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Genetic factors significantly affect vulnerability to alcohol dependence (alcoholism).
We previously identified quantitative trait loci on distal mouse chromosome 1 with
large effects on predisposition to alcohol physiological dependence and associated
withdrawal following both chronic and acute alcohol exposure in mice (Alcdp1 and
Alcw1, respectively). We fine-mapped these loci to a 1.1–1.7 Mb interval syntenic with
human 1q23.2-23.3. Alcw1/Alcdp1 interval genes show remarkable genetic variation
among mice derived from the C57BL/6J and DBA/2J strains, the two most widely
studied genetic animal models for alcohol-related traits. Here, we report the creation
of a novel recombinant Alcw1/Alcdp1 congenic model (R2) in which the Alcw1/Alcdp1
interval from a donor C57BL/6J strain is introgressed onto a uniform, inbred DBA/2J
genetic background. As expected, R2 mice demonstrate significantly less severe
alcohol withdrawal compared to wild-type littermates. Additionally, comparing R2
and background strain animals, as well as reciprocal congenic (R8) and appropriate
background strain animals, we assessed Alcw1/Alcdp1 dependent brain gene
expression using microarray and quantitative PCR analyses. To our knowledge this
includes the first Weighted Gene Co-expression Network Analysis using reciprocal
congenic models. Importantly, this allows detection of co-expression patterns limited to
one or common to both genetic backgrounds with high or low predisposition to alcohol
withdrawal severity. The gene expression patterns (modules) in common contain genes
related to oxidative phosphorylation, building upon human and animal model studies
that implicate involvement of oxidative phosphorylation in alcohol use disorders (AUDs).
Finally, we demonstrate that administration of N-acetylcysteine, an FDA-approved
antioxidant, significantly reduces symptoms of alcohol withdrawal (convulsions) in mice,
thus validating a phenotypic role for this network. Taken together, these studies support
the importance of mitochondrial oxidative homeostasis in alcohol withdrawal and identify
this network as a valuable therapeutic target in human AUDs.
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INTRODUCTION

Alcohol use disorders (AUDs) are a leading cause of global
disease burden, disability-adjusted life years, and years lost to
disability (Whiteford et al., 2013). Currently, three medications
(naltrexone, acamprosate, and disulfiram) are approved by
the FDA for the treatment of alcohol dependence, and these
primarily target reduction of heavy drinking days. Additional
investigational drugs may reduce relapse after a period of
abstinence (e.g., ondansetron, baclofen, and topiramate; Johnson
et al., 2003, 2007; Addolorato and Leggio, 2010; Batki and
Pennington, 2014; Soyka and Lieb, 2015). Unfortunately, these
medications have little or no therapeutic efficacy in some patients
and/or cause serious side effects, nor do they directly target
the alcohol withdrawal symptoms associated with physiological
dependence.

Alcoholism is a heterogeneous disorder with a complicated
relationship between biological (e.g., genetic) and environmental
factors. Human studies have generally identified markers
associated with AUD diagnoses and endophenotypes. Social
environment, stress, mental health status, and age are all known
to impact development and severity of AUDs. Based on family
and twin studies, about 50% of AUD risk is genetically influenced
(Agrawal and Lynskey, 2008; Verhulst et al., 2015). Despite
this high heritability, the genetic determinants of AUD risk
remain largely unknown, hindering the development of effective
therapeutic and preventative strategies (Ducci and Goldman,
2012).

Because human studies are often retrospective, underpowered,
and confounded by comorbid disorders (e.g., abuse of additional
substances), animal models are invaluable tools toward the
discovery and validation of risk genes and pathways. Seizures,
a well-known consequence of dependence and one of the
most feared manifestations of withdrawal in alcoholics, are
considered “rebound” phenomena owing to ethanol-induced
compensatory (homeostatic) processes in the brain. Physiological
and behavioral withdrawal signs in mice are similar to those
in humans, and many species exhibit convulsions during severe
withdrawal and reduced seizure thresholds even during mild
withdrawal (Heilig et al., 2010). Although no animal model
duplicates clinically defined alcoholism, behavioral assessment
of specific factors thought to constitute the motivational forces
that perpetuate use and contribute to relapse are useful
surrogates for identifying potential genetic determinants of
liability in humans. Animal models for alcohol withdrawal
symptoms are also useful to determine the effectiveness of
potential pharmacotherapies designed to target these forces.
Due to their striking divergence in a number of alcohol-related
traits, including predisposition to physiological dependence and
associated withdrawal, the DBA2/J (D2) and C57BL/6 (B6)
mouse strains are the two most widely utilized genetic animal
models of AUDs.

Using B6D2-derived genetic models, we previously detected
and localized quantitative trait loci (QTLs) on mouse
chromosome 1 that significantly affect withdrawal severity
following both chronic (Alcdp1; Buck et al., 2002) and acute
(Alcw1; Buck et al., 1997) alcohol exposure. Subsequently, using

a panel of novel chromosome 1 QTL interval-specific congenic
strains, we finely mapped Alcdp1 and Alcw1 to the same 1.1 Mb
interval (Kozell et al., 2008). The fact that the QTLs map to the
same interval, herein referred to as Alcw1/Alcdp1, is consistent
with the idea that the same gene or genes contribute to the
mechanism(s) of action and phenotypic effects of both QTLs.
The present studies are the first to use small donor segment
congenics to isolate QTLs on reciprocal genetic backgrounds,
thus utilizing two Alcw1/Alcdp1 models, one of which (R8)
possesses the smallest (1.1–1.7 Mb) recombinant congenic
interval on a B6 background (Kozell et al., 2008). For the second
Alcw1/Alcdp1 model, we report the creation of the first reciprocal
congenic (R2) on a D2 background. Due to the near-elimination
of confounding genetic background effects, congenic models
are extremely powerful tools for elucidating the gene or genes
underlying QTL phenotypic effects (Shirley et al., 2004; Kozell
et al., 2008, 2009; Doyle et al., 2014; Kato et al., 2014; Kobayashi
et al., 2014). QTLs affecting a variety of phenotypes and behaviors
in addition to Alcw1/Alcdp1 have been localized to distal mouse
chromosome 1 (Mozhui et al., 2008), making this an attractive
target for investigation. Numerous studies have also found
significant associations with AUD risk across a broad area of
human 1q (Ehlers et al., 2010).

