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ABSTRACT

Translation initiation represents a key step during
regulation of gene expression in chloroplasts. Here,
we report on the identification and characterization
of three suppressor point mutations which overcome
a translational defect caused by the deletion of a
U-rich element in the 50-untranslated region (50-UTR)
of the psbD mRNA in the green alga Chlamydomonas
reinhardtii. All three suppressors affect a secondary
RNA structure encompassing the psbD AUG initiation
codon within a double-stranded region as judged by
the analysis of site-directed chloroplast mutants as
well as in vitro RNA mapping experiments using
RNase H. In conclusion, the data suggest that these
new element serves as a negative regulator which
mediates a rapid shut-down of D2 synthesis.

INTRODUCTION

The control of mRNA translation represents a key regulatory
step for gene expression in both prokaryotes and eukaryotes.
Despite the fundamental differences between their translation
machineries, in both types of organisms the initial steps of
translation are known to play an essential role (1). These early
events of protein synthesis depend on a variety of cis- and
trans-acting determinants which usually mediate their func-
tions via the 50- and 30-untranslated regions (50 and 30-UTR)
of protein-coding transcripts (2–6). In chloroplasts, the typical
endosymbiotic organelles of photoautotrophic plants and
algae—a special situation developed during evolution. A
basic translational system, which is of prokarytic phylogenetic
origin, is embedded in a eukaryotic cellular context. This
results in a novel hybrid apparatus for protein synthesis
which is controlled by nucleus-encoded eukaryotic-type
factors (7–9). During the last years, substantial work has
been invested to identify these factors and to elucidate the

molecular mechanisms which underlie regulatory translational
processes within this specialized cellular compartment.

Genetic analyses in the green alga Chlamydomonas
reinhardtii and vascular plants have recently led to the iden-
tification and cloning of some of the trans-acting translation
factors involved (10–14). Moreover, the genes for RNA-
binding proteins which associate with chloroplast 50-UTRs
in vitro [for a review see (15,16) and in vivo (17,18)] were
identified by biochemical means. However, apart from the
target regions on chloroplast mRNAs, relatively little is
known about the precise molecular working mode of the
respective factors.

Initially, the cis-acting RNA targets were mapped by
analyzing reporter gene constructs carrying mutated versions
of distinct chloroplast 50-UTRs (19–22) or by site-directed
mutagenesis of the endogenous chloroplast gene regions
(16,23,24). Alternatively, a chloroplast in vitro translation
system from tobacco was used to define cis-acting transla-
tional elements within various plastid 50-UTRs in higher plants
(25,26). These analyses revealed that the typical prokaryotic
signal for translation initiation, i.e. a Shine–Dalgarno element
located 4–12 nt upstream of the AUG start codon, is functional
in some but not all chloroplast mRNAs (25,27–29). Further-
more, sequences surrounding the AUG start codon were shown
to significantly affect translational efficiency (30–32).

More systematic mutagenesis approaches then identified
additional regions within 50-UTRs as well as downstream
regions (33,34) which affect chloroplast protein synthesis.
In both C.reinhardtii and tobacco, stem–loop structures
within the psbA 50-UTR have been shown to be critical for
determining translational efficiency (27,35). RNA secondary
structure elements within 50-UTRs were also found to affect
protein synthesis from the psbC, petD and rps7 mRNAs
in C.reinhardtii (20,22,24,36) and the atpB mRNA in
tobacco (25).

We have previously demonstrated that the psbD 50-UTR
in C.reinhardtii contains the target site for the nucleus-
encoded RNA stability factor Nac2 (3,37) which connects
processes of psbD RNA stabilization and translation initiation
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[for a recent review see (38)]. Nac2 guides the RNA-binding
protein RBP40 to its cognate target site which is located 15 nt
upstream of the psbD AUG start codon. This cis-acting
element comprises a stretch of multiple U residues whose
deletion in the mutant DU completely abolished the synthesis
of the psbD gene product, i.e. the D2 protein of the photosys-
tem II reaction centre (23), and, furthermore, led to the loss
of RBP40-binding. A cis-acting suppressor of the DU mutation
was isolated and shown to harbour a 5 bp duplication within
the mutated region which partially restored both photo-
synthetic growth and RNA recognition by RBP40 (39).

