NIR bone absorbances, at 6560 cm−1 and 6688 cm−1, 
associated with water and collagen respectively. Such data will be useful in pre-clinical studies that 
investigate changes in bone quality with disease, aging and with therapeutic use.

Water is an important contributor to bone quality, and makes up ~approximately 10% of cortical bone wet 
weight1. Increased fracture risk and bone fragility have been associated with a decrease in the overall skeletal 
tissue water content2–4. However, specific regions associated with water changes have not been fully elucidated. In 
cortical bone, water generally can be found as tightly and loosely (surface) bound to either collagen and mineral, 
and within the pore network. In collagen, the helical structure is stabilized via intramolecular and intermolecu-
lar hydrogen bonding of water molecules5. In mineral, water molecules are in part tightly bound to carbonated 
crystals in the apatite core6. Water is also loosely bound to the amino acid side chains in collagen, as well as to 
the surface ions in mineral crystals. Additionally, surface water is also found between the collagen and mineral 
interphase1,7.

Cortical bone water content has been evaluated through several destructive and nondestructive tech-
niques1,2,8–11. Gravimetric analysis is considered a gold standard method for evaluation of water content in biolog-
ical tissues12. Nevertheless, since this method is destructive and time consuming, it has motivated development of 
nondestructive techniques that can be applied for assessment of water related to bone quality. One such method 
is NIRSI, a technique based on radiation in the near infrared region (NIR) of the electromagnetic spectrum, 
4000–13000 cm−1. The sensitivity of NIR to water has been widely studied as a quality parameter in the food sci-
ence, agricultural and pharmaceutical industries13–18. NIR spectra are comprised of overtones and combination 
absorbance bands from molecular vibrations of C-H, O-H, S-H and N-H bonds19,20. However, a typical spectrum 
in the NIR consists of overlapping bands dominated by water O-H absorbances, which can make it challenging to 
interpret spectral absorbances from non-aqueous components. In contrast, one primary advantage of NIR is that 
it penetrates several millimeters into a sample, which permits a full-depth chemical analysis of biological tissues 
and materials21.

NIRSI has been utilized to study water content in musculoskeletal tissues such as cartilage and bone. Padalkar 
et al.22 evaluated water content in articular cartilage by gravimetric and NIR techniques, and NIRSI helped to 
differentiate between free (6890 cm−1) and bound (5200 cm−1) water in cartilage. More recently, Rajapakse et al.20 
non-destructively evaluated compositional changes in aging cadaveric cortical bone tissues by NIRSI for skeletal 
quality assessment, and correlated matrix (4608 cm−1) and water absorbances to MRI-derived water content in 
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the same tissues. Together, both studies showed that NIRSI is a sensitive method for evaluation of changes in 
tissue water content, and correlation to other conventional techniques.

Other nondestructive techniques that have been used to evaluate cortical bone water content are Raman spec-
troscopy1,11 and magnetic resonance imaging (MRI)20,23. Unal et al.1 conducted dehydration studies in bovine 
cortical bone samples to determine Raman spectral water absorbances that can be used as biomarkers for bone 
quality assessment. That study labeled Raman spectral intensities for water compartments in cortical bone as 
bulk water, collagen-bound water, mineral-bound water and water associated with mineral and collagen24. Even 
though individual peak intensities at specific time points of dehydration where useful for assessment of changes 
in water, the instrumentation used for the analyses was custom built, and not widely available. Many common 
Raman spectrometers produce spectra that can have very low signal to noise ratios, and fluorescence interference 
can be a problem during data analysis25. MRI imaging of water has the advantage of being applicable to clinical 
studies, and several studies have investigated changes in water content in tissues for bone quality assessment23,26,27. 
Drawbacks of MRI analyses are that only collagen-bound water and pore water can be detected currently, and 
mineral-bound water signatures are not available. Further, in clinical MRI studies, the best resolution is generally 
on the order of a few hundred microns. In contrast, NIRSI will allow for data acquisition at a pixel resolution as 
high as 6.25 microns20,28.