Quantitative trait loci mapping has become a common
approach to identify chromosomal regions with a gene(s)
influencing a complex trait such as AUD (Milner and Buck,
2010). Identification of quantitative trait genes (QTG) can
provide valuable genetic targets for therapeutic interventions.
However, often the effects of a single QTG may not be strong
enough to detect or strong enough to disrupt the phenotype.
However, complementary system genetics approaches such
as network analyses can detect important, more subtle gene
expression changes to identify biological mechanisms affecting
the phenotype and introduce new potential targets for disruption.
Similar to QTL analyses, systems genetics integrates genomic
and phenotypic data to analyze complex traits (Nadeau and
Dudley, 2011; Civelek and Lusis, 2014). For the microarray
data presented here, we used weighted gene co-expression
network analysis (WGCNA), a systems biology method to
describe correlations beyond differential expression (DE)
(Langfelder and Horvath, 2008). WGCNA identifies subtle
patterns of gene expression clusters (modules), which change
coherently and are directly impacted by genotype. We then
assessed these modules for biological function to identify
mechanisms or pathways contributing to alcohol withdrawal
vulnerability.

Molecular network analyses are an important complement
to standard QTG identification in translational approaches to
complex disease (Emilsson et al., 2008). In some cases, a QTG
may be the same in mouse and human (Mogil et al., 2003), while
in others, determining additional players and dynamics of the
larger network in which candidate QTGs operate may provide
more relevant translational utility (Sieberts and Schadt, 2007).
Thus, integrating evidence for the influence of an individual gene
located within the QTL with that of the co-expression network
of the gene can improve understanding of the mechanism by
which that gene affects complex traits. The present studies seek to
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elucidate a mechanism(s) involved in the actions of a QTL with a
large effect on genetic predisposition to alcohol withdrawal.

MATERIALS AND METHODS

Animals
B6 and D2 strain breeders were purchased from the Jackson
Laboratory. The R2 congenic and the previously developed
reciprocal R8 congenic strain (Kozell et al., 2008) were created
in our colony at the Veterinary Medical Unit of the Portland
VA Medical Center. All congenic and wildtype (WT) animals
used were bred in our colony or purchased from Jackson
Laboratory. The R8 congenic contains a 1.1 Mb of D2
chromosome 1 introgressed onto an inbred B6 background
(minimal 170.9–172.13 Mb; maximal 170.4–172.14 Mb; build
GRCm38) (Kozell et al., 2008). Here, we used our D2.B6−D1Mit206

congenic strain (Kozell et al., 2008) as the point of departure
to develop the reciprocal congenic (R2). Individual animals
with recombination within the starting congenic interval were
backcrossed to produce multiple offspring with the same
recombinant genotype.

R2 heterozygotes were intercrossed to generate the R2
homozygotes, R2 heterozygotes, and WT littermates used for
behavioral phenotypic comparisons. Once the congenic strain
was established, they were inbred for no more than three
generations before being backcrossed to background strain.
Heterozygous offspring were intercrossed, and their full-congenic
offspring were used as breeders for mice used in the molecular
studies. Congenic and background strain mice were housed in
the same room. Background strain animals were inbred for three
generations. This breeding scheme is much more conservative
than that recommended by Jackson Laboratories (10 generations)
to limit genetic drift.

Only male mice were used in molecular analyses. Both males
and females were used for behavioral studies. Mice were group-
housed 2–4 per cage by sex. Mouse chow (Purina #5001) and
water were available ad libitum, and lights were on from 6:00 to
18:00 with the room temperature maintained at 22.0 ± 1.0◦C.
All procedures were approved by the VA Medical Center
and Oregon Health & Science University Institutional Animal
Care and Use Committees in accordance with United States
Department of Agriculture and United States Public Health
Service guidelines.

Baseline and Alcohol Withdrawal
Enhanced Convulsions
Physiological dependence is defined operationally as the
manifestation of physical disturbances (withdrawal) after alcohol
administration is suspended. Genetic variation in alcohol
withdrawal severity was examined by monitoring handling-
induced convulsions (HICs) associated with withdrawal, which
is a sensitive index of withdrawal severity (Goldstein and Pal,
1971; Crabbe et al., 1991a). McQuarrie and Fengl (1958) first
reported that alcohol withdrawal is apparent in mice following a
single hypnotic dose, and this was later shown to be genetically
determined (Crabbe et al., 1991b). The initial detection and

