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Abstract

Rationale: No evidence-based tools exist to enhance precision in
the selection of patient-specific optimal treatment durations to
study in tuberculosis clinical trials.

Objectives: To develop risk stratification tools that assign
patients with tuberculosis into risk groups of unfavorable
outcome and inform selection of optimal treatment duration for
each patient strata to study in clinical trials.

Methods: Publicly available data from four phase 3 trials, each
evaluating treatment duration shortening from 6 to 4 months,
were used to develop parametric time-to-event models that
describe unfavorable outcomes. Regimen, baseline, and
on-treatment characteristics were evaluated as predictors of
outcomes. Exact regression coefficients of predictors were used to
assign risk groups and predict optimal treatment durations.

Measurements and Main Results: The parametric model had
an area under the receiver operating characteristic curve of 0.72. A
six-item risk score (HIV status, smear grade, sex, cavitary disease

status, body mass index, and Month 2 culture status) successfully
grouped participants into low (1,060/3,791; 28%), moderate (1,740/
3,791; 46%), and high (991/3,791; 26%) risk, requiring treatment
durations of 4, 6, and greater than 6 months, respectively, to reach
a target cure rate of 93% when receiving standard-dose rifamycin-
containing regimens. With current one-duration-fits-all
approaches, high-risk groups have a 3.7-fold (95% confidence
interval, 2.7–5.1) and 2.4-fold (1.9–2.9) higher hazard risk of
unfavorable outcomes compared with low- and moderate-risk
groups, respectively. Four-month regimens were noninferior to the
standard 6-month regimen in the low-risk group.

Conclusions: Our model discrimination was modest but
consistent with current models of unfavorable outcomes. Our
results showed that stratified medicine approaches are feasible
and may achieve high cure rates in all patients with tuberculosis.
An interactive risk stratification tool is provided to facilitate
decision-making in the regimen development pathway.

Keywords: tuberculosis therapeutics; risk stratification; stratified
medicine; optimal treatment duration; clinical trial design

Innovation in tuberculosis (TB) therapy is
desperately needed. Current TB drug
development programs are focused on
identifying shorter one-size-fits-all TB
treatment regimens that maximize treatment

completion without compromising on
overall cure rates (1, 2). However, numerous
translational gaps hinder the drug
development pathway. Improved and
innovative tools and approaches are

necessary to accelerate the identification of
optimal treatment regimens and durations
for all patients with TB (1, 3).

Whereas current practice guidelines
highlight individual risk factors (bacterial
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burden, extent of cavitary disease, culture
positivity at 8 weeks, etc.) that, based on post
hoc analyses, suggest an extension in
treatment duration may be warranted, there
have been no tools developed that indicate
the likelihood of achieving a cure based on an
integrated suite of baseline risk factors, with
or without on-treatment risk factors (4, 5).
Such tools could support stratified medicine
principles for TB care, whereby stratifying
duration according to major risk factors can
maximize cures for all patients and derisk
identification of new TB regimens in the
drug development pathway. Moreover, there
are no tools that could estimate the likelihood
of a durable cure when treatment is
shortened to durations of less than 6 months.

As short and ultrashort duration
regimens, such as those in TB Trials
Consortium Study 31/A5349
(NCT02410772) (6) and the Two-month
Regimens Using Novel Combinations to
Augment Treatment Effectiveness for drug-
sensitive TB (TRUNCATE TB) trial
(NCT03474198) (7), are evaluated in the
treatment of patients with TB, stakeholders
are increasingly seeking to integrate
innovative clinical trial approaches and tools
into their decision-making to facilitate early
and effective deployment of the best
regimens. In this study, we leveraged data
from four large contemporary phase 3 trials
to develop and validate a data-driven
framework aimed to maximize the success of
late-stage clinical trials. Specifically, we
developed quantitative risk stratification
tools that assign patients into various risk
groups of unfavorable outcomes and inform
the selection of optimal treatment duration
for each patient strata to study in clinical
trials. Our tools can be used to inform a
priori decisions regarding optimal durations
for new regimens being considered for phase
3 clinical trials and to design novel phase 3
clinical trials that account for major risk
factors. Some of the results of this study have
been previously reported in the form of
abstracts (8, 9).

