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Abstract: An efficient, highly stereoselective asymmetric

synthesis of fully functionalized cyclopentanes bearing an

oxindole moiety and several other functional groups in
one pot has been developed. Key step is an organocata-

lytic triple Michael domino reaction forming three C¢C
bonds and six stereocenters, including a quaternary one.

Starting from equimolar amounts of simple substrates,
a high molecular complexity can be reached after a Wittig
olefination in one pot. The new protocol can easily be

scaled up to gram amounts.

Significant effort has been devoted to the development of syn-
thetic strategies that rapidly construct diverse and complex

molecular structures, not only for the total synthesis of natural
products but also to provide practical and sustainable methods

for the preparation of bioactive compounds, such as pharma-
ceuticals and agrochemicals.[1] In this regard, asymmetric or-
ganocatalytic domino/cascade reactions have been intensively

investigated in recent years owing to their well-known intrinsic
advantages over classical approaches.[2] In 2006, our group re-
ported the first multicomponent organocatalytic triple domino
reaction, which opened an efficient access to functionalized cy-
clohexene derivatives.[3] While the majority of newly developed
organocatalytic cascade reactions focuses on six-membered

ring systems,[4] polysubstituted cyclopentanes[5] as common
motifs in natural products and pharmaceuticals (Figure 1) are
of equal importance. Thus, several efficient organocatalytic
procedures for the asymmetric synthesis of cyclopentane deriv-
atives have recently been reported.[6] We envisaged to develop

a new organocatalytic approach to fully substituted cyclopen-
tanes bearing multiple stereocenters by employing a triple

domino reaction.

Oxindoles[7] have been intensively investigated owing to

their broad biological and pharmacological activities.[8] In 2010,
Bjçrkling and co-workers reported that cyclopentane-contain-

ing oxindoles possess antitumor activity.[9] The racemic com-
pounds were synthesized by a traditional stepwise procedure,
and it was shown that the absolute configuration plays an im-
portant role for the antitumor activity.[10] Therefore, it is highly

desirable to develop enantioselective catalytic procedures for
the synthesis of such core structures. We envisaged that
a triple domino reaction involving a Michael addition of an ox-
indole to a strong electron-withdrawing unsaturated conjugat-
ed diene and subsequent double Michael additions with cinna-

maldehyde could provide an efficient and straightforward
route for the asymmetric synthesis of fully substituted cyclo-

pentane core structures bearing an oxindole unit.
Herein, we report such a novel asymmetric Michael/Michael/

Michael sequence to construct a variety of potentially bioactive

products containing a cyclopentane ring through the forma-
tion of three C¢C bonds and six stereocenters (Scheme 1).

For the initial screening, we performed the reaction of ox-
indole 1 a, unsaturated conjugated diene 2, and (E)-cinnamal-
dehyde (3 a) by using diphenyl prolinol trimethylsilyl ether A
as catalyst in CHCl3 at room temperature, followed by a one-
pot Wittig reaction (Table 1). To our delight, the reaction using

0.3 equivalents of catalyst A proceeded well, affording product
4 a in a good domino yield (40 %) with very good diastereo-
and enantioselectivity (15:1 d.r. and 89 % ee ; entry 1). When
lowering the catalyst loading to 0.1 equivalents, the yield re-

Figure 1. Representative natural products and drugs with highly functional-
ized cyclopentane cores.
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mained the same and the diastereoselectivity decreased to
5.5:1; however, the enantioselectivity increased to 94 %

(entry 2). The addition of benzoic acid as additive increased
the yield and diastereoselectivity slightly, but had a negative

effect on the enantioselectivity (entry 3). Furthermore, no im-
provement was obtained when the reaction was performed at

a lower temperature (entry 4). Increasing the catalyst loading
to 0.5 equivalents led to product 4 a in a good yield of 52 %
with excellent diastereo- and enantioselectivity (15:1 d.r. and
98 % ee ; entry 5). When the starting materials 1 a, 2, and 3 a
were added in portions, a better result was obtained (63 %
yield, 15:1 d.r. , and 99 % ee ; entry 6). Using CH2Cl2 instead of