fine-mapping of a QTL on distal chromosome 1 affecting
alcohol withdrawal utilized this acute model (Buck et al., 1997;
Kozell et al., 2008). This QTL also affects predisposition to
withdrawal following chronic alcohol exposure (Buck et al.,
2002; Kozell et al., 2008). Importantly, to avoid confounding
by tolerance observed in chronic models (Crabbe et al., 1991a),
and to assess central nervous system (CNS) alcohol-sensitivity,
the present studies utilize the acute model. Details of this
acute alcohol withdrawal procedure have been published (Kruse
et al., 2014). In the R2 congenic comparison, R2 homozygotes,
heterozygotes, and WT littermates were tested. The mice were
scored twice for baseline (pre-ethanol) HICs 20 min apart,
followed by a single sedative-hypnotic dose of ethanol (4 g/kg,
i.p., 20% v/v in saline) and scored hourly between 2 and
12 h post-ethanol administration. In order to create an index
of alcohol withdrawal for each animal that is independent
of potential individual differences in baseline HIC scores and
reflects differences in withdrawal convulsion severity, post-
ethanol HIC scores were corrected for the individual’s average
pre-ethanol (baseline) HIC score as in previous work (Kruse
et al., 2014). Individual alcohol withdrawal severity scores
were then calculated as the area under the curve (i.e., the
sum of the post-ethanol HIC scores) from 1 to 12 h post-
ethanol.

Additionally, we tested the potential influence of
N-acetylcysteine (NAC) on baseline and alcohol withdrawal
enhanced HICs. The NAC dose and number and timing of
NAC administrations were selected based on previous work
demonstrating a significant increase in endogenous glutathione
in rodent brain (Pocernich et al., 2000) and on our pilot empirical
results. Male and female D2 strain mice were used to facilitate
detection of either a decrease or increase in withdrawal severity.
Using a 2 × 2 factorial design, approximately half of the mice
were administered NAC (300 mg/kg, i.p., at both−48 and−24 h
relative to ethanol administration) and the other half received
vehicle (10 ml/kg saline at both −48 and −24 h). Baseline HIC
scores and alcohol withdrawal severity scores were calculated as
described above, except a subset of mice was also scored at 24 h
to verify that HICs returned to baseline.

Behavioral Data Analyses
Withdrawal severity scores were determined to be normally
distributed based upon a non-significant Chi-Square test and
analyzed using an Analysis of Variance (ANOVA) (Systat 13,
Systat Software Inc.). When significance was indicated (p< 0.05),
this was followed by post hoc (Tukey) analysis, with significance
set to p < 0.05 (two-tailed).

Genotypic Analyses
DNA for genotyping was extracted from ear punch tissue
using the Epicentre Quick Extract protocol according to
the manufacturer’s instructions. Genotype analyses were
performed using standard protocols for simple sequence length
polymorphisms (e.g., MIT markers) and single nucleotide
polymorphisms (SNPs) using fluorescent probes (Applied
Biosystems Taqman methods).
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Gene Expression Microarray and
Quantitative PCR (QPCR) Analyses
A total of 32 naïve male animals were used for Illumina
Mouse Ref8 v2 array analyses (10 R8, 10 B6, 6 R2, and 6
D2). A separate group of 22 naïve males was used (n = 11
per strain) for confirmation testing using quantitative PCR
(QPCR) and additional complementary analyses. Whole brain
was isolated immediately after cervical dislocation and frozen
in liquid nitrogen, and total RNA isolated from individual
animals using a standard Trizol method as in previous work
(Daniels and Buck, 2002). cRNA was hybridized to Illumina
Mouse Ref8 v2 arrays by the OHSU Microarray Core exactly
per manufacturer instructions. Data preprocessing steps closely
followed that used in previous work (Iancu et al., 2010). Using the
R application environment1 and Bioconductor2, outlier samples
were removed and samples normalized using lumi (Du et al.,
2008). For genotype dependent DE on the microarray data, we
chose an uncorrected p = 0.01 threshold based on previous
detection of validated DE comparing R8 and background strain
animals with a similar threshold (Denmark and Buck, 2008) and
on the minimal genetic variation (<1%) between congenic and
WT strains. QPCR was used for validation testing of putative
DE genes, as well as to query additional genes of interest not
represented on the array, as in previous work (Denmark and
Buck, 2008).

Weighted Gene Co-expression Network
Analysis (WGCNA)
Parallel WGCNA (Zhang and Horvath, 2005; Langfelder and
Horvath, 2008) were performed similarly to previous work (Iancu
et al., 2012; Metten et al., 2014) using the R8B6 and R2D2
datasets. Expression data were first filtered for detection across
all samples. Gene (probe) expression variability is described
by the coefficient of variation (CV), and this variation is
lower among congenic and background strain animals than
for more genetically diverse populations (e.g., the HSNPT
8-strain cross; Iancu et al., 2013). Therefore, to optimize
network robustness (Fuller et al., 2007) and consistency with
variation thresholds (Iancu et al., 2013), only probes with a
CV ≥ 0.013 were considered adequately variable and included
in the network analyses. Pearson correlations were computed
between all gene pairs and subsequently raised to a power beta
(β = 10) chosen in accordance with the scale free criteria
(Zhang and Horvath, 2005), resulting in an adjacency matrix.
To detect modules, this matrix was clustered utilizing the hybrid
adaptive tree cut procedure following Langfelder and Horvath
(2008), with clustering parameters: minimum module size = 20,
deepSplit = 4, cutHeight = 0.9999. Each module was arbitrarily
assigned a color, and expression properties condensed into
a representative profile or module eigengene (ME), reflecting
the first principal component of each module (Langfelder and
Horvath, 2007). Subsequently, modules with a correlation greater
than 0.80 (cutHeight= 0.20) were merged.