One major challenge in evaluation of water content using spectroscopic techniques is the constant fluctuations 
in hydration and dehydration of tissues during data collection. Recent studies that have evaluated cortical bone 
water content using NIRSI and Raman spectroscopy have acquired data in atmospheric conditions1,20. Depending 
on the atmospheric humidity, and the time required for data collection, tissues may undergo a reoccurring change 
in their water content which may be reflected over time in their spectra by a potential increase or decrease at the 
frequencies of water absorbances. Consequently, the repeatability of studies may be challenging, in particular 
during water calibration studies29.

Motivated by the challenges with water vapor fluctuations, and the need to definitively identify 
NIR absorbances from mineral and collagen components in bone, we designed and implemented an 
environmentally-controlled chamber to optimize the collection of NIR spectral imaging data from biological 
tissues. This is a partially sealed chamber that allows for air flow at a constant humidity level. Thus, the water 
loss and gain during data collection is reduced and changes in atmospheric factors, such as water absorbances, 
are minimized. Here, we describe the chamber, and subsequent experimental NIRSI data obtained from serially 
dehydrated bones with a range of water content. Utilizing multivariate analysis, we established a calibration curve 
from which gravimetric water content can be predicted from NIR spectral data obtained from human cortical 
bone in the chamber. In addition, serial dehydration of bone enabled identification of absorbances attributed to 
non-aqueous components of bone. These studies will provide a firm foundation for NIRSI evaluation of water 
content in harvested bone, and for pre-clinical studies of bone quality.

Results
The results described below are based on the following approach where we assessed the optimal sampling method 
using environmental chambers. Initially, a small chamber was designed to evaluate NIR data collection from wet 
(hydrated) and dry bone samples in low and high relative humidity (RH), with the goal of determining which 
environment was most stable for data collection. Since the imaging area in the small chamber was limited by the 
size of the cover slip (Fig. 1), a large chamber was subsequently designed and validated for data collection from 
hydrated and dry clinical size bone samples (described following the small chamber results) (Fig. 2).

Optimization of spectral data collection in an environmentally-controlled chamber.  The small 
chamber (Fig. 3) continuously maintained either high or low RH for 60 minutes during NIRSI data collection 
(Fig. 3a,b). Collection of spectral imaging data from dry bone in a humidified environment resulted in absorption 

Figure 1.  Small environmental chamber with input and output for airflow tubing, and humidity sensor.
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of moisture and a higher water content after 15 minutes of data collection (Fig. 3c). However, spectral acquisition 
from hydrated bone in a humidified environment resulted in minimal water absorption, likely due to those sam-
ples already being saturated (Fig. 3c).

Conversely, in a low RH environment, neither hydrated or dry bone absorbed or lost a significant amount 
of water, and the water absorbance from the bone samples remained stable (Fig. 3d). Accordingly, low RH was 
determined the optimal condition for creation of the calibration curve from serially dehydrated bone samples, 
and the large chamber (Fig. 2) was only validated with low RH.

The validation of the large chamber was performed by periodic NIRSI data collection from marked areas of 
bone samples, combined with evaluation of changes in a well-defined NIR bone water absorbance at 5184 cm−1. 
Once the data collection parameters were optimized, a NIRSI water calibration curve from cadaveric human bone 
samples of uniform thickness was developed using multivariate spectroscopic methods. Further, NIR absorb-
ances from non-aqueous components of bone were elucidated by analysis of dehydrated bone tissues.

Figure 2.  Large environmental chamber with input and output for airflow tubing, and humidity sensor.

Figure 3.  RH inside the imaging chamber during one hour of spectral data collection from wet and dry bone 
samples in high (a) and low (b) RH conditions. Average pixel intensity at 5184 cm−1 (inverted second derivative 
intensity of NIRSI water absorbance) inside the imaging chamber during one hour of spectral data collection 
from wet and dry bone samples in high (c) and low (d) humidity.
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The large chamber successfully maintained 0% relative RH for 60 minutes of data collection (see 
Supplementary Fig. S1). With NIRSI data collection from fully hydrated bone samples, an initial drop in intensity 
of the 5184 cm−1 water absorbance from 0 minutes to 15 minutes was observed, believed to be attributable to rem-
nants of PBS evaporating from the surface of the bone (Fig. 4). The water content in hydrated bone incrementally 
decreased during 60 minutes of NIRSI imaging in low RH resulting in ~ 31% water loss in bone overall (Fig. 4), 
with a statistically significant reduction in water content between the 0- and 60-minutes time points. However, 
for the dry bone samples, the average pixel intensity at 5184 cm−1 did not significantly change with time, and the 
chamber was able to maintain low constant RH for 60 minutes of imaging (Fig. 4). Based on these results, it was 
determined that calibration curve data collection, which would span collection of data from both hydrated and 
dry samples, could occur in low constant RH. However, data collection should start after a short drying period 
to minimize changes from bulk surface water loss and should not exceed 5 minutes. This would ensure that no 
significant changes in water content of the more hydrated samples would occur.