Methods

Study Design
Individual-level data (n=3405) from three
international, randomized phase 3 trials
(Ofloxacine-Containing, Short-Course
Regimen for the Treatment of Pulmonary
Tuberculosis [OFLOTUB] trial,
NCT00216385 [10]; Rapid Evaluation of
Moxifloxacin in TB [REMoxTB] trial,
NCT00864383 [11]; and High-Dose
Rifapentine withMoxifloxacin for
Pulmonary Tuberculosis [RIFAQUIN] trial,
ISRCTN44153044 [12]) that compared
4-month fluoroquinolone-containing
regimens to the standard 6-month regimen
for treatment of drug-susceptible TB was
used for model development. A fourth trial
conducted by the Division of Microbiology
and Infectious Diseases (DMID) of the
National Institute of Allergy and Infectious
Diseases, DMID 01-009 (NCT00130247,
n=386) (13), was used as an independent
dataset for external validation, which tested a
4-month standard regimen (no
fluoroquinolone). For each of these

regimens, rifampin was administered at the
standard dose of 10 mg/kg for the complete
duration of the regimen or rifampin was
administered at the standard dose during the
intensive phase and then replaced by
rifapentine at 900 mg twice weekly in the
continuation phase of treatment (4-month
regimen in RIFAQUIN study). Additional
information on study design for these trials is
available in the original publications.

Efficacy Outcomes
The primary efficacy endpoint was time to an
unfavorable outcome for a maximum of 18
months after start of treatment. Participants
who were not followed for at least 18 months
were censored at their last available time
point. Because of the composite definitions
used to label unfavorable outcomes, we
separated outcomes into two groups and
developed separate models for 1) time to
TB-related outcomes and 2) time to
non–TB-related outcomes. TB-related
outcomes included treatment failures, deaths
owing to TB, relapse, and exogenous
reinfection (for the OFLOTUB study only).
Non–TB-related outcomes included
dropouts, withdrawal of consent, lost to
follow up, adverse events, other deaths, and
inadequate treatment. This approach allowed
for the evaluation of the dichotomy between
TB-related and non–TB-related outcomes,
such that we would not expect common TB
predictors (e.g., disease burden and severity)
to be associated with non–TB-related
outcomes if they are not related to TB. In
addition, potential interventions for each
outcome can be assessed. For each of the
models, time was censored at time of
alternative outcome (i.e., when modeling
time to TB-related outcomes, non–TB-
related outcomes were censored at time of
event). This approach requires independent
censoring, meaning that we are assuming
censoring does not change the probability of
the event of interest for each model (14).

Model Development and Evaluation
Parametric time-to-event models were used
to describe time to TB-related outcomes and
time to non–TB-related outcomes.
Predictors of hazard risk parameters were
tested for each model in a stepwise manner,
in which exposure and regimen composition
factors were first tested followed by baseline
and on-treatment factors (see Supplemental
Methods in the online supplement). The
model building procedure was guided by
Kaplan-Meier visual predictive checks to

At a Glance Commentary

Scientific Knowledge on the
Subject: It has taken over 40 years
to reduce the duration of
tuberculosis (TB) treatment from 6
to 4 months, underscoring the
urgent need for innovation in TB
regimen development programs.
Current one-size-fits-all approaches
impede the identification of new
regimens that would be curative if
used with greater precision. The TB
field should consider the well-
documented evidence of diversity of
disease burden and severity, which
are the main drivers of unfavorable
outcomes, to inform the design of
the next generation of clinical trials
that move the field beyond one-
size-fits-all approaches to TB care.

What This Study Adds to the
Field: We pooled individual-level
data from four phase 3 trials to
develop evidence-based tools
capable of stratifying patients into
risk groups and informing optimal
treatment duration for each strata
to test in future clinical trials. Our
tools can be used as a clinical trial
design resource to inform a priori
decisions regarding optimal
durations for new regimens being
considered for phase 3 clinical trials
and to design novel phase 3 clinical
trials that account for major
risk factors.
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assess calibration and area under the receiver
operating characteristic curve (ROC AUC)
for discrimination using model development
and independent validation datasets.

Risk Stratification Algorithm and
Optimal Treatment Duration
Exact regression coefficients of baseline and
on-treatment predictors of TB-related
outcomes were used to derive a risk score,
Risk Scorei, for each individual, i. Risk Scorei
and the final model for time to TB-related
outcomes were used to calculate the optimal
treatment duration for each individual,
TRTDURATIONi, required to reach a
specified target cure rate, CUREtarget . Optimal
treatment duration calculations in this
manuscript are based on a 7/7 weekly dosing
schedule and full adherence. Full derivation
of Risk Scorei and TRTDURATIONi are
available in the online supplement.