1www.r-project.org
2www.bioconductor.org

Module Quality and Overlap
To validate network construction, we assessed module robustness
in the consensus networks for B6 and R8 (R8B6) and D2
and R2 (R2D2). In each case, gene co-expression modules
were compared to random groups of genes from the respective
network analyses (Langfelder et al., 2011). Module quality was
quantified as Z scores, which were derived by comparing module
properties (e.g., connectivity) with the same properties derived
from 300 sets of random genes approximately the same size as
the true modules. Shared membership between R8B6 and R2D2
modules was assessed for each module pair and significance
calculated using Fisher’s exact test to assign a p-value to each
pairwise overlap.

kME, kWithin, Gene Significance
Details of our approach (based upon Langfelder and Horvath,
2008; Langfelder et al., 2011) are provided in previous work
(Metten et al., 2014). In these, module membership (kME) is
a natural measure of connectivity that describes how closely a
probe/gene resembles the ME, and intramodular connectivity
(kWithin) is calculated as the sum of connection strengths
within distinct modules (Langfelder and Horvath, 2008). These
measures tend to be highly correlated in co-expression networks,
allowing identification of the most highly connected genes, i.e.,
hubs, likely to have functional and biologically relevant systems-
level influence. Gene significance p-values (GSP) were generated
for each probe in the network analyses (Langfelder and Horvath,
2008), indicating the level of significance of the correlation of a
probe to a related trait (genotype).

Module Preservation
In order to evaluate whether modules in the R8B6 co-expression
network were preserved in the R2D2 co-expression network,
module preservation statistics were calculated in WGCNA
(Langfelder et al., 2011). Z summary (an aggregation of
multiple preservation Z statistics) was calculated based on 100
permutations using adjacency data. The higher the value of a
Z statistic, the stronger the evidence that the observed value of
the preservation statistic is significantly higher than expected by
chance.

Functional Assessment of Modules
We used Gene Weaver (Baker et al., 2012) to identify
curated, published datasets similar to our modules based on
gene membership. Beyond these, we also assessed potential
mechanisms of co-expression driven by Alcw1/Alcdp1 genes and
that in other published datasets by identifying the intersection
of each module with 50 Hallmark gene sets in the Molecular
Signatures Database (MSigDB) (Subramanian et al., 2005).
Hallmark gene sets summarize and represent specific, well-
defined biological states or processes and are generated by a
computational methodology that identifies gene set matches.
Lastly, we quantitatively assessed cell type enrichment of module
members using gene markers for mouse neuronal cell types
(Cahoy et al., 2008) and Fisher’s exact test followed by Bonferroni
correction.
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RESULTS

Reciprocal Congenics (R2 and R8)
Capture an Alcohol Withdrawal QTL
The present studies seek to elucidate a mechanism(s) involved
in the actions of a QTL with a large effect on genetic
predisposition to alcohol withdrawal. We previously established
the impact of a distal chromosome 1 QTL (Alcw1/Alcdp1)
on genetic vulnerability to alcohol withdrawal convulsions in
mice using a small donor segment congenic (R8; Kozell et al.,
2008). Genotypic analysis determined the minimal introgressed
interval of the newly created R2 congenic to be 10.2 Mb
(164.3–174.5 Mb; maximal 164.1–174.6 Mb; build GRCm38),
which encompasses the entire R8 1.1 Mb donor interval
(Figure 1A). Following acute ethanol administration, HIC
scores of R2 homozygotes, heterozygotes, and WT littermates
increased above baseline, indicative of rebound hyperexcitability
(a withdrawal sign), beginning between 4 and 6 h post-
ethanol administration, and peaking in severity approximately
7–8 h post-ethanol (Figure 1B). Baseline HICs did not differ
among R2 homozygotes, heterozygotes, and WT littermates
(0.38 ± 0.15, 0.87 ± 0.17, and 0.55 ± 0.21, respectively,
F2,95 = 2.2, p = 0.12, NS). However, alcohol withdrawal
severity scores (Figure 1C) were significantly different among
the three genotypes (F2,94 = 6.80, p = 0.002), with less
severe withdrawal in R2 homozygotes than heterozygote and
WT littermates (p = 0.007 and p = 0.004, respectively).
Taken together with previous studies demonstrating that
withdrawal following chronic and acute alcohol exposure
is significantly more severe in R8 congenic compared to
appropriate background strain animals (Kozell et al., 2008),
these results are consistent with the conclusion that the
influence of Alcw1/Alcdp1 on alcohol withdrawal severity

is significant on both high and low withdrawal genetic
backgrounds.

Alcw1/Alcdp1 Affects Genome-Wide
Differential Expression (DE)
We next compared genome-wide gene expression in
Alcw1/Alcdp1 congenics (R2 and R8) to appropriate background
strain animals (D2 and B6, respectively) using naïve animals to
minimize the effects of individual differences in alcohol response.
These data can thus not only inform genetic predisposition to
withdrawal, but also potentially inform additional behaviors
influenced by Alcw1/Alcdp1 allelic status (pleiotropy). We
used whole brain to assess gene expression in all critical brain
regions, and we identified 147 significantly (p < 0.01) DE genes
between R8 and B6: 13 (9%) are physically located within the
R8 introgressed interval (cis-regulated), and the remaining 134
(91%) are located elsewhere in the genome (trans-regulated). As
expected, with the relatively larger R2 donor interval (compared
to R8 interval), more significantly (p < 0.01) DE genes were
detected between R2 and D2 than between R8 and B6. Among the
316 DE genes, 19 (6%) are located within the R2 donor interval
(cis-regulated), and 297 (94%) reside elsewhere (trans-regulated).
All of the gene (microarray probe) comparisons, including the
DE probes, are provided in Supplementary Table 1. Among the
147 DE genes identified in the R8 vs. B6 comparison, 16 were
also identified in R2 vs. D2 (Figure 2). Nine of the shared DE
genes are cis-regulated (Adamts4, B4galt3, Copa, Fcgr3, Ncstn,
Nit1, Ppox, Usp21, and Vangl2), while six show trans-regulation
in both (Aaas, LOC100047619, Ccdc127, Gjc2, Lims2, and Pnkp).
The remaining shared DE gene (Uck2) is located within the
R2 introgressed interval but beyond the R8 donor interval. As
expected, DE is more conserved for cis-regulated genes than
those showing trans-regulation.