Here, we report on the identification and characterization of
three novel, independent second-site suppressor mutations
of the DU mutation which are all located further downstream
of the U-element close to the AUG start codon. Site-directed
mutagenesis studies demonstrated that these mutations affect a
secondary RNA structure including the AUG start codon. The
data suggest that this structure serves as a negative regulatory
element for D2 synthesis.

MATERIALS AND METHODS

Algal strains, suppressor isolation and genetic crosses

C.reinhardtii strains were grown on tris-acetate-phosphate
medium at 25�C (40). Suppressors of the DU mutation were
isolated as described (39). In brief, DU cells were plated on
HS medium and kept in the dark for 24 h, exposed to ultra-
violet (UV)-light (7.5 mJ and 254 nm) in a stratalinker (Strata-
gene) and transfered to darkness for another 24 h-period to
prevent photoreactivation. Suppressors were selected in bright
light (100 mE m�2 s�1) for a period of up to 6 weeks. To test
whether the suppressor mutations reside within the nuclear or
chloroplast genome, all three suppressor strains (mt+) were
genetically crossed to the wild-type (mt�). All 4 members out
of 33 (suDU+9), 31 (suDU�3) or 18 (suDU+10) analyzed
tetrads from these crosses were able to grow photoautotrophi-
cally indicating a chloroplast localization of the respective
suppressor mutations. Photoautotrophic growth rates were
followed by measurement of the OD700 of cell cultures.

Plasmid construction and chloroplast transformation

Plasmids containing psbD 50-UTR mutations were generated
via mutagenesis PCR as described (23) with oligonucleotides
1963 and 1365 as well as oligonucleotides including the
mutation, i.e. su2-a: 50-gcaatgacaatttcgatcgg-30; su2-b: 50-
ccgatcgaaattgtcattgc-30; su4-a: 50-gcaatgacaatggcgatcgg-30;
su4-b: 50-ccgatcgccattgtcattgc-30; su5-a: 50-gagatacacacaatga-
caat-30; su5-b: 50-attgtcattgtgtgtatctc-30; revsu2-a: 50-ggagata-
cacgaaatgacaa-30; revsu2-b: 50-ttgtcatttcgtgtatctcc-30; revsu4-a:
50-gagatacacgccatgacaat-30; revsu4-b: 50-attgtcatggcgtgtatctc-
30; revsu5-a: 50-atgacaattgtgatcggtac-30; revsu5-b: 50-gtacc-
gatcacaattgtcat-30; mutsu-a: 50-ggagatacacgccatgacaa-30;
mutsu-b: 50- ttgtcatggcgtgtatctcc-30. Chloroplasts were then
transformed with these plasmids using a helium-driven
particle gun (41). The resultant strains were selected for pho-
toautotrophic growth on HS medium plates. Plasmid 72.1
containing the wild-type psbD 50-UTR was used as a positive
control (23).

Analysis of nucleic acids and proteins

Total DNA from C.reinhardtii was isolated using the DNeasy
Plant Kit (Qiagen, Hilden). Algal RNA was prepared with
hot phenol (42). RNA secondary structures were calculated
by using the RNAdraw software (43). Northern analysis,
primer extension assays and western analysis were performed
exactly as described (44). Radioactive labelling of RNAs and
UV cross-linking with proteins were also performed as
described (39).

RNase H mapping of RNA secondary structure

Templates comprising 134 bp (wt) or 127 bp (suDU+10,
suDU+9 and suDU�3) for in vitro synthesis of the various
psbD RNA probes were PCR-amplified from appropriate
DNAs with the oligonucleotide su3131 : 50-tgtgcgtttctcttga-
tatgtaccg-30, complementary to the coding region of psbD
from position +39 to +15 relative to the ATG and oligonu-
cleotide 2126: 50-taatacgactcactatagggacacaatgattaaaattaaa-30