Identification of absorbances from non-aqueous components of bone from dehydration stud-
ies.  Raw (Fig. 5a) and second derivative spectra (Fig. 5b) obtained from serially-dehydrated samples were 
used for evaluation of changes in NIR bone water peak intensities at 5184 cm−1, 6560 cm−1 and 7008 cm−1, and 
to elucidate NIR absorbances related to non-aqueous cortical bone components. The two main NIR bone matrix 
(collagen) absorbances were observed at 4608 cm−1, a combination peak from C-H stretches and at C-H deforma-
tion, and at 6688 cm−1, a 1st overtone absorbance from N-H stretching from amino acid side chains of collagen19. 
Mineral-associated absorbances in cortical bone still need to be further validated, but based on a recent study, a 
potential P-OH vibration in the NIR range can be observed at approximately at 7000 cm−1 30.

Comparison of spectra from wet and dry shows that with serial lyophilization, there was a reduction in water 
absorbances at 5184 cm−1 and 7008 cm−1 but at 48 hours, features in those regions were still present; in contrast, 
only a negligible absorbance was observed at the 6560 cm−1 water absorbance. Therefore, the 6560 cm−1 water 
absorbance is suggested to arise from loosely bound water that can be fully removed with lyophilization, whereas 
the water absorbances at 5184 cm−1 and 7008 cm−1 have loosely and tightly bound water components, since the 
peaks reduce in intensity, but are still present with increasing lyophilization time. Thus, all three water absorb-
ances have a loosely bound component, and two have both loosely and tightly bound water components. Another 
possible interpretation is that there are matrix absorbances that underlie the water absorbances at 5184 cm−1 and 
7008 cm−1, and thus all three of the major water absorbances may be “loosely bound” only. Further studies involv-
ing deuterium exchange would enable a conclusive determination of this. Interestingly, the 6688 cm−1 matrix peak 
becomes increasingly significant as the 6560 cm−1 loosely bound water diminishes (Fig. 5c).

Creation of a water calibration curve using an optimal spectral data collection method.  Dehydration of bone 
through lyophilization affected the water and matrix NIR absorbances. Univariate correlation analysis between 
gravimetric water content either alone, or ratioed to a matrix peak, and NIR water absorbances, 5184 (R = 0.84, 
p < 0.05), 7008 (R = 0.63, p < 0.05), 5184/4608 (R = 0.96, p < 0.05) and 7008/6688 (R = 0.90, p < 0.05) showed a 
significant linear correlation between the two variables (see Supplementary Table 1). Additionally, multiple liner 
regression (MLR) models were developed to predict gravimetric water content using individual water and matrix 
absorbances. In both the MLR models, the root mean square error (RMSE) for prediction based on intensities of 
the second derivative peaks at 5184 + 4608 (R = 0.95, p < 0.05, RMSE = 0.67, 8.90%) and 7008 + 6688 (R = 0.93, 
p < 0.05, RMSE = 9.30%) were comparable (See Supplementary Table 1).

PLS models were developed to correlate NIR spectral data to gravimetrically-determined water content. As 
seen in the scores plot (Fig. 6a), 92% of the variance among samples was primarily attributable to the changes 
in the water absorbance at 5184 cm−1 in factor 1 of the loadings plot. Additionally, factor 2 was dominated 
by matrix peaks, which influenced ~5% of the variance in the data (Fig. 6b). Three independent prediction 