FIGURE 1 | (A) R8 congenic animals possess a small 1.1 Mb donor (D2, gray) segment from distal chromosome 1 on an inbred B6 (white) genetic background. The
reciprocal congenic, R2, possesses a larger 10.2 Mb donor (B6, white) interval from the same region of distal chromosome 1 on an inbred D2 (gray) genetic
background. Boundary regions (within which the recombination site is located) are indicated in black. (B) Mice were scored twice for baseline HICs (indicated by B)
immediately before administration of 4 g/kg ethanol (arrow = injection at time 0). Post-ethanol HICs were scored hourly from 2 to 2 h post-ethanol in R2
homozygotes (black squares), R2 heterozygotes (gray squares), and WT littermates (open squares) (N = 27, 44, and 16 mice per genotype, respectively). After
4–5 h, convulsion scores increased above baseline, indicating a state of withdrawal hyperexcitability that peaks about 6–8 h post-administration. Data represent the
HIC score (mean ± SEM). (C) Alcohol withdrawal severity scores (corrected mean AUC ± SEM) for R2 homozygote, R2 heterozygote and WT littermates are shown.
∗∗Significantly different (p < 0.005) than WT littermates; #Significantly different (p < 0.01) than R2 homozygotes.
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FIGURE 2 | Venn diagram illustrating correspondence of R8 vs. B6
differentially expressed genes and R2 vs. D2 differentially expressed
genes.

For stringent DE validation by QPCR, we compared
the Alcw1/Alcdp1 congenic with the smaller introgressed
interval (R8) to appropriate background strain (B6) animals
(Supplementary Table 2). We tested 9 of the 13 genes implicated
as DE by microarray and cis-regulated in an Alcw1/Alcdp1
dependent manner. QPCR confirmed DE for 7 of these: Ppox,
Copa, Ncstn, Refbp2, Sdhc, Ufc1, and Ndufs2. For the remaining
two genes, QPCR detected either no evidence of DE (Nit1) or DE
in the opposite direction of microarray (Adamts4). Differential
results for microarray and QPCR data are not unusual (Morey
et al., 2006), as both are based on probe hybridization which can
detect transcript variation. Probe quality can also affect results,
with QPCR being more sensitive than microarray. Furthermore,
with markedly more alternative splicing events in brain than
other tissues (Xu et al., 2002; de la Grange et al., 2010), the impact
of splicing variation on probe specificity may contribute to the
expression discordance we observed. Different sample sets were
used for microarray and QPCR analyses, so batch effects may
also contribute. We further tested by QPCR three genes within
the R8 congenic interval that either lacked a microarray probe or
had very low signal, and detected DE for all three: Apoa2, Atf6,
and Tstd1. Three additional cis-regulated genes did not show DE
on microarray, but were indicated as such by QPCR: Nos1ap,
Pex19, and Usf1. We considered all of the cis-regulated genes
demonstrating DE by QPCR to be candidate QTGs in subsequent
Alcw1/Alcdp1 analyses, which is further explored below.

To confirm trans-regulated genes, we prioritized genes
recognized as potential interaction partners with R8 interval cis-
regulated genes. QPCR confirmation for trans-regulated genes
was not as high; only two of six genes implicated by microarray
showed significant DE in the corresponding direction (Mt2,
Ndufa10), while the other four showed DE in the opposite
direction (Eif2a, Cox6b2, Atp6ap1, and Atf4). Six trans-regulated

genes were not represented on the array or had sub-threshold
signal, two of which (Snrp1c, Wdfy1) showed DE by QPCR.
Importantly, out of 26 trans-regulated genes showing no DE
on microarray, QPCR detected significant DE for 20 (Taz,
Nudt3, Ndufv1, Ndufb6, Mt1, Jam2, Itpka, Hspa5, Gclc, Gad1,
Eif2a, Ddit3, Crh, Cox6a2, Cebpb, Bex1, Bdnf, Atp1b2, Asns, and
Aldh2).

We then explored potential functional relevance for genotype-
dependent DE (p < 0.01) by assessing both congenic datasets
for overlap using Molecular Signatures Database and Hallmark
gene sets (see Materials and Methods). For these analyses we
only used those on the microarray and not the additional
data from QPCR because those were selected based on known
interactions or pathways. The R8/B6 DE genes significantly
(FDR < 0.05) overlapped with four Hallmark gene sets:
Fatty_Acid_Metabolism, UV Response_Up, Myogenesis,
and Oxidative_Phosphorylation. The R2/D2 DE genes
significantly (FDR < 0.05) overlapped with 17 Hallmark
gene sets, including E2F_Targets, G2M_Checkpoint, and
Unfolded_Protein_Response (see Supplementary Table 1
for full list of results). Only one set (UV Response_Up) had
significant overlap in both R8/B6 and R2/D2 comparisons, but
lacked any DE genes in common. Such non-overlap in Hallmark
gene sets between reciprocal congenics could be due to the
larger interval (and thus many more genes) in R2 compared to
R8, genetic background effects (Liang et al., 2010), or the fewer
number of individuals included in the R2/D2 dataset.

