POSTER PRESENTATION **Open Access** # Phosphocreatine recovery time constant (PCr) at peak exercise as a potential endpoint for clinical trials in PAD Jorge A Gonzalez^{1*}, Yan Li¹, Peter W Shaw¹, Pelbreton Balfour¹, Yang Yang³, Jennifer Kay², Joseph DiMaria², Arthur Weltman⁴, Michael Salerno^{1,3}, Craig H Meyer³, Frederick H Epstein³, Christopher M Kramer^{1,2} From 19th Annual SCMR Scientific Sessions Los Angeles, CA, USA. 27-30 January 2016 ### **Background** Patients with PAD who have intermittent claudication have reduced exercise tolerance, however, the mechanisms are not well understood. Ankle-brachial index (ABI) correlates neither with walking distance nor the degree of claudication or functional limitation as it is only able to measure flow at the macrovascular level. ³¹phosphocreatine (^{31p}) is a non-invasive marker of mitochondrial capacity in the skeletal muscle providing an insight into muscle metabolism and tissue perfusion. We sought to analyze the relationship of ^{31p} recovery time constant (PCr) and exercise capacity in a population with PAD. #### Methods Twenty-three (23) patients with PAD (ABI < 0.9) were prospectively enrolled. All performed supine plantar flexion exercise at 50 rpm using a pedal ergometer until exhaustion or limiting symptoms. PCr was measured by ^{31p} MR spectroscopy using a 3 T Siemens Trio MR scanner during recovery after peak exercise. A singlepulse, surface coil localized 512 msec free induction decay acquisition with 20 averages centered on the midcalf was used. A standard 31p surface coil in the patient table is employed. PCr was then calculated using a monoexponential fit of phosphocreatine concentration versus time, beginning at cessation of exercise. Patients later exercised on a treadmill (Gardner exercise protocol) and completed a 6 min-walk protocol. Peak VO₂ (peak oxygen consumption) was measured. METS (Metabolic equivalents), total distance (feet), total exercise time and start of claudication time were also recorded. #### **Results** The mean age was 67 ± 11 years, 63% were male, 63% were Caucasian, the mean ABI was 0.69 ± 0.09 . The mean logPCr was 1.68 ± 0.25 , 6-min walk distance 1024.7 ± 351.9 feet, 6-min walk start of claudication 330.0 ± 274.2 feet, peak VO₂ 13.4 ± 3.7 (ml/kg/min), METS 3.8 ± 1.1 , treadmill exercise time 5.8 ± 4.4 min. PCr correlated with 6-min walk total distance (Pearson's r: 0.43, p = 0.04), total METS (r = 0.49, p = 0.02) and peak VO₂ (r = 0.49, p = 0.02). No correlation was seen between PCr and claudication distance (p = 0.27) nor Figure 1 PCr calculation based of the monoexponential fit of phosphocreatine concentration vs time. ¹Cardiology, University of Virginia, Charlottesville, VA, USA Full list of author information is available at the end of the article Gonzalez et al. Journal of Cardiovascular Magnetic Resonance 2016, **18**(Suppl 1):P352 http://www.jcmr-online.com/content/18/S1/P352 start of leg discomfort (p = 0.24). ABI did not correlate with any of these exercise parameters. #### **Conclusions** PCr recovery time constant correlates significantly with total distance, METS and peak VO₂ in patients with PAD whereas ABI does not. PCr recovery kinetics could be used a therapeutic target in novel interventions in patients with PAD as it correlates better with exercise parameters than ABI. #### Authors' details ¹Cardiology, University of Virginia, Charlottesville, VA, USA. ²Radiology, University of Virginia, Charlottesville, VA, USA. ³Biomedical Engineering, University of Virginia, Charlottesville, VA, USA. ⁴Medicine, University of Virginia, Charlottesville, VA, USA. Published: 27 January 2016 doi:10.1186/1532-429X-18-S1-P352 Cite this article as: Gonzalez *et al.*: Phosphocreatine recovery time constant (PCr) at peak exercise as a potential endpoint for clinical trials in PAD. *Journal of Cardiovascular Magnetic Resonance* 2016 **18**(Suppl 1): P352. # Submit your next manuscript to BioMed Central and take full advantage of: - Convenient online submission - Thorough peer review - No space constraints or color figure charges - Immediate publication on acceptance - Inclusion in PubMed, CAS, Scopus and Google Scholar - Research which is freely available for redistribution Submit your manuscript at www.biomedcentral.com/submit