Figure 4.  Average NIRSI pixel intensities at 5184 cm−1 (water content) of wet and lyophilized bone samples 
under 0% RH in the large chamber. Wet samples gradually lose water content over an hour, while dry samples 
maintain their water content. (*) Average pixel intensities at 5184 cm−1 for wet sample group at 0 and 
60 minutes were statistically significant at p < 0.05.
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models were developed that predicted water content with an average RMSEP of 7.39% of total water content. 
A significant correlation was seen between gravimetric and NIR-predicted water content in both the overall 
range of 0–10% wet weight (R = 0.96, p < 0.05, RMSEP = 0.67, 7.39%) (Fig. 7a) and in the physiologic range of 
4–10% (R = 0.87, p < 0.05, RMSEP = 0.81,14.5%) (Fig. 7b). Interestingly, the RMSECV value (6.60%) for the 
best PLS model (see Supplementary Table 2) was lower but in a similar range as the errors of the MLR models 
(5184 cm−1 + 4608 cm−1 = 8.90%, 7008 cm−1 + 6688 cm−1 = 9.30%).

Discussion
The current study demonstrates optimal conditions for collection of NIRSI data for evaluation of water from bone 
samples. Such methodology will be helpful for evaluation of changes in water in harvested pre-clinical samples 
from aging studies, and bone quality changes in therapeutic protocols. Clinically, bone mineral density (BMD) is 
considered the conventional technique for assessment of bone quality, which is related to bone strength, fracture 
risk and fragility31,32. However, BMD alone is not the sole indicator for fracture risk assessment. For example, 
changes in bone microarchitecture, cellular density, tissue organization, and compositional changes related to 
mineral and collagen water interactions can play a role in bone quality33,34. A recent study showed that BMD as 
an indicator accurately predicted only 50% of fractures35, and it had only a weak correlation to bone strength. 
This motivates researchers to investigate additional biomarkers that can be used as indicators for bone quality 
assessment31,32,36,37.

Compositional changes in cortical bone after the age of 30 result in a gradual decrease in bone mass and an 
increase in bone fragility33,38–40. Aging can trigger the displacement of collagen-associated water molecules due 
to increased glycation of crosslinking in collagen fibers20. Additionally, mineralization tends to decrease with age 
due to imbalances in the turnover process between bone resorption and formation33. Continuous bone loss with 
age leads to osteoporosis which is caused by a significant decrease in bone mass and an increase in bone poros-
ity40. These compositional changes also decrease the structural integrity of cortical bone11,41,42. Nyman et al.10,43,44 
performed extensive mechanical studies on bovine cortical bone and have shown that dehydration significantly 
decreases toughness, while stiffness increases43,44. Collagen provides the toughness in cortical bone via its inter 

Figure 5.  (a) Raw NIR spectra of wet (hydrated) and dry bone. (b) NIR second derivative of wet (hydrated) 
and dry bone. The water and matrix peaks are more resolved in the second derivative spectra compared to 
raw spectra. A reduction in the 5184 cm−1 water peak can be seen in both raw and second derivative spectra 
of dry bone. (c) Second derivative NIR spectra of serially dehydrated bone. The absorbance of the water peaks 
(5184 cm−1, 6560 cm−1 and 7008 cm−1) decreased with increasing lyophilization time.
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and intra molecular bonding to water molecules; These studies indicate that in dehydrated bone, longitudinal 
contraction increases for collagen and the fibrils become stiffer leading to a greater risk of bone fracture10.

Anti-resorptive drugs used to treat osteoporosis such as Raloxifene act by binding to estrogen molecules to 
slow down the bone resorption process45. Gallant et al.32 have shown that Raloxifene-treated beagles had a 17% 
percent increase in cortical bone water without significantly altering tissue BMD levels. They also found that 
Raloxifene had a positive effect on increasing bound water at the collagen/mineral interphase which effectively 

Figure 6.  (a) The lyophilization time points separate from right to left, reflective of increasing lyophilization 
time. (b) Factor 1, which underlies most of the data separation, is dominated by the 5184 cm−1 water 
absorbance, while factor 2 is dominated by matrix absorbances.

Figure 7.  Independent NIRSI prediction of gravimetric water in cortical bone over the (a) 0–10%, and (b) 
4–10% (physiologic) water content ranges. RMSEP for the two models 0–10% range and 4–10% range are 7.39% 
and 14.5% respectively.
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caused an increase in the overall bone toughness. This study along with several others emphasize that the hydra-
tion of bone correlates with bone mechanics better than BMD levels46–48. Together, these studies concluded that 
toughness significantly decreases with age and with dehydrating bone. Therefore, there is a strong possibility that 
bone water content can be used as an indicator for bone quality assessment.