WGCNA Identifies Consensus
Alcw1/Alcdp1 Networks in Reciprocal
Congenics
Standard DE analysis can be limited to explain complex traits,
which rely on the concerted effects of many genes (Gaiteri et al.,
2014). To explore the more subtle organization and interactions
affected by Alcw1/Alcdp1, we performed parallel WGCNA
(Langfelder and Horvath, 2008) on both congenic/background
genome-wide expression datasets. WGCNA uses unsupervised
clustering to reduce large gene expression datasets into a network
of modules defined by correlated expression patterns.

Two consensus co-expression networks were constructed,
R8B6 and R2D2, consisting of 565 and 879 probes, respectively,
that met inclusion criteria, including CV threshold. A schematic
of the workflow is shown in Figure 3. Given the relatively
small degree of genetic variation among Alcw1/Alcdp1 congenic
and background strain animals, network sizes are smaller than
we have previously observed for WGCNA using heterogeneous
stocks and other populations. Four modules in R8B6 and
eight modules in R2D2 were defined by hierarchical clustering.
These modules were assigned arbitrary colors, with total
number of probes in each module given in parentheses:
R8B6blue (125), R8B6brown (246), R8B6green (140); R2D2black
(76), R2D2brown (91), R2D2green (157), R2D2greenyellow (221),
R2D2pink (73), R2D2purple (149), R2D2turquoise (111). The
gray module is reserved for genes not readily assigned to
any other module (Langfelder and Horvath, 2007): R8B6gray
(54) and R2D2gray (1). Probes and corresponding genes
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FIGURE 3 | Microarray and parallel weighted gene co-expression network analysis (WGCNA) workflow summary for each comparison of congenic
and background strain.

for each module are listed in Supplementary Tables 3
and 4. Potential module hubs are elaborated on in the
discussion.

Network Validation via Module Quality
Demonstrating statistical reproducibility of gene co-expression
modules is critical for ensuring valid network architecture, i.e.,
ensuring that module clustering is not an artifact of batch effects.
We used a bootstrapping procedure comparing average module
connectivity to that of random gene groups to confirm network
partition accuracy (Langfelder et al., 2011; Metten et al., 2014).
This procedure generates Z scores for each module as a measure
of quality: >2 is considered moderate and >10 is considered
high. Two of the R8B6 modules are high quality (Zbrown = 11.5,
Zgreen = 20.5), one is moderate quality (Zblue = 8.4), and
as expected, the gray module does not vary from random

connectivity (Zgray = 1.4). Five of the R2D2 consensus modules
are high quality (Zgreen = 21.2, Zgreenyellow = 19.6, Zpink = 17.8,
Zpurple = 21.2, Zturquoise = 10.3), and two are moderate quality
(Zblack = 4.6, Zbrown = 8.0). A quality score could not be
determined for R2D2gray because it contains only one gene.

An Oxidative Phosphorylation (OXPHOS)
Module Is Common to Reciprocal
Congenic Networks
As in DE analyses, we performed a preliminary query on the R8B6
and R2D2 WGCNA consensus networks for existing overlap in
the Hallmark gene sets of the Molecular Signatures Database.
Overlap of modules in both reciprocal congenic consensus
networks with well-curated gene sets may indicate common
neurobiological mechanisms contributing to the influence of
Alcw1/Alcdp1 on alcohol withdrawal severity. Such co-expression
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patterns are frequently subtle, involve different sets of genes, and
are thus not detected at the relatively low level of resolution
afforded by DE analysis alone (Gaiteri et al., 2014).

These analyses revealed remarkable correspondence between
multiple modules in both co-expression networks and the
Hallmark gene set for Oxidative_Phosphorylation (OXPHOS)
(Supplementary Table 3 for R8B6 and Supplementary
Table 4 for R2D2). Specifically, five high quality modules
(R8B6green, R8B6blue, R8B6brown, R2D2green, and R2D2greenyellow)
significantly overlapped with the OXPHOS Hallmark gene set
(FDR q = 2.2 × 10−5, 1.4 × 10−2, 4.7 × 10−2, 6.9 × 10−6,
3.0 × 10−6, respectively), indicating the presence of functionally
relevant co-expression in both reciprocal congenics despite the
lack of detection by DE analysis alone.

Module Commonality in Reciprocal
Congenics
To further resolve a potential unifying mechanism, we assessed
shared membership between co-expression modules in the R8B6
and R2D2 consensus networks (Figure 4), which have 311 genes
in common. The most significant overlap was observed between
R8B6green and R2D2greenyellow, with 61 genes in common. As
shown above, these two modules also have the most significant
overlap with the OXPHOS Hallmark gene set. Collectively, these
results strongly support validity of the OXPHOS modules on
both background strains and highlight the convergence of co-
expression patterns that are not dependent upon background
strain.