CHCl3 as solvent resulted in an improved yield of 70 % and ex-
cellent enantioselectivity (98 %), albeit with a lower diastereo-
selectivity (7:1 d.r. ; entry 7). A subsequent solvent screening re-
vealed that CHCl3 was the best choice (entries 7–10). Several
structurally similar proline-derived catalysts B, C, D, E, and F
were tested, but no better results were obtained (entries 11–
15). In addition, (S)-proline (G) was ineffective for this reaction

(entry 16).

With the optimized conditions in hand (Table 1, entry 6), the
substrate scope and limitations were explored. As shown in

Scheme 2, substrates with various substituents at the 3- or 5-
position of the oxindole were tolerated. Oxindoles 1 a–c bear-

ing a phenyl group at the 3-position reacted well with cinna-
maldehyde 3 a, providing the corresponding products 4 a–c in

yields ranging from 63–72 % with good diastereo- (7:1–15:1)

and excellent enantioselectivities (97–99 %). Under the condi-

Table 1. Screening of the reaction conditions.[a]

Entry Catalyst Solvent Yield [%][b] d.r.[c] ee [%][d]

1[e] A CHCl3 40 15:1 89
2[f] A CHCl3 40 5:1 94
3[f, g] A CHCl3 49 8:1 86
4[f, g, h] A CHCl3 48 3:1 87
5 A CHCl3 52 15:1 98
6[i, j] A CHCl3 63 15:1 99
7 A CH2Cl2 70 7:1 98
8 A toluene 52 6:1 96
9 A ether 13 15:1 98

10 A dioxane 21 –[k] 98
11 B CHCl3 40 10:1 98
12 C CHCl3 31 7:1 95
13 D CHCl3 25 8:1 n.d.[l]

14 E CHCl3 32 n.d. n.d.
15 F CHCl3 26 n.d. n.d.
16 G CHCl3 0 – –

[a] Reaction conditions (method A): all reactions were performed by using
1 a (0.25 mmol, 77.3 mg), 2 (0.25 mmol, 43.0 mg), 3 a (0.25 mmol, 33 mg),
and catalyst (0.5 equiv) in CHCl3 (2 mL) for 22 h at room temperature fol-
lowed by a one-pot olefination reaction for 5 h (Wittig reagent 5 :
0.375 mmol, 125 mg), unless otherwise stated. [b] Yield of isolated prod-
uct 4 a as a mixture of diastereomers after column chromatography.
[c] Determined by 1H NMR spectroscopy. [d] Determined by chiral HPLC
analysis for the major diastereomer. [e] Using 0.3 equiv catalyst. [f] Using
0.1 equiv catalyst. [g] Addition of 0.2 equiv PhCO2H. [h] Performed at
¢20 8C. [i] Method B: 1 a, 2, and 3 a were added in three portions at 0, 3,
and 6 h. Wittig reagent 5 (0.5 mmol, 167.0 mg) was added in two portions
at 22 and 25 h (stirring for 6 h in total). [j] 0.5 mmol scale. [k] Mixture of
diastereomers. [l] Not determined.

Scheme 2. The substrate scope of oxindoles 1. Yield refers to isolated prod-
uct 4 as a mixture of diastereomers after column chromatography. The d.r.
value was determined by 1H NMR spectroscopy and the ee value by HPLC
analysis for the major diastereomer. [a] Method A: all the reactions were per-
formed by using 1 (0.5 mmol), 2 (0.5 mmol), 3 a (0.5 mmol), and catalyst A
(0.25 mmol) in CHCl3 (4 mL) for 22 h at room temperature followed by
a one-pot Wittig reaction for 5 h (reagent 5 : 0.75 mmol), unless otherwise
stated. [b] Method B (see Table 1).