spanning the psbD 50 region from position �74, as well as the
T7 promotor sequence (39). In vitro transcription reactions
and radioactive labelling of the RNAs were performed
as described (23). RNA probes (15 fmol) were diluted in
cacodylate buffer (50 mM Na-cacodylate, 20 mM CaCl2
and 10 mM KCl) and incubated with 10 pmol of the oligo-
nucleotide RH-1: 50-aattgtcattgcgtgtatct-30 which is comple-
mentary to position �11 to +9 relatively to the AUG start
codon. The samples were heated to 60�C for 5 min and cooled
down with a rate of 1�C per min to 25�C. After addition of
one volume 2· cacodylate buffer with MgCl2 (50 mM Na-
cacodylate, 10 mM KCl, 20 mM CaCl2 and 20 mM MgCl2),
samples were incubated with 0.5 U RNase H (Ambion,
Cambridgeshire) for 2 min or 5 min and loaded on 12% Poly-
acrylamide TBE gels (45). After electrophoresis, gels were
sealed in plastic bags and exposed to Fuji X-ray films
at �20�C.

Pulse labelling of membrane proteins

For pulse labelling of proteins, cells were grown as described
(23). After measurement of chlorophyll content, cells were
harvested and resuspended to 80 mg chlorophyll/ml. A total
of 500 ml of the cells were incubated with cycloheximide
(10 mg/ml) for 10 min. Subsequently, cells were fed with
50 mCi 35S-sulphate (Amersham, Freiburg) for 20 min in
bright light (100 mE m�2 s�1). After centrifugation, sedi-
mented cells were frozen in liquid nitrogen. Broken-cell
preparation and gel electrophoresis were carried out as
described (44). Signals were quantitated by using the Scion
Image software and standardized to the internal Cytf control.

RESULTS

Three independent point mutations suppress the DU
mutation

Previously, it was shown that a striking U-rich element
within the 50-UTR of the chloroplast psbD mRNA is involved
in its translation (Figure 1). This element is recognized by the
RNA-binding protein RBP40, a process that is dependent
on the presence of the nucleus-encoded RNA stability factor
Nac2 (39). Replacement of the U-track by a BamHI restriction
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site in the mutant DU resulted in complete loss of both
D2 synthesis as well as RBP40-binding (23). Furthermore,
the photosynthetic revertant suDU containing a 5 bp dupli-
cation immediately upstream of the BamHI site restored
both D2 synthesis and RBP40-binding to almost wild-type
levels. These findings together with a more comprehens-
ive mutational analysis underlined the significance of the
U-element/RBP40 interaction for translation of the psbD
message (39).

We have now isolated three novel, independent phenotypic
revertants of the DU mutation, namely suDU+10, suDU+9
and suDU�3. Genetic crosses revealed that each suppressor
mutation resides within the chloroplast genome (see Materials
and Methods). However, in contrast to the previously charac-
terized suDU strain, sequencing of the psbD region revealed
that in the suppressors the immediate vicinity of the mutated
U-tract is not altered. Instead, each suppressor strain harbours
a single point muation which is localized downstream of the
U-stretch at positions +10 (suDU+10), +9 (suDU+9) and �3
(suDU�3) with regard to the AUG start codon (Figure 1).
Biolistic back-transformations of chloroplasts with constructs
containing the psbD leader region of either suDU+10, suDU+9
or suDU�3 showed that all three constructs were able to
complement the DU mutant verifying that indeed each
mutation is sufficient to cause the suppressor phenotype on
its own (Figure 1).

All three suppressors accumulated almost wild-type levels
of psbD mRNA (Figure 2A; Table 1) indicating that the

respective point mutations have no effect on RNA stabiliza-
tion. The psbD mRNA has previously been shown to exist in
two forms. The difference lies in the length of their 50-UTR
and is most likely due to a 50 processing event (23,38). In
neither of the three suppressor strains, this 50 maturation
was compromised (Figure 2B). However, D2 protein accumu-
lation was found to be restored to varying extent. Whilst the
suppressor suDU+9 accumulated almost 50% of D2 protein
as compared to the wild-type, suDU+10 and suDU�3 reached
only levels of 20 and 15%, respectively (Figure 2C; Table 1).
This was in agreement with reduced photoautotrophic
doubling times of 37 h for suDU+9, 38 h for suDU+10 and
45 h for suDU�3 as compared to 35 h for the wild-type
(Table 1).