The definitions of low-, moderate-, and
high-risk groups were based on the predicted
optimal treatment duration of the standard
regimen (i.e., isoniazid, rifampin,
pyrazinamide, and ethambutol) required to
achieve less than or equal to 7% of
TB-related outcomes (CUREtarget =0.93) at
18 months since the start of treatment. This
target matches the pooled Kaplan-Meier
estimate of TB-related outcomes at 18
months reported in the control groups from
the original trials (see Supplemental
Methods, Table E2, and Figure E2B in the
online supplement). The low-risk group was
defined as requiring less than or equal to 18
weeks of treatment, the moderate-risk group
as requiring 19–24 weeks of treatment, and
the high-risk group as requiring more than
24 weeks of treatment. The risk stratification
algorithm was validated with the DMID
01-009 study data by comparing observed
Kaplan-Meier estimates to target cure rates
after treatment with 4-month and 6-month
regimens for each risk group. Hazard ratios
(HRs) were used to compare success rates in
the 4-month and 6-month regimens for each
risk group. As a second validation exercise,
we performed an analysis with a random
sample of 70% of the population from all
four phase 3 trials (OFLOTUB, REMoxTB,
RIFAQUIN, and DMID 01-009) for model
development and the remaining 30% for
validation.

Noninferiority Analysis
Data from all four phase 3 trials were pooled
for noninferiority analyses between the
4-month experimental regimen and 6-month

control regimen in each risk group. The
absolute difference in percentage of
TB-related outcomes was calculated using
inverse probability study-weighted Kaplan-
Meier estimates at 18 months after start of
treatment (15). Noninferiority was assessed
using the upper bound of the two-sided 90%
confidence interval (CI), determined by
bootstrapping 500 samples, and a
noninferiority margin of 6.6 percentage
points—a margin that had been used in the
most recent phase 3 trial (6).

Implementation of the Model and
Algorithm into Interactive Tool
An interactive risk stratification tool based
on the final model for TB-related outcomes
and risk stratification algorithm was
developed into a web application using the
Shiny package in R (version 1.3.2). The tool
has twomodules: 1) the Risk Stratification
Module uses available information on patient
characteristics to assign risk groups and
predict optimal treatment durations for the
subgroup of interest, and 2) the Clinical Trial
DesignModule performs model simulations
that can inform optimal treatment durations
to test in clinical trials based on the study
design (e.g., one-size-fits-all, subgroup
analysis, enrichment, or risk stratification
study designs). Additional information on
the development and use of the tool is
available in the Supplemental Methods and
web application at http://saviclab.org/tb-risk.

Results

Data Characteristics
The model development dataset included
3,405 participants with drug-susceptible TB.
Baseline characteristics did not differ
between experimental and control groups
(Table 1) (16). In the 4-month experimental
group, 1,257/2,001 (63%) of participants
were treated with a regimen that included
isoniazid. The median number of treatment
days was 114 in the 4-month experimental
group and 169 in the 6-month control group
(Table 1; Figure E1 in the online
supplement). Month 2 culture conversion
rates were higher in the 4-month
experimental group than 6-month control
group (Table 1, P=0.01). Of the 3,405
participants, 393 had a TB-related outcome,
with shorter time to TB-related outcome
when treated with 4-month experimental
regimens (HR, 2.5; 95% CI, 2.0–3.1), and 263
had a non–TB-related outcome (145 in the

4-month experimental group and 118 in the
6-month control group), with no evidence of
difference in time to non–TB-related
outcome among 4-month and 6-month
regimens (HR, 0.87; 95% CI, 0.68–1.1;
Figure E2).

Model Development and Evaluation
The hazard risk for TB-related outcomes was
best described with a surge function (see
Supplemental Methods). A decreased
number of treatment days and exclusion of
isoniazid increased the hazard risk of
TB-related outcomes (29% [percent relative
standard error (%RSE)= 9] increase per
28-day decrease in number of treatment
days; 32% [48] increase for exclusion of
isoniazid; Table 2). Baseline factors that
increased hazard risk included HIV
coinfection (86% [%RSE=29] increase),
higher smear grade (68% [36] increase for
smear 31 relative to smear 11 or negative),
male sex (64% [32] increase), presence of
cavitary disease (26% [57] increase), and
lower body mass index (BMI) (18% [41]
increase per 5 kg/m2 decrease). Inclusion of
Month 2 culture status improved
discrimination with an increase in ROC
AUC from 0.69 (95% CI, 0.66–0.72) to 0.72
(0.69–0.75) (Table 2). Calibration of the final
predictive model was good (Figures E3–E5).

A Gompertz function was used to
describe the hazard risk of non–TB-related
outcomes (see Supplemental Methods).
Increasing age was the sole factor that
increased the hazard risk of non–TB-related
outcomes (23% [%RSE=29] increase per
10-year increase; Table 2 and Figures E3 and
E6). Because the final model for non–TB-
related outcomes was independent of
treatment-specific factors, derivation and
prediction of subsequent risk scores and
optimal treatment durations were based solely
on the final model for TB-related outcomes.