Several studies have investigated cortical bone water through MRI and spectroscopic techniques for assess-
ment of bone compositional integrity1,9,11,47,49–51. Rajapakse et al.20 have previously suggested that 60% of the water 
content detected in cadaveric samples by UTE-MRI is associated with collagen bound water, while the remainder 
is pore-associated water. Additionally, studies in bovine cortical bone have also determined that 73% of water that 
is detected is collagen bound47. Chen et al.49 showed that the ratio of free to bound water increases with the pro-
gression of osteoporosis, Allen et al. through UTE-MRI analysis found that Raloxifene treated beagles had 14% 
more bound water compared to control samples45. Clearly, changes in bone water can provide insight into disease 
progression and therapeutic effectiveness in bone-related diseases.

Unal et al.1 also concluded that Raman spectroscopy is a feasible technique for determination of water con-
tent in tissues. In their study, they performed sequential dehydration experiments on bovine cortical bone and 
assigned water compartments for bone based on changes in Raman sub-bands under the broad OH-stretch. The 
data collection of dehydrating tissues took place in atmospheric conditions, with data collection time limited to 
10 seconds per sample. While this method is feasible for wet samples, atmospheric water tends to infiltrate pores 
in lyophilized bone and may interfere with data collection and interpretation. In a recent study from our lab, we 
initially collected NIRSI data from 500-micron thick bone samples between two glass slides to minimize water 
loss during data collection20. However, atmospheric conditions could potentially interfere with data interpreta-
tion of serial dehydration and water calibration spectral imaging studies.

Accordingly, one main goal of the current study is to describe the importance of utilizing an 
environmentally-controlled chamber to assess water in cortical bone with NIRSI. NIR spectra are dominated by 
two previously reported water absorbances at 5184 cm−1 and 7008 cm−1,and one newly identified water peak at 
6560 cm−1 20. The slow dehydration of bone over time helped to elucidate an absorbance at 6688 cm−1 that arises 
from N-H stretching in matrix molecules, along with the 4608 cm−1 absorbance that was previously established 
as a matrix absorbance19. Serial lyophilization of bone aided in classification of NIR water absorbances as either 
loosely or tightly bound. Data collection in atmospheric settings affects the repeatability of studies as atmospheric 
moisture can accumulate on the surface of sample, or conversely, if in a dry environment, can result in water evap-
oration during data collection. The sensitivity of NIR spectra to water is well known, and it was essential to collect 
data in an environmentally-controlled chamber that has a constant flow of low humidity for reliable measure-
ments of compositional components without the interference of external water for dehydrated samples. However, 
in the future, if NIR data are being collected from hydrated samples, one can use either a chamber with high RH, 
or a chamber with low RH humidity, with the low RH data collection contingent on a short data collection time.

Analysis of second derivative peak heights of water and matrix showed the first significant reduction in water 
absorbance occurred after 120 minutes of lyophilization (Fig. 5b). Since the 6560 cm−1 peak becomes insignificant 
with 48 hours of dehydration, it is suggested that after this timepoint any remaining water absorbances reflect 
tightly bound species. Additionally, since NIR spectra are dominated by water absorbances, the matrix peaks are 
better resolved with increasing dehydration time of the sample. For example, as the intensity of the 6560 cm−1 
and 7008 cm−1 water peaks reduce, the adjacent matrix peak at 6688 cm−1 increases (Fig. 5b). Future studies will 
investigate the exact nature of the location of tightly bound water.

Both univariate and multivariate analysis were used to evaluate the spectral data. NIR inverted second deriva-
tive peak heights at 5184 cm−1 and 7008 cm−1 significantly correlated with gravimetrically-derived water content 
(see Supplementary Table 1). Additionally, MLR models successfully predicted gravimetric water content by using 
inverted second derivative peak height values of water and matrix absorbances.

PLS models showed strong correlations (R = 0.92) between NIR spectra and gravimetrically-derived percent 
water content. Factor 1 in the loadings plot clearly shows that the variation in the spectra related to water content 
arises from the water absorbances. Interestingly, factor 2 shows that after accounting for the water components, 
the matrix peaks influence the NIR spectral data as well. The correlation between spectral and gravimetric data in 
the physiologic range of 4–10% was somewhat lower (R = 0.86) compared to the full range data, in large part due 
to greater variation in the more hydrated tissues. One possible explanation is that residual surface water could still 
be evaporating during gravimetric data collection. Additionally, the rate of evaporation among the samples could 
have varied since some samples had larger surface areas compared to others, dependent on the exact porosity and 
area of the tissue.