Suppressor mutations do not restore RBP40-binding

As mentioned above, in the previously described cis-acting
suppressor suDU, a 5 bp duplication immediately upstream of
the U-rich translation element resulted in restored binding of
RBP40 to the psbD 50-UTR thereby explaining the observed
suppressor phenotype (39). Therefore, we tested whether
the suppressor mutations suDU+10, +9 and �3 also affect
RBP40-binding in vitro. Radiolabelled RNA probes from
each 50-UTR were incubated with stromal protein extract
from the wild-type, and the RBP40 signal was monitored
after UV cross-linking of RNAs and proteins. As expected,
a strong binding signal was observed with a wild-type psbD

Figure 1. Sequence alignment of the psbD 50 region from wild-type (WT) and analyzed mutant strains. Positions relative to the initiation codon (Met) and the
formerly described PRB1 and PRB2 boxes (23) are indicated above the sequences. Dots and solid boxes mark conserved residues and deletions, respectively.
The sequence of the U-rich region and the AUG start codon are given in boldface and horizontal arrows represent computer-predicted stem–loop structures of
the wild-type region. PS, representative number of photoautotrophically growing colonies after transformation of the mutant DU with 1 mg of indicated DNAs.
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50 probe but not with a mutant DU probe. The same held for
the three suppressor RNAs, none of which led to a RBP40-
binding signal (Figure 3A). To further confirm the different
RNA-binding properties of RBP40, competition binding
experiments were carried out by using radiolabelled wild-
type RNA and increasing excess of now unlabelled probes.
As shown in Figure 3B, only the homologous wild-type
50-UTR efficiently competed with the wild-type probe while
excess of the suppressor RNAs had only a minor effect on
RBP40-binding. Taken together, these data strongly suggest
that in contrast to the known suppressor suDU, the suppressor
mutations suDU+10, suDU+9 and suDU�3 do not restore
the binding of RBP40 to the psbD U-track but instead appear
to act via a RBP40-independent mechanism.

The psbD AUG start codon is part of
a secondary RNA structure

Bioinformatic inspection of the psbD 50 RNA secondary struc-
ture revealed that all three supressor mutations are located
in a putative stem-structure of a RNA hairpin which partly
encompasses also the AUG start codon (Figure 4). To test
whether this RNA secondary structure or the RNA sequence
context close to the AUG codon is important for mediating
suppression, compensatory mutations were introduced into the
psbD leader by site-directed mutagenesis (23). The mutations
revsu+10, revsu+9 and revsu�3 each restored the putative
stem-region in the respective suppressor backgrounds by an
appropriate exchange of the mismatching nucleotides on the
opposite strand of the stem (Figure 4). When mutant DU

Figure 2. Molecular characterization of suppressor strains suDU+10, +9, and�3. (A) Northern analysis of total RNA (10mg) from the strains indicated at the top was
carried out with a radiolabelled psbD- or, as an internal standard, a rbcL-specific probe. (B) Indicated RNAs were assayed by primer extension analysis using
oligonucleotide 3131. The arrows mark the 50 ends of the longer form starting at position�74 relative to the AUG start codon and the shorter form starting at position
�47 of the psbD 50-UTR from the wild-type. In the DU mutant and the suppressors, psbD leaders are shorter by 7 nt due to the deletion at the poly(U) region (see
Figure 1). (C) Western analysis of total proteins (10 mg) from the same strains was performed by immunolabelling with antibodies directed against either the D2
protein or, as an internal standard, the Rubisco holoenzyme from spinach. A serial dilution of wild-type proteins (0–75%) in DU proteins was co-analyzed.