Risk Stratification Algorithm and
Optimal Treatment Durations
Optimal treatment duration was predicted
based on a six-item hazard risk score: HIV
status, baseline smear grade, sex, baseline
cavitary disease, baseline BMI, andMonth 2
culture status. The derivations and final
formulas to calculate individual risk scores
(Risk ScoreiÞ and optimal treatment
durations (TRTDURATIONi) are presented
in the Supplemental Results. Based on the
predicted optimal treatment durations to
reach a 93% target cure rate, 794/3,405
(23%) participants in the model
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Table 1. Baseline, On-Treatment, and Regimen Characteristics of Study Participants Included in the Model Development Population

Model Development Dataset Independent Dataset

Characteristic
4-Mo Experimental
Group (n=2,001)

6-Mo Control
Group (n= 1,404)

4-Mo Experimental
Group (n=193)

6-Mo Control
Group (n=193)

Site region
Sub-Saharan Africa 1,653 (83) 1,228 (88) 80 (41) 79 (41)
India 228 (11) 114 (8) 0 (0) 0 (0)
Asia 120 (6) 62 (4) 46 (24) 46 (24)
South America 0 (0) 0 (0) 67 (35) 68 (35)

Sex, F, n (%) 592 (30) 415 (30) 76 (39) 76 (39)
Age, yr*
Median 30 29 29 27
Interquartile range 24–39 24–38 23–38 22–36
Range 16–81 17–77 18–59 18–59

Weight, kg
Median 52 52 54 55
Interquartile range 46–58 47–58 49–62 49–61
Range 35–98 35–137 35–98 32–90

Body mass index†

Median 18.4 18.3 20.3 19.5
Interquartile range 16.9–20.2 16.9–20.1 18.7–22.1 18.5–22.1
Range 12.0–40.7 12.1–50.9 14.0–33.3 12.1–37.7

HIV positivity, n (%)‡ 248 (12) 220 (16) 0 (0) 0 (0)
Cavitary disease, n (%)§ 1,247 (62) 847 (60) 0 (0) 0 (0)
Smear, n (%)jj

Negative or 11 483 (24) 317 (23) 111 (58) 115 (60)
21 503 (25) 404 (29) 32 (17) 36 (18)
31 988 (49) 667 (48) 50 (26) 42 (22)

Regimen composition
Isoniazid 1,257 (63) 1,404 (100) 193 (100) 193 (100)
Rifapentine 193 (10) 0 (0) 0 (0) 0 (0)
Moxifloxacin 1,312 (66) 0 (0) 0 (0) 0 (0)
Gatifloxacin 689 (34) 0 (0) 0 (0) 0 (0)

Treatment duration (d)¶**
Median 119 175 112 168
Interquartile range 114–119 169–182 111–114 167–170
Range 2–202 4–239 53–142 142–196

Number of treatment days**††

Median 114 144 — —
Interquartile range 96–119 144–182 — —
Range 1–120 1–189 — —

Cumulative rifamycin dose, mg**‡‡

Median 57,600 86,400 — —
Interquartile range 51,600–71,400 79,200–108,600 — —
Range 450–72,000 450–113,400 — —

Month 2 culture positivity§§ 336 (17) 285 (20) 0 (0) 0 (0)

Model development dataset includes OFLOTUB (Ofloxacine-Containing, Short-Course Regimen for the Treatment of Pulmonary Tuberculosis),
REMoxTB (Rapid Evaluation of Moxifloxacin in TB), and RIFAQUIN (High-Dose Rifapentine with Moxifloxacin for Pulmonary Tuberculosis) trial
data, and independent dataset for external validation includes DMID (Division of Microbiology and Infectious Diseases) 01-009 trial data.
*Age was missing for five study participants.
†Body mass index was defined as the weight in kilograms divided by the squared height in meters. Height was missing for 291 study
participants; median heights for females and males were used to calculate body mass index.
‡HIV status was missing for nine study participants.
§Cavitary disease status was missing for 200 study participants.
jjSmear grade was based on clinical trial–defined grading but readjusted so all data was on the same scale. Smear grade was missing for 43
study participants.
¶Treatment duration, defined as the number of days the participant was on treatment, was missing for 117 study participants.
**For the independent dataset (DMID 01-009 trial), number of treatment days was not available. However, all study participants were required to
have completed a minimum of 112 doses of anti-tuberculosis treatment within 18 weeks, and then participants were randomized to stop
treatment or to receive an additional 2 months of the continuation phase (isoniazid and rifampin) for a total of 162 doses. Treatment was
administered 7 days per week, with at least five doses administered by directly observed therapy.
††Number of treatment days, defined as the total number of treatment days drugs were administered, was missing for 38 study participants.
‡‡Cumulative rifamycin dose, defined as number of treatment days multiplied by individual rifamycin daily dose, was missing for 38 study participants.
§§Month 2 culture was missing for 308 study participants.
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development population were assigned to
the low-risk group, with risk scores ranging
from 0 to 1.67; 1,624/3,405 (48%)
participants were assigned to a moderate-
risk group, with risk scores ranging from
1.68 to 3.20; and 987/3,405 (29%)
participants were assigned to a high-risk
group, with risk scores ranging from 3.21 to
14.73. The distribution of individual risk
scores and predicted optimal treatment
durations in the model development
population are shown in Figures 1A and 1B,
respectively. Figure 1C illustrates the
distribution of different risk factors across
the three risk strata. Participants with
individual risk factors are still distributed
among low-, moderate-, and high-risk
groups, showing that risk group assignment
is dependent on a patient’s combination of
risk factors rather than a single variable.