As seen in Supplementary Tables S1 and S2, the errors obtained from the MLR and PLS models are compa-
rable. Therefore, similar results can be obtained by using both techniques to quantity spectral data. However, 
the advantage of using PLS regression, as opposed to single or two frequency NIR correlations, is that cor-
relations between spectral and gravimetric data can be found across the entire range of spectral frequencies. 
Thus, additional frequencies that contribute to prediction of the outcome data could be identified. Additionally, 
PLS describes the data by grouping samples based on similar characteristics (chemical and physical). As seen 
in Supplementary Tables S1 and S2, multivariate analysis error is lower than that from single peak analysis. 
Additionally, the loading plots in PLS models help to explain the variance that is seen in the entire data set. As 
observed in factor 1 and 2, the variation in the data set could be attributed to both changes in water and matrix 
absorbances at several frequencies.

As previously reported, the sensitivity of NIR to PO4 absorbances is very low compared to what is observed in 
the mid-infrared region, and thus the mineral phosphate component cannot be identified by these combination 
or overtone vibrations30. However, P-OH overtone vibrations originating from mineral crystals in synthetic and 
biological powders have been assigned to ~7000 cm−1 30, which could be useful for mineral assessment in bone. 
These findings need to be further validated to accurately identify peak positions, in particular intact bone tissues. 

https://doi.org/10.1038/s41598-019-45897-3


8Scientific Reports |         (2019) 9:10199  | https://doi.org/10.1038/s41598-019-45897-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

It will be important to differentiate the OH vibrations originating from the apatite core from OH vibrations from 
water molecules bound to the mineral.

Although the environmental chamber provided a stable environment in which to collect NIR data, this can 
also be considered a limitation of such studies. If this non-destructive technique for water assessment is to be 
truly useful in pre-clinical, or eventually clinical studies, it will be necessary to develop a method for data collec-
tion in atmospheric conditions. This would have to involve data collection in a limited time frame, to significantly 
reduce loss of water to the atmosphere, and may involve development or application of new instrumentation. 
Another limitation in transfer of this protocol to other samples is that here, all data collections were done using 
one spectrometer on samples of a uniform thickness. It is likely that the spectral processing techniques will have 
to be optimized with every data set acquired at different sample thicknesses, and possibly for data acquired with 
different spectrometers. For in vivo assessments, it is conceivable that a NIR method where water content relative 
to the amount of matrix present would be evaluated instead of absolute water content could be more useful.

In conclusion, we have developed a method to collect NIR spectral imaging data from dehydrating cortical 
bone samples in an environmentally-controlled chamber, which allowed for consistent measurements of bone 
water, and correlation of gravimetric and spectral data by PLS analysis to generate a water calibration curve. 
Further, future studies can continue to develop NIR water and matrix absorbances as potential biomarkers to 
provide insight into cortical bone quality by elucidation of the role of changes in water binding to collagen. 
Together NIRSI and appropriate analyses can shed light into primary molecular differences that can provide a 
foundation for development of techniques to assess compositional changes in bone with aging, disease states, and 
therapeutics.

Methods
Tissues.  The environmental chambers were validated using NIRSI data obtained from tibiae from young 
bovine bone (Research 87, Bolyston MA). The calibration curve data were obtained from cadaver human tibiae 
harvested from 19 donors with no evidence of skeletal disease (13 male and 7 females, exempt from IRB proto-
cols) (NDRI, Philadelphia, PA). Bones were stored frozen at −20 °C and thawed for gravimetric and NIRSI data 
acquisition.

Bone sample preparation.  Bovine and human cadaveric cortical bone samples were prepared for data 
collection as follows: Tissues were cut cross-sectionally to a uniform thickness of 500 μm from the regions of 
maximum cortical bone thickness (~10% distance proximal to distal endplate) with a diamond wafering saw 
(Buehler Isomet 1000, Lake Bluff, IL). The samples were ultrasonicated (60 khz FS60D Fisher Scientific) in 1% 
tergazyme solution for 2 hours at 38 °C to remove bone marrow. Marrow-free specimens were stored in phosphate 
buffered saline-protease inhibitor (PBS-PI) (PBS 1X, pH 7.4, Invitrogen, Carlsbad, CA) with, protease inhibitor 
(Sigma-Aldrich, St. Louis, MO), at −20 °C until data collection.