Table 1. Molecular characteristics of analyzed strains

Strains WT DU suDU+10 suDU+9 suDU�3 mutsu suwt+10 suwt+9 suwt�3 stabIR

Photoautotrophic
growtha

35 ± 2 – 38 ± 1.5 37 ± 1 45 ± 2 40 ± 2 31 ± 1.5 30 ± 2 32 ± 1 39 ± 2

RNA 100 80 ± 5 108 ± 6 112 ± 4 115 ± 3 114 ± 5 104 ± 3 99 ± 4 105 ± 4 112 ± 5
Proteinb 100 0 20 ± 6 46 ± 5 15 ± 7 42 ± 6 117 ± 8 116 ± 9 118 ± 9 61 ± 6

Values display the mean of three independent experiments except for b.
aDoubling times in HS medium at 100 mE m�2 s�1.
bValues display the mean of 10 independent experiments.
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chloroplasts were transformed with these constructs, no com-
plementations were observed for neither of them (Figure 1).
This suggested that indeed the restoration of the RNA stem–
loop structure inhibited the suppression effect independent of
the sequence context.

To further substantiate that the suppressor mutations affect
a critical structural rather than a sequence element, the sec-
ondary structure of the wild-type and the suppressor psbD
50-UTRs were determined by comparative RNase H mapping
(45). Radiolabelled RNA probes were hybridized with oligo-
nucleotide RH-1 which is complementary to the respective
AUG regions. RNA/DNA hybrid formation is assumed to
be possible only in unpaired RNA stretches which then
become a substrate for RNase H. Consequently, unstructured
RNA regions will cause an efficient cleavage of the RNA into

defined smaller products. As shown in Figure 5, the wild-type
psbD 50-UTR was almost resistant against RNase H digestion
over a time period of 5 min suggesting that a double-stranded
RNA structure prevents stable base pairing with the oligo-
nucleotide. In contrast, all three suppressor RNAs were effi-
ciently cleaved into expected major fragments of 59 and 30 nt
being indicative of a more or less unstructured RNA region
in the vicinity of the start codon.

These findings strongly suggested that the psbD 50-UTR
forms a stable RNA stem–loop structure which partially
includes the AUG codon in its stem-region. Furthermore,
this structure appears to act as a negatively regulating element
for D2 synthesis at least in a DU genetic background (Figure 1)
probably by preventing access of the small ribosomal sub-
unit to the initiation codon. If this scenario were true, then,
a suppression of the DU mutation should be achievable by
altering other nucleotides of the stem-region. Thus, an A
to C mutation at position �1 relative to the start codon was
introduced into the DU 50-UTR to test whether this stem-
destabilizing mutation, similar to the genetically selected
suppressors suDU+10, +9 and �3, would also lead to a sup-
pression effect. A corresponding construct indeed was capable
of complementing the DU mutant (Figure 1). In the result-
ing transformant mutsu, D2 accumulation was found to be
restored to 42% of the wild-type level (Figure 6B; Table 1)
further supporting the idea of a repressive RNA structure
located at the psbD translation initiation codon.

Analysis of suppressor mutations in the presence
of the psbD U-rich element

The above mentioned data provided good evidence that the
psbD stem–loop structure is a negative determinant for psbD
gene expression in the absence of the U-rich translation ele-
ment and, as a consequence, the absence of RBP40 activity.
Thus, the next question concerned the phenotype of mutants
which contain both the U-element and any of the suDU+10,
+9 and �3 mutations. Adequate site-directed mutant versions,
named suwt+10, suwt+9 and suwt�3, were constructed and
transformed into DU chloroplasts. As expected, all three

Figure 3. Binding of RBP40 to suppressor 50-UTRs. (A) Radiolabelled psbD 50-UTR probes from the strains indicated at the top and chloroplast stromal
protein extract were analysed by UV cross-linking (39). (B) In competition binding experiments, radiolabelled wild-type psbD 50 probe was pre-incubated with
5-, 50- or 500-fold molar excess of the marked unlabeled competitor RNAs. (C) The diagram displays the intensities of the RBP40-binding signal in relation to that
of the signal without competitor (0·).