The performance of the risk
stratification algorithm is presented in
observed Kaplan-Meier estimates shown in
Figure 2 and Figure E5. Participants in the
low-risk group treated with either a 4- or
6-month regimen had similar risk of

TB-related outcomes (HR, 1.7; 95% CI,
0.9–3.1), with cure rates above or
approximately at the 93% target cure rate
threshold. In the moderate-risk group, only
participants treated with a 6-month regimen
resulted in cure rates above 93%, with
4-month regimens leading to significantly
higher risk of TB-related outcomes than the
6-month regimen (HR, 3.4; 95% CI,
2.2–5.2). Finally, in the high-risk group,
cure rates after treatment with a 4- or
6-month regimen were below the 93%
threshold, with the 4-month regimens
leading to significantly higher risk than the
6-month regimen (HR, 2.5; 95% CI,
1.8–3.4). After adjustment for regimen,
high-risk groups have a 3.7-fold (95% CI,
2.7–5.1) and 2.4-fold (95% CI, 1.9–2.9)
higher hazard risk of unfavorable outcomes
compared with low- and moderate-risk
groups, respectively. No interaction between
regimens and risk groups was identified,
suggesting that the risk of TB-related
outcomes increases in higher risk groups
independent of treatment duration (P value
for interaction= 0.4).

Validation of Model and Risk
Stratification Algorithm
The final TB-related outcomemodel and risk
stratification algorithm were externally
validated using an independent dataset
available from the DMID 01-009 trial that
included 386 participants with drug-
susceptible, noncavitary TB disease at
baseline and culture conversion at Month 2.
This independent dataset represents a
subpopulation of primarily lower risk, with
266/386 (69%) participants in the low-risk
group, 116/386 (30%) in the moderate-risk
group, and 4/386 (1%) in the high-risk group
(Figure E7). The TB-related outcomemodel
had similar discrimination and calibration
with the independent dataset as compared
with the model development dataset (ROC
AUC, 0.78; 95% CI, 0.65–0.90; Figure E8).
The observed Kaplan-Meier estimates of
TB-related outcomes confirmed that patients
in the low-risk group can be treated with a
4-month regimen, and patients in the
moderate-risk group require at least 6
months of treatment to reach 93% target cure
rates (Figure 3). No TB-related outcomes

Table 2. Estimated Parameters for Models Describing TB-related Outcomes and Non–TB-related Outcomes

TB-related Outcome
Model without Month 2

Culture*

TB-related Outcome
Model with Month 2

Culture*
Non–TB-related
outcome model

ROC AUC (95% confidence interval) 0.69 (0.66–0.72) 0.72 (0.69–0.75) 0.57 (0.54–0.61)
Parameter description Estimate (%RSE) Estimate (%RSE) Estimate (%RSE)
Baseline hazard† 1024.0 (11) 1024.1 (11) 0.03 (8)
Shape parameter† 0.52 (24) 0.52 (24) 0.38 (6)
Shape parameter 2† 3.9 (26) 3.9 (27) —
Covariate effects‡

Percent increase in baseline hazard
Per 28-d decrease in number of treatment days 28 (10) 29 (9) —
For Month 2 culture positivity — 145 (19) —
For HIV coinfection 90 (28) 86 (29) —
For smear 31 relative to smear negative or 11 86 (31) 68 (36) —
For smear 21 relative to smear negative or 11 23 (91) 18 (110) —
For male sex 72 (30) 64 (32) —
For cavitary disease at baseline 38 (43) 26 (57) —
For exclusion of isoniazid in regimen 30 (51) 32 (48) —
Per 5-kg/m2 decrease in BMI 14 (56) 18 (41) —
Per 10-yr increase in age — — 23 (29)