Environmental chamber design.  Small chamber.  To evaluate bone samples under constant humidity, 
an initial chamber was constructed from a glass microscope slide base, laser cut cast acrylic walls and lid, and a 
glass cover slip viewing window (Fig. 1). Plastic inlets and outlets were installed on the top of the chamber to facil-
itate airflow. An Arduino driven Bosch BME-280 humidity sensor (Stuttgart, Germany) logged RH data inside 
the chamber. Humidified air flow was generated from a 4 psi pump aerating a 50 mL conical vial partly filled 
with room temperature water and fed into the imaging chamber through plastic tubing. This setup maintained 
a 72 ± 2% RH environment inside the chamber for over two hours. A desiccated environment was achieved by 
feeding the chamber with compressed air at 4 psi.

Large chamber.  To collect NIRSI data from larger, clinically-relevant human bone samples, a larger imaging 
chamber was constructed from cast acrylic and two 76.2 × 76.2 × 0.5 mm Corning® Gorilla® Glass imaging win-
dows (Corning, NY) (Fig. 2). Like the previous chamber model, RH data was logged from an Arduino-driven 
Bosch BME-280 humidity sensor. When compressed air at 4 psi entered the large imaging chamber, the internal 
RH quickly dropped to 0% and that level was maintained for the experiment duration. This insured no environ-
mental moisture was absorbed by the bone samples.

Environmental chamber validation.  NIRSI data were collected from a specified 400 × 400-micron region 
from bovine bone samples inside the environmental chamber using a Perkin Elmer Spotlight 400 imaging system 
equipped with a mercury cadmium telluride (MCT) detector (Shelton, CT) every 15 minutes over the course of 
one hour before, and again after, a 24-hour lyophilization in a lyophilizer (Martin Christ-Alpha 1–2) (Figs 3 and 
4). Chambers were validated by the assessment of changes in the 5184 cm−1 absorbance within a 60-minute time-
span. The 24-hour lyophilization period was chosen after confirmation in pilot studies that no additional water 
was lost after this period of lyophilization. The samples before and after lyophilization were termed wet and dry 
bone, respectively.

NIRSI data collection for chamber validation.  The spectral data were collected at 50 μm spatial resolution with 
32 coadded scans at 64 cm−1 spectral resolution in the frequency range from 4000–7800 cm−1. The experimental 
setup depicted in Fig. 2 allowed the small chamber to maintain RHs of less than 3% and at 0%. The small chamber 
was additionally tested at high RH of ~70%.

NIRSI data processing and analysis for chamber validation.  The spectral data collected at low and high RH were 
quantified for bone water content by processing raw data to derive the second derivative (SavitzkyGolay, 2nd order 
polynomial and 7 points of smoothing, inverted to make peaks positive) average pixel intensity, and assessment 
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of an established NIR water absorbance of 5184 cm−1 in ISys 5.0 software (Malvern Instruments, UK). It was pre-
viously shown that the average pixel intensity measurement at 5184 cm−1 generally correlates to the water present 
in the sample20.

Mean values ± standard deviations are reported for quantitative data. Analysis of Variance (ANOVA) with 
Tukey post hoc test was used to evaluate the differences in mean values for experimental data, with p < 0.05 con-
sidered statistically significant.

Water calibration curve experimental setup.  The optimal conditions determined in the chamber cali-
bration process were applied here to generate the water calibration curve (Fig. 8). The large chamber was used 
to collect NIRSI data at 0% RH for the water calibration curve. The experiment consisted of sequential dehydra-
tion of human cortical bone tissues through lyophilization and collection of NIRSI data at specific timepoints. 
Gravimetric and NIRSI data were collected from two different locations in each specimen at the following 7 time-
points: lyophilization for 5 minutes to uniformly remove excess surface water, then subsequent serial lyophiliza-
tion for 15, 25, and 120 minutes, and 24 and 48 hours.