Scheme 1. Asymmetric synthesis of fully substituted cyclopentanes bearing
an oxindole moiety through a triple Michael addition (retrosynthetic
analysis).
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tions of method A, product 4 d was also formed in good re-
sults as well (57 % yield, 11:1 d.r. , and 99 % ee). Reactions with

oxindoles containing a benzyl or methyl group at the 3-posi-
tion afforded products 4 e or 4 f with excellent enantioselectivi-

ties, albeit with diminished yields and diastereoselectivities
(4 e : 30 % yield, 3:1 d.r. ; 4 f : 44 % yield, 2:1 d.r.).

Next, we applied this protocol to a broad range of alde-
hydes 3 b–f bearing various electron-rich or electron-deficient

aromatic groups (Scheme 3). For example, methoxy, chloro,

and nitro groups were well tolerated in the reaction of cin-
namaldehydes 3 b–d with oxindole 2 a, providing the corre-

sponding products 4 g–i in yields ranging from 61–65 % with
excellent diastereo- and enantioselectivities (9:1–15:1 d.r. and

97–99 % ee). No significant difference in the outcome for prod-
uct 4 h was observed when employing either method A or B.
The domino reaction also worked well when using a lower cat-

alyst loading of 0.3 equivalents to obtain the desired product
4 h (49 % yield, 7:1 d.r. , and 98 % ee). For substrate 3 e with

a nitro group at the ortho-position, the reaction also proceed-
ed well, affording product 4 j in 61 % yield with 15:1 d.r. and
97 % ee. To further extend the substrate scope, a heterocyclic
2-furyl a,b-unstaturated aldehyde 3 f was tested under the

conditions and product 4 k was obtained in a good yield of

47 % with excellent enantioselectivity (99 % ee), albeit with

a low diastereoselectivity (3:1 d.r.). To our delight, substrate 1 e
with a benzyl group at the 3-position reacted well with cin-

namaldehydes 3 b and 3 g, providing products 4 l and 4 m in
good yields with good diastereoselectivities (47 % yield, 8:1 d.r.

and 63 % yield, 10:1 d.r. , respectively), as well as excellent
enantioselectivities (99 % ee).

To test the scalability of the new protocol, we performed the
reaction on a gram scale under the optimized conditions

(method B); product 4 a was obtained in a good yield of 68 %

(2.3 g) with good diastereo- and excellent enantioselectivity
(8:1 d.r. and 99 % ee). Furthermore, the tert-butoxycarbonyl

(Boc) protecting group could be easily removed in the pres-
ence of trifluoroacetic acid (TFA) at room temperature from ox-

indole 4 a to get the deprotected compound 6 in 94 % yield
with 95 % ee (Scheme 4). The absolute configuration of the ste-

reocenters in compound 4 a was unambiguously determined

by X-ray crystallography (Figure 2).[11]

A possible mechanism is proposed in Scheme 5. The first Mi-

chael addition of oxindole 1 a to (E,E)-5-nitro-2,4-pentadienoic
acid ethyl ester (2) is initiated by the diarylprolinol silyl ether

catalyst, which acts as a Brønsted base in the process, provid-
ing an active intermediate I that was observed by mass spec-

troscopy. The active intermediate I reacts quickly with cin-

namylaldehyde 3 a through a second Michael reaction via imi-
nium activation, providing an intermediate II, which is further

transformed to the product aldehyde 4 a’ by a third Michael re-
action via enamine activation. The final product 4 a is then ob-

tained by olefination of 4 a’ using the Wittig reagent 5.
In conclusion, a novel organocatalytic domino protocol was

developed to construct a series of potentially bioactive, fully

Scheme 3. The substrate scope of cinnamaldehydes 3. Yield refers to isolat-
ed product 4 as a mixture of diastereomers after column chromatography.
The d.r. value was determined by 1H NMR spectroscopy and the ee value by
HPLC analysis for the major diastereomer. [a] Method A. [b] Method B.
[c] Using 0.3 equiv catalyst A.