Definition of abbreviations: %RSE=percent relative standard error of the parameter estimate (typical value or median); BMI=body mass index;
ROC AUC=area under the receiver operating characteristic curve; RSE= relative standard error; TB= tuberculosis.
*Final model adjusted for region of clinic site (sub-Saharan Africa vs. non–sub-Saharan Africa).
†Hazard of TB-related outcomes was described with the surge function, and hazard of non–TB-related outcomes was described with the
Gompertz function. Additional details are in the Supplemental Methods.
‡Covariate effects added using linear relationships. For continuous covariates, the following relationship was used:
P xð Þ5 TVP 11u COV �COVmedianð Þ=100� �

, where TVP is the typical value for parameter P , u is the reported covariate effect centered around
the covariate median value (COVmedianÞ, and COV is the individual covariate value. For binary covariates, the following relationship was used:
PðxÞ5 TVP 11u COVð Þ=100

� �
, where TVP is the typical value for parameter P , and u is the reported covariate effect for the individual covariate

value COV (value of either 0 for reference or 1 for test group). Increased effect (positive covariate effect) refers to increased hazard risk of
unfavorable outcomes (TB- or non–TB-related, respectively) in this model.
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Figure 1. Distribution of individual risk scores, optimal treatment durations, and risk factors for target cure of 93% in the model development
population. (A) Distribution of individual risk scores stratified by low-, moderate-, and high-risk groups. (B) Distribution of predicted optimal
treatment durations for target cure rate of 93% stratified by low-, moderate-, and high-risk groups. (C) Heat map distribution of identified risk
factors among low-, moderate-, and high-risk groups. All individuals are arranged on the x-axis from lowest risk score to highest risk score, and
each column in each row (risk factor) represents a single individual. The low-risk group was defined as patients requiring less than or equal to
18 weeks of treatment, the moderate-risk group as requiring 19–24 weeks of treatment, and the high-risk group as requiring more than 24
weeks of treatment for a target cure rate of 93%. BMI=body mass index.
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were reported in the four patients categorized
in the high-risk group. The second validation
exercise using a random split of the
population for model development and
validation had similar exact regression
coefficients in the model, proportions of the
population assigned to each risk group, and
Kaplan-Meier estimates for each risk group
compared with the primary analysis (Table
E3 and Figures E9 and E10).

Noninferiority Analysis
Combining all four phase 3 trials, in the low-
risk group (1,060/3,791; 28%), the 4-month
regimens were noninferior to the 6-month
control regimen, with a difference in study
adjusted Kaplan-Meier estimate of
TB-related outcomes of 2.6 (90% CI, 0.2–5.1)
(Figure 4). Conversely, in the moderate-risk
(1,740/3,791; 46%) and high-risk (991/3,791;
26%) groups, the difference in study adjusted
Kaplan-Meier estimate of TB-related
outcomes was 9.5 (90% CI, 7.2–11.8) and 16
(90% CI, 11.6–20.3), respectively, both
favoring the 6-month control regimen.

Interactive Risk Stratification Tool for
Clinical Trial Design
We developed an evidence-based interactive
risk stratification tool that can generate
critical knowledge essential for regimen
optimization in a clinical trial setting by

highlighting those subgroups of patients who
are at higher risk of unfavorable outcomes
andmay require treatment adjustments to
reach trial objectives (e.g., identify
noninferior or superior regimens).
Specifically, it can be used to stratify patients
into risk groups of unfavorable outcomes,
inform the selection of optimal treatment
durations for each risk group to test with
new regimens, and inform the design of
novel late-stage clinical trials that account for
major risk factors (e.g., patient phenotype
enrichment or risk stratification studies).
Input parameters include arguments about
study design, patient characteristics, and
patient adherence. The tool can handle
missing data by performing simulations with
bootstrapped populations from a subset of
the model development population with the
same available risk factors (Figure E11).
Additional details and instructions for its use
are available in the Supplemental Methods
and web application hosted at http://saviclab.
org/tb-risk, with a snapshot shown in
Figure 5.

Discussion

The current one-size-fits-all approach to TB
regimen development impedes the
identification of new regimens that would be