Gravimetric data collection and analysis for calibration curve.  Initially, human cortical bone sam-
ples were thawed and dabbed dry with a Kimwipe to remove residual PBS-PI solution. Samples were weighed 
after every lyophilization treatment on a SI 215D Denver Instruments (Bohemia, NY) Precision Balance for gravi-
metric analysis. To determine the percent of water content within the tissues the wet weights were calculated as 
follows:

Equation 1:

−
∗

Wet weight dry weight
Wet weigh t

100W D

D

( ) ( )

( )

•	 Wet weight(w) = sample weight at every dehydration timepoint.
•	 Dry weight(D) = sample weight with 48 hours of lyophilization.

NIRSI data collection for calibration curve.  NIR spectral data was collected from two different 
400 × 400-micron marked areas for each sample using a Perkin Elmer Spotlight 400 imaging spectrometer. The 
NIRSI data was collected in the large environmentally controlled chamber with a RH of <3% at a frequency 
range 4000–7800 cm−1 at 64 cm−1 spectral resolution and 50 μm spatial resolution with 32 coadded scans, and an 
approximate imaging time of 2 minutes at each location.

NIRSI data processing and analysis for calibration curve.  NIR spectral image were analyzed using 
ISys 5.0 and UnscramblerX 10.4 (Camo,Norway) software. One average spectrum was calculated for each spectral 
image. For 19 human cadaveric samples, a total of 302 averaged spectra were used for data processing. Second 
derivative processing (Savitzky Golay, 2nd order polynomial and 7 points of smoothing) was applied to normalize 
and resolve broad peaks in NIR spectra. The optimum number of 7 smoothing points was chosen after careful 
analysis of spectra, since the goal was to minimize noise while maximizing peak resolution in the dataset (see 
Supplementary Fig. S2). NIR second derivative absorbances (inverted, to make peaks positive to facilitate under-
standing data) were evaluated from water components at 5184 cm−1, 6560 cm−1 and 7008 cm−1 and from matrix at 
4608 cm−1 and 6688 cm−1 20. Approximately 82 data points were removed from the analysis either due to spectral 
artifacts caused by residual fat in tissues or to poor quality spectra based on low signal to noise. Therefore, 220 
spectra were utilized in total for both univariate and multivariate analysis.

Figure 8.  Schematic of the experimental setup for data collection from human cadaveric tissue samples used in 
creation of the water calibration curve.
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Univariate analysis.  Inverted second derivative spectra at 5184 and 7008 water absorbances were correlated to 
gravimetrically-derived water content (see Supplementary Table S1). The correlation R, p-values and RMSE are 
reported in Supplementary Table S1.

Multiple linear regression (MLR).  MLR is a statistical technique that helps to predict outcome variables based on 
one or more explanatory variables. MLR helps to model the linear relationship between the explanatory and out-
come variables. In this study, the outcome variable is the gravimetric water content and the explanatory variables 
are the individual frequencies of water (5184 cm−1 and 7008 cm−1) and matrix (4608 cm−1 and 6688 cm−1). The 
strength of the regression is determined by high R and low RMSE values.

Multivariate partial least squares analysis.  Partial least squares (PLS) analysis is a statistical method used to find 
linear relationships between predictors and determinant variables52 (Fig. 6 and see Supplementary Table 2). The 
main advantage of using PLS in creating a linear regression is the ability to analyze multiple variables at a single 
time. This is very useful for analysis of NIR spectra as the spectra are typically composed of overlapping absorb-
ance bands. PLS models were developed to predict percent water content with X determinants as the spectral data 
and Y predictors as the gravimetrically-determined percent wet weight. Spectra were randomly chosen (N = 147) 
to build the model using a leave one out cross validation technique and the remaining 73 spectra were used for 
independent prediction. This process was repeated 3 times with spectra randomly chosen each time for model 
building and independent prediction. The strength of the models generated, and the independent predictions 
were determined based on a high R2 and low root mean square error of cross validation (RMSECV) values. The 
two main outputs in PLS models are the scores and loading plots. The scores plot visually explains the proper-
ties of samples by separating the data based on similarities and differences within the spectra. The loadings (or 
factors) plot explains the variance by examination of specific frequencies that cause the separation in the data 
structure of the scores plot. Most of the variance in data is explained by the first few factors.
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