Figure 4. RNA stem–loop structure of the psbD 50 region. The wild-type
sequence of the psbD region around the initiation codon (grey) is delineated
with nucleotide exchanges in the various mutants marked by arrows. All
mutants harbour single point mutations in the stem-region except revsu+10,
+9 and �3 which in addition contain the respective suppressor point mutations
(see also Figure 1). The additional base pairing in stabIR is indicated by a
dotted line.
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constructs complemented the U-stretch mutation (Figure 1).
Interestingly, resulting transformants were shown to accumu-
late slightly increased levels of D2 protein (Figure 6B;
Table 1). This was in agreement with a moderate enhancement
of D2 synthesis in suwt+10, +9 and �3 as compared to
the wild-type in protein pulse labelling experiments using
radioactive sulphate (Figure 6C). This increase in D2 accu-
mulation in suwt+10, +9 and �3 suggested that also other
subunits of the PS II complex accumulated to enhanced levels

because unassembled PS II proteins are rapidly degraded
by a chloroplast proteolytic ‘clearing system’ (23). Con-
sistently, all three strains exhibited a slightly accelerated
photoautotrophic growth rate as compared to the wild-type
(Table 1). These findings supported the idea that the RNA
secondary structure serves as a negative element for psbD
gene expression and, similar to the situation in cyano-
bacteria, D2 protein accumulation represents a key regulatory
step for PS II assembly (46).

Figure 5. In vitro mapping of RNA secondary structure. 100 fmol of indicated radiolabelled RNA probes of 116 nt (wt) and 109 nt (suDU+10, suDU+9 and suDU�3)
were incubated with oligonucleotide RH-1 complementary to the AUG regions and 0.5 U RNase H for 2 or 5 min. Major RNase H cleavage products of 59 and 30 nt
(arrows) were visualized on autoradiograms after separation by denaturating PAGE. Computer-predicted secondary RNA structures with a boxed AUG initiation
codon are given at the top. Position of oligonucleotide RH-1 is indicated by bold characters.

Figure 6. Molecular characterization of site-directed psbD mutants. For northern (A) and western (B) analyses see legend of Figure 2. (C) Proteins from indicated
strains were pulse labelled with 35S-sulphate for 20 min and separated by SDS–PAGE.
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In conclusion, these results suggested that the RNA
stem–loop structure containing the psbD AUG start codon
negatively regulates synthesis of the D2 protein and as a
consequence PS II accumulation. As an additional control
for this hypothesis, the site-directed mutant stabIR was
constructed by introducing a U residue at position �5 of
the wild-type psbD leader (Figure 4). This alteration led to
a stem-region which was extended by 1 bp and thus, a RNA
structure of enhanced stability should be formed. Although
this construct was still able to complement the DU mutant
(Figure 1), the subsequent molecular characterization of the
resulting transformant stabIR revealed a significant reduction
of D2 accumulation to nearly 60% compared to the wild-type
level (Figure 6B; Table 1). This finding provided an additional
piece of evidence for the RNA conformation at the trans-
lation initiation codon playing a critical role for psbD gene
expression.

DISCUSSION

In this report, we describe the identification and characteriza-
tion of a structural RNA element which serves as a negative
regulatory determinant for the synthesis of the D2 protein in
C.reinhardtii chloroplasts. The analysis of genetically selected
suppressors, various site-directed chloroplast mutants as
well as in vitro mapping studies using RNase H showed
that the AUG start codon of the psbD mRNA is located in
a double-stranded RNA region which has to be resolved
before translation initiation. It should be noted, however,
that in suppressor strains suDU+9 and suDU+10 the amino
acid sequence of the D2 protein was changed at position 3
from isoleucine to methionine and at position 4 from alanine
to valine, respectively (Figure 4). These alterations might
have influenced overall D2 protein stability and thus D2
accumulation. For instance, it was reported previously that

the replacement of the threonine at position 2 of D2 with
acidic—but not neutral—amino acid residues abolished
D2 synthesis/accumulation at a post-initiation level in
C.reinhardtii (47,48). However, similar effects are not likely
to play a significant role for the D2 accumulation rates in
suppressors suDU+9 and suDU+10 since they represent gain
of function mutants. Additionally, when placed in an other-
wise wild-type background, both point mutations apparently
had no negative effect on PSII activity as documented by the
fitness of the strains suwt+9 and suwt+10 (Table 1). Hence, it
seems rather unlikely that the amino acid changes in suDU+9
and suDU+10 add a substantial effect to the suppression
mechanism.