curative if used with greater precision. New
clinical trial data has emerged from Study
31/A5349 with a landmark achievement, in
which a 4-month high-dose rifapentine
regimen with moxifloxacin successfully
showed noninferior results to the 6-month
standard regimen using a one-size-fits-all
approach (6). Still, it has taken over 40 years
to reduce the duration of treatment from 6 to
4 months, underscoring the formidable
barrier to successfully shortening treatment
durations for TB and the urgent need for
innovation in TB therapy and regimen
development programs. The diversity of
disease and large spectrum of patient
phenotypes is regularly considered in other
diseases when optimizing effective treatment
programs, particularly in oncology (17). In
that manner, the TB field should consider the
well-documented evidence of diversity of
disease burden and severity, which are the
main drivers of unfavorable outcomes
(4, 16, 18), to inform the design of the next
generation of clinical trials and regimens
that move the field beyond one-size-fits-all
approaches to TB care. To support this, we
developed a risk stratification algorithm
that successfully stratified patients with
drug-susceptible TB into low- (1,060/
3,791; 28%), moderate- (1,740/3,791; 46%),
and high-risk (991/3,791; 26%) groups. In
conjunction, through risk stratification, we
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Figure 2. Kaplan-Meier estimates to validate calibration of risk stratification algorithm using model development population. (A) Low-risk group
stratified by regimen duration. (B) Moderate-risk group stratified by regimen duration. (C) High-risk group stratified by regimen duration. Dashed
line shows target cure rate of 93%. TB= tuberculosis.
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are able to predict the optimal treatment
durations of standard-dose (10 mg/kg)
rifamycin-containing regimens for each
stratum, in which low-risk patients can be
treated with a 4-month regimen,

moderate-risk patients with a 6-month
regimen, and high-risk patients likely with
regimens exceeding 6 months without
compromising on cure rates. Based on our
results, we developed an interactive risk

stratification tool as a clinical trial design
resource that can provide evidence-
informed recommendations on optimal
treatment interventions to be tested in
future clinical trials.
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Our risk stratification algorithm uses six
markers of risk that are routinely collected in
clinical trials: HIV status, baseline smear
grade, sex, baseline cavitary disease, baseline
BMI, andMonth 2 culture status. The risk
stratification algorithm successfully
grouped and validated low-risk participants
eligible for 4-month standard-dose
rifamycin-containing regimens and
moderate-risk participants requiring at least
6 months. The high-risk participants had
suboptimal relapse rates with 6-month
standard-dose rifamycin-containing
regimens, but it was not validated whether
regimens exceeding 6 months would result in
better treatment outcomes, as longer
treatment durations were not tested in the
original studies. Nevertheless, we learned
that this high-risk group indeed require more
effective regimens to reach target cure rates
and are likely the cause of unsuccessful
shortening of TB treatments when using
one-size-fits-all regimens with standard
rifamycin doses in clinical trials. For
example, the observed proportion of
favorable outcomes for this group treated
with the 6-month control was 88% (378/428)

compared with the low- andmoderate-risk
groups at 96% (936/976) (Figure 2). Possible
alternative interventions that can be tested in
clinical trials to improve efficacy in these
patients include increasing daily rifamycin
doses or substituting drugs for those with
better lesion penetration properties and/or
more potent bactericidal or sterilizing activity
(19–21). These potentially more effective
regimens may also allow for ultrashort
treatments for low- and moderate-risk
groups in clinical trials.

Presently, only two separate studies
have investigated the relationship between
treatment duration and rates of relapse. In
one, a meta-regression model developed
from published historical data to predict
rates of relapse using treatment duration
and the proportion of participants with
negative culture at Month 2 was capable of
predicting the expected rates of relapse in
the 4-month experimental regimens from
the REMoxTB and RIFAQUIN trials (22).
In a second study, a translational
pharmacokinetic–pharmacodynamic
model derived from preclinical mice data
was used to predict the results of a number

of clinical trials with reasonable success
(23). However, both models predicted wide
confidence and prediction intervals,
suggesting that other important factors
were unaccounted for in the model, making
it difficult to make appropriate treatment
recommendations in individuals or patient
subgroups, particularly in high-risk groups,
who are the main drivers of relapse. Our
tools are now capable of quantitatively
predicting, with good precision, rates of
TB-related outcomes and confidently
providing recommendations on optimal
treatment durations in stratified groups.

The composite definition of unfavorable
outcomes was not standardized across the
trials included in our analysis. To alleviate
this issue, TB-related and non–TB-related
outcomes were modeled separately to
determine whether different risk factors affect
each outcome. Indeed, treatment- and
disease-specific risk factors only affected
TB-related outcomes, so proposed treatment
interventions would only improve relapse,
treatment failures, and TB-related deaths.
Still, non–TB-related outcomes are critical to
assess because they routinely contribute to
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the assessment of overall efficacy and are
undesirable because of the risk of disease
transmission and emergence of drug-
resistant strains (6, 10–12, 24). The only
risk factor of non–TB-related outcomes
was older age. Hence, to improve non–TB-
related outcomes, interventions may
instead be focused on informing patients
about the potential risk of inadequate
treatment, use of maximal efforts by
clinicians and researchers to contact
participants (e.g., phone calls or home visits)
that miss routine visits, and close monitoring
of adverse events. In any case, this pooled
analysis highlights the need for standard
definitions of endpoints and analysis methods
in TB clinical trials. A new framework that
focuses on TB-related outcomes and provides
a standardized language to help articulate the
question of interest, analysis, and
interpretation in clinical trials has been
proposed in a recent addendum (25) to the
International Council for Harmonisation of
Technical Requirements for Pharamaceutical
for Human Use (ICH) E9 Statistical
Principles for Clinical Trials (26) and is now
being considered and implemented in future
TB clinical trials (e.g., Duration Randomized
Anti-Multidrug-resistant-TB And Tailored
Intervention Clinical Trial [DRAMATIC
trial], NCT03828201). In this regard, focusing
on TB-related outcomes may be more
relevant to future trials.