Scheme 4. Removal of the N-Boc group from oxindole 4 a.

Figure 2. X-ray crystal structure of product 4a.
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substituted cyclopentanes bearing different functional groups

including an oxindole moiety in good yields, very good dia-

stereo-, and excellent enantioselectivities. It is worth noting
that the one-pot triple Michael sequence creates three bonds

and six stereocenters, including one quaternary center, by
using equimolar amounts of reactants under mild reaction

conditions. Although a high catalyst loading (0.5 equiv) was re-
quired for most substrates to obtain high diastereoselectivities,

the protocol was also successfully applied to some substrates

using a lower amount of catalyst (0.3 equiv). The scalability of
the new protocol to grams was demonstrated without loss in

efficiency.

Experimental Section

General procedure for the organocatalytic domino reaction
(described for the synthesis of 4 a as a typical example)

Method A : A glass vial (10 mL) equipped with a magnetic stirring
bar was charged with 1 a (154.6 mg, 0.5 mmol), 2 (86 mg,
0.5 mmol), 3 a (66 mg, 0.5 mmol), and catalyst A (81.5 mg,
0.25 mmol). After adding CHCl3 (4 mL), the reaction tube was
purged by using an argon flow for 1 min, then covered with
a Teflon-coated screw cap. The reaction mixture was stirred at
room temperature for 22 h. After addition of the Wittig reagent 5
(250 mg, 0.75 mmol) and purging by using an argon flow for
1 min, the mixture was stirred for another 5 h. The resulting solu-
tion was then directly applied to flash chromatography (at first
using pentane/ethyl acetate = 10:1, then pentane/ethyl acetate =
5:1 as eluent) to afford the desired product 4 a as a yellow solid
(180 mg, 54 % yield, 15:1 d.r. , 98 % ee).

Method B : A glass vial (10 mL) equipped with a magnetic stirring
bar was charged with 1 a (51.5 mg, 0.17 mmol), 2 (28.7 mg,
0.17 mmol), 3 a (22 mg, 0.17 mmol), and catalyst A (81.5 mg,
0.25 mmol; starting materials 1 a, 2, and 3 a were divided into
three portions). The reaction tube was purged by using an argon
flow for 1 min, then covered with a Teflon-coated screw cap after
adding CHCl3 (4 mL). After stirring at room temperature for 3 h, the

second portion of 1 a (51.5 mg, 0.17 mmol), 2 (28.7 mg,
0.17 mmol), and 3 a (22 mg, 0.17 mmol) was added to the reaction
tube. After purging by using an argon flow for 1 min, the mixture
was stirred for another 3 h. After that, the third portion of 1 a
(51.5 mg, 0.17 mmol), 2 (28.7 mg, 0.17 mmol), and 3 a (22 mg,
0.17 mmol) was added to the reaction mixture, which was stirred
for another 16 h after purging by using an argon flow for 1 min.
Then, the first portion of Wittig reagent 5 (83.5 mg, 0.25 mmol)
was added to the reaction tube. The mixture was stirred for 3 h
after purging by using an argon flow for 1 min. After that, the
second portion of Wittig reagent 5 (83.5 mg, 0.25 mmol) was
added to the reaction mixture. The mixture was stirred for another
3 h after purging by using an argon flow for 1 min. The resulting
solution was then directly applied to flash chromatography (at first
using pentane/ethyl acetate = 10:1, then pentane/ethyl acetate =
5:1 as eluent) to afford product 4 a as a yellow solid (209 mg,
0.31 mmol, 63 % yield, 15:1 d.r. , 99 % ee).

For both cases, the major diastereoisomer could be isolated as
a colorless solid by using a preparative TLC plate (hexane/isopro-
panol = 15:1 as eluent).
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