Network Modules Most Correlated to
Genotype
One overall goal of these studies is to understand the
genetic basis of the significant, measurable variation in alcohol
withdrawal severity observed behaviorally in animal models.
To this end, we analyzed four strains with such demonstrable
behavioral variation (two Alcw1/Alcdp1 congenic models and

appropriate background strain animals) for genetic factors
that may putatively contribute. These genetic factors can thus
be considered a phenotype of alcohol withdrawal severity
and a molecular biomarker of predisposition (vulnerability).
Importantly, to focus on the latter, as well as avoid potential
confounds of alcohol on gene expression, here we used naïve
animals in all studies. In network analyses, modules correlated
to genotype are associated with the trait of alcohol withdrawal
vulnerability. Each module was correlated to the genotype using
standard WGCNA methods for gene significance (Langfelder and
Horvath, 2008). Three modules showed significant correlation
(R8B6gray r = 0.9, p = 5.8 × 10−7; R2D2pink r = −0.9,
p = 2.6 × 10−4; R2D2brown r = −0.7, p = 1.2 × 10−2). Two
of these modules contain the highest percentage of genes located
within their respective congenic intervals (R8B6gray = 8, 15%;
R2D2pink = 16, 22%). R2D2pink also contains 26 genes located
beyond the congenic interval that are significantly correlated to
genotype. In contrast, all 38 genes correlated to genotype in the
R2D2brown module are located beyond the congenic interval (i.e.,
trans-regulated genes).

Network Modules Correlated to Cell Type
Using specific cell type data (Cahoy et al., 2008) based on
our previous methods (Metten et al., 2014), we tested modules
for enrichment in neuronal cell types, oligodendrocytes, and
astrocytes. No significant cell type enrichment was found for any
of the modules in either dataset.

OXPHOS Modules Are Common to
Diverse Alcohol-Related Networks
We identified a common genetic signature (co-expression
modules) in chromosome 1 reciprocal congenics; however,
this does not necessarily conclude specific influence of the
chromosome 1 interval and its accompanying alcohol withdrawal
severity locus. It is possible that the co-expression modules
we detected are actually a resting state pattern common to

FIGURE 4 | Correspondence of co-expression in R8B6 and R2D2 consensus network modules. Rows represent one R2D2 module (labeled by color and
text), and columns represent one R8B6 module. Numbers in each cell indicate gene counts in the intersection of the corresponding modules. Coloring of the table
encodes - log(p), with significance as Fisher’s exact test p-value for overlap of the two modules. Greater significance is indicated by a more intense red color.
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many populations. Remarkably, we and others have observed
OXPHOS modules in WGCNA of multiple AUD datasets in
both animal models and human studies of alcohol dependence,
thereby validating biological relevance of these pathways
(Gaiteri et al., 2014). To minimize additional complexity
contained in R2 data due to the substantially larger introgressed
region than R8, we limited comparisons with other datasets
to the most robust OXPHOS R8B6 module (R8B6green).
Using Gene Weaver (Baker et al., 2012), we identified two
modules in other previously published datasets that display
significant gene membership correspondence with the OXPHOS
R8B6green module. First, network analyses in B6D2-derived
mice selected for dual traits of high alcohol consumption
and low alcohol withdrawal severity and vice versa (SOT
and NOT lines, respectively; Metten et al., 2014) identified
a co-expression module (SOT/NOTlightpink4) with pronounced
corKME disruption that overlapped with the OXPHOS Hallmark
gene set (FDR q = 7.8 × 10−20). SOT/NOTlightpink4 was also the
module most enriched for DE genes between the SOT and NOT
lines (p < 2 × 10−88). Sixty-six genes within this module are
shared in the R8B6green module, including Sdhc, an Alcw1/Alcdp1
candidate QTG with multiple lines of supporting evidence
(further explored below). Given that dual selection included the
alcohol withdrawal severity behavioral trait, this convergence
indicates OXPHOS could be an important contributory genetic
mechanism.

Gene Weaver also identified fifty-seven genes from the
R8B6green OXPHOS module in common with the blue module
from network analyses on mice selected for haloperidol-induced
catalepsy (Iancu et al., 2012). These strains were derived
from the heterogeneous stock of a 4-way cross of B6, D2,
BALB/cJ, and LP/J strains (HS4). The HS4blue module also
significantly overlaps the OXPHOS Hallmark gene set (FDR
q = 2.9 × 10−11). Furthermore, considering that a haloperidol
response QTL is centered less than 5 Mb distal to the R8 congenic
interval on chromosome 1, it is feasible that the OXPHOS co-
expression module was selected in the haloperidol response by
proximity to the alcohol withdrawal QTL. While confirmation
is necessary, these results support involvement of this distal
chromosome 1 region in an OXPHOS mechanism correlated to
behavior.

Our results pointing to the involvement of an OXPHOS
network in risk for alcohol withdrawal in naïve animals lead
to the question of whether this co-expression pattern may
be affected by alcohol exposure. In a literature survey, we
identified several additional reports of significant OXPHOS
module contribution to co-expression networks detected in
alcohol-exposed mouse brain. Among alcohol-affected modules
in B6 amygdala synaptoneurosomes (Most et al., 2015), three
significantly overlapped the OXPHOS Hallmark gene set (FDR
q < 5.6 × 10−13). Using DE and co-expression analyses,
Nunez et al. (2013) identified miRNA-mRNA interaction
networks responding to ethanol consumption in mice, and
among five alcohol-responsive modules, the yellow module was
enriched in DE genes, correlated to alcohol consumption, and
significantly overlapped the OXPHOS Hallmark gene set (FDR
q= 2.3× 10−20).