Our study has limitations. First, our
parametric model had modest discrimination
(ROCAUC=0.72) when including all
potential risk factors of poor outcomes
collected in each trial. However, our goal is
not to assign a specific duration for each
individual patient but rather to stratify
patients into risk groups that can be assigned
appropriate durations. In addition, our model
performance is consistent with current
microbiological markers (e.g., culture
conversion and smear grade) as predictors of
treatment outcome (27–31). Certainly, more
quantitative and sensitive measures of disease
burden and severity (e.g., cycle threshold in
Gene Xpert and lipoarabinomannan levels in
sputum) are now becoming available and
may one day replace current markers
(32–37). The model described herein
provides the framework that can
subsequently be revised to account for more
robust markers as additional data become
available. Second, our independent dataset for
external validation represented a
subpopulation of primarily lower risk. Thus,
we also performed the analysis with a

random sample of the population for model
development and validation, which had
similar results as our primary analysis
(Table E3 and Figures E9 and E10). Third, all
tested regimens in the studies included in our
analysis were rifamycin-based regimens at
standard-suboptimal doses. Predicted
optimal treatment durations will likely be
underestimated when high-dose rifamycin-
containing regimens are considered,
especially with the landmark clinical trial data
that recently emerged from Study 31/A5349
(6). This model will be continually revised as
new clinical trial data become available.
Caution is also advised if generalizing our
findings to regimens of other compositions,
as predictors of relapse may be different.
Finally, the tools necessary to measure risk
markers are already in use in many settings,
but in some (e.g., high-TB-burden settings),
the proposed risk markers may not be
routinely available with limited access to
diagnostics, particularly chest radiographs,
routine cultures, and HIV testing, among
other factors. TheWorld Health
Organization has endorsed wider and
quality-assured use of chest radiography for
TB detection in combination with laboratory-
based diagnostic tests (38). As such, we prefer
to present the risk stratification tools inclusive
of these data. Nevertheless, we have
implemented our interactive tool so it can
handle missing values using two approaches.
First, a simplifiedmodel, excluding 2-month
culture as a risk marker, can be used to make
predictions with similar discriminatory ability
as the full model (Table 2, TB-related
OutcomeModel without Month 2 Culture).
Second, predictions can bemade with
missing markers by performing simulations
with bootstrapped populations from the
subset of the model development population
with the same available risk factors, such that
the bootstrapped populations will be based
on a pool of patients with similar risk
(Supplemental Methods and Figure E11).
Future trials that test stratified medicine
approaches to TB care should also evaluate
newer measures of risk (e.g., cycle threshold
in GeneXpert), which would allow for tools to
be refined and expanded, offering additional
characteristics and options for determining
risk. Overall, our tools are intended as clinical
trial design resources that use information
routinely collected in contemporary clinical
trials. They are not intended for
programmatic use at this time, though they
could be in the future as we incorporate
additional data from newer phase 3 trials.

Strengths of our analyses include the
inclusion of four large datasets from phase 3
trials conducted across diverse populations
in high-TB-burden settings; our predictive
model is evidence based, is fully parametric
with minimal assumptions about the shape
of hazard risk, and has similar predictive
performance in the model development and
validation datasets as that of other models of
risk of relapse (22); our stratification
algorithm is based on routinely collected
makers in clinical trials; and our interactive
risk stratification tool handles complex
calculations andmissing data.

In conclusion, we developed a
parametric model with performance
consistent with current microbiological
markers as predictors of treatment outcome
and provide a risk stratification algorithm
capable of assigning patients into risk
groups and informing optimal treatment
durations for each risk group. Furthermore,
an evidence-based interactive risk
stratification web application is provided as
a clinical trial design resource that will allow
for more informed and accelerated
decision-making in the regimen
development pathway. Importantly, our
results support the idea of stratified
medicine approaches for TB care: a
paradigm shift in overall objectives that is
patient centered and enhances cure rates for
the most severe TB cases while reducing
duration, toxicity, and cost to programs and
patients for the less severe TB cases.�
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