The influences of RNA secondary structure elements on
chloroplast protein synthesis rates have been noticed before.
In principle these structures can have two different functions
(49). First, they might serve as recognition sites for trans-
acting, translation-activating factors as has been suggested
for several chloroplast 50-UTRs (21,22,24,27,35,36). Secondly
and like the element described here, secondary RNA structures
might serve as negative regulatory elements which block
access of the small ribosomal subunit to the translation initia-
tion region resembling the situation which is frequently found
in prokaryotes (1). In chloroplasts for instance, it has been
proposed that the processing of petD precursor RNAs in maize
results in the release of the initiation codon from base pairing
within a secondary structure and only thereby allows efficient
synthesis of the petD gene product (50). Also in barley chloro-
plasts, methyl jasmonate-dependent processing of the rbcL
50-UTR was proposed to influence translation initiation
rates (51). By using a chloroplast in vitro translation system
from tobacco, it was recently shown that the RNA conforma-
tion around the AUG codon of the atpB mRNA negatively
affects translation efficiency (25). Moreover, bioinformatic
inspection of the close vicinity of translational initiation
regions (each ranging from position �15 to +18) from all
chloroplast genes in C.reinhardtii revealed that, potentially,
nine of the respective initiation codons might be parts of
double-stranded RNA structures with a thermodynamic sta-
bility in the range of the psbD mRNA one (DG ¼ �8.53 kcal
at 25�C). These regions include that of the psbN (�9.31 kcal),
atpB (�7.53 kcal), psbC (�7.32 kcal), ORF2971 (�6.77 kcal),
rpoA (�6.71 kcal), rpl2 (�6.4 kcal), psaA (�6.06 kcal) and
petG (�5.3 kcal) genes. However, only additional experi-
mental data will provide an answer to the question whether
such ‘prokaryotic-like’, negative principles of regulation rep-
resent a more common theme of chloroplast gene expression.

Whilst the psbD stem–loop structure plays a crucial role for
gene expression in the absence of the U-rich region and thus
RBP40 activity, its destabilization in an otherwise wild-type
background did not result in a dramatic but only moderate
increase in D2 synthesis. This suggests that under optimal
conditions the inhibition of D2 synthesis via the stem–loop
is not strictly rate-limiting. This is reminiscent of the situation
found in chloroplast mutants of the petA- or atpB-1 nt (31,52).
In both cases nucleotide changes in the respective �1 triplets
did not show any measurable effect on protein accumulation.
Only if the AUG start codon was changed into the sub-optimal
AUU codon, differences in protein accumulation became
detectable (31,52). Under optimal conditions, i.e. the presence
of the U-element, most probably the availability of positively

Figure 7. Model of D2 synthesis modes. Analyzed strains and their relative
D2 levels are indicated at the left and right margins, respectively. The psbD
mRNA structure is given along with RBP40. Black boxes represent the AUG
initiation codon. For further explanation see text.
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regulating trans-acting factors such as the Nac2 protein and
the Nac2-dependent RNA-binding protein RBP40 mainly
determine D2 synthesis rates as has recently been proposed
(39,44). In the absence or reduction of Nac2/RBP40 activity
however, this element might be involved in a rapid shut-down
of psbD translation thereby allowing a fast adjustment of
protein synthesis rates to changing environmental conditions.

Figure 7 summarizes the main psbD gene expression modes
which were characterized during the course of this work. In
conclusion, the fact that the isolated suppressor mutations
overcome a defect in RBP40-binding without restoring the
interaction between this factor and the U-rich element strongly
suggests that at least one function of RBP40 is to resolve
the secondary structure in the wild-type situation. We have
recently identified the RBP40 gene but its putative structure
does not reveal a typical helicase-like activity (I. Elles and
J. Nickelsen, unpublished data). Hence, it appears more likely
that the binding of RBP40 alters the psbD RNA conformation
thereby enabling access of the small ribosomal subunit to
the initiation codon. Future work is focussing on the interac-
tions between the involved trans-acting factors and the char-
acterized RNA elements and, thus, their precise molecular
working modes.
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