Importantly, OXPHOS modules were also seen in two
systems level co-expression studies of human postmortem brain.
Ponomarev et al. (2012) compared epigenetic co-expression
in superior frontal cortex and amygdala (basolateral and
central nucleus) of alcoholics to control subjects. Alcohol
abuse was associated with global gene expression changes
in all three brain regions, co-expression patterns were
highly conserved, and all three regions contained modules
that overlap with OXPHOS Hallmark gene set (all FDR
q < 1.3 × 10−6). Both basolateral amygdala and superior frontal
cortex were alcohol-responsive, the latter with high OXPHOS
correspondence (FDR q = 9.3 × 10−35). Zhang et al. (2014)
identified four co-expression modules associated with AUD
in postmortem dorsolateral prefrontal cortex, one of which
significantly overlapped with OXPHOS Hallmark gene set (FDR
q= 7.4× 10−19). While the authors’ conclusion that “expression
alterations in this group of genes could either make subjects more
vulnerable to AUDs, or reflect the results of that vulnerability,”
our results with naïve animals lend strong support to the idea
that preexisting vulnerability emerges, at least in part, from a
mechanism involving OXPHOS.

Antioxidant Pretreatment Significantly
Mitigates Alcohol Withdrawal in Mice
To validate the contribution of an OXPHOS co-expression
mechanism to alcohol withdrawal vulnerability, we sought a
pharmacological agent that could manipulate the behavioral
phenotype. NAC is well-known to broadly affect oxidative
homeostasis and is FDA-approved for clinical treatment of
acetaminophen toxicity, bronchitis, and chronic obstructive
pulmonary disease. Due to a robust alcohol withdrawal
phenotype, we assessed D2 strain mice for NAC effects on
withdrawal severity. Naïve mice were pretreated with NAC
(300 mg/kg, i.p.) or vehicle (saline) at 48 and 24 h prior to
ethanol (4 g/kg, 20% v/v in saline, i.p.) or saline (control)
administration. Data were collapsed across sex as there was
no effect of sex (F1,103 = 0.01, p = 0.95), or any interactions
between sex and pretreatment (NAC or saline; F1,103 = 0.03,
p = 0.85), sex and treatment (ethanol or saline; F1,103 = 0.08,
p = 0.78), or sex × pretreatment × treatment (F1,103 = 0.4,
p = 0.52). No differences were observed in baseline (pre-
ethanol or pre-saline control) HIC scores among the four groups
(ethanol – NAC 0.1 ± 0.1, saline – NAC 0.1 ± 0.1, ethanol –
saline 0.1 ± 0.1, saline – saline 0.2 ± 0.1; F1,109 = 0.04,
p = 0.6). HIC scores increased above baseline at ∼4–5 h post-
injection and peaked at ∼6-8 h in both ethanol-treated groups
(Figure 5). Significant differences were seen for NAC compared
to vehicle pretreatment (F1,107 = 6.3, p = 0.014), ethanol or
saline treatment (F1,107 = 85.8, p = 2.3 × 10−11), and a
pretreatment × treatment interaction (F1,107 = 4.9, p = 0.030).
Notably, post hoc Tukey analysis showed significantly less severe
withdrawal in NAC-pretreated compared to vehicle-pretreated
mice during ethanol withdrawal (p = 3.3 × 10−4; Figure 5).
No differences were detected between the NAC and vehicle
pretreated groups (0.7 ± 0.4 and 1.1 ± 0.4, respectively; Tukey
p= 0.99).

Frontiers in Genetics | www.frontiersin.org 9 January 2017 | Volume 7 | Article 218

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


fgene-07-00218 December 30, 2016 Time: 11:25 # 10

Walter et al. Oxidative Homeostasis and Alcohol Withdrawal Vulnerability

FIGURE 5 | (A) Acute alcohol withdrawal was indexed by HICs in ethanol- or
saline-exposed groups pretreated with NAC or vehicle (saline). Mice were
pretreated (−48 and −24 h) with NAC or vehicle and scored twice for baseline
HICs (indicated by B) immediately before administration of 4 g/kg ethanol or
saline (arrow = injection at time 0), and hourly 2–12 h post-injection. After
4–5 h, convulsion scores increased above baseline, indicating a state of
withdrawal hyperexcitability that peaks about 6–8 h post-administration. HIC
scores return to baseline within 24 h. (B) Alcohol withdrawal severity
(corrected AUC, mean ± SEM) for NAC and vehicle-pretreated ethanol
groups. For ethanol-exposed animals, NAC-pretreatment significant
decreased withdrawal severity compared to vehicle (∗p < 0.0005). Data
represent the strain mean ± SEM (n = 38, 41, 17, and 18 mice per group,
respectively).

DISCUSSION

Alcw1/Alcdp1, OXPHOS, and NAC
Previous WGCNA analyses have detected relevant gene
expression changes in genetic models with limited diversity,
such as knockouts (MacLennan et al., 2009; Menezes et al.,
2012; Deshpande et al., 2016; Provenzano et al., 2016; Stacey
et al., 2016). Here, applying WGCNA to reciprocal congenic and
background strains revealed the preservation of gene expression
networks across genetic backgrounds, further illustrating the
value of using systems approaches in robust animal models of
human disease, even when genetic diversity is minimal. Our
identification of a co-expression module (OXPHOS) common
to two congenic models highlights the power of WGCNA
to uncover meaningful, strain-dependent variation in gene
expression, despite a lack of such detection by traditional DE
analyses. Considering the well-known impact of background
strain on DE, the use of reciprocal background congenics
can offer valuable confirmation of pathways or mechanisms
central to the phenotype. The presence of an OXPHOS co-
expression module in both R8B6 and R2D2 networks provides
strong evidence that a gene(s) in the shared congenic region
(corresponding to the 1.1 Mb Alcw1/Alcdp1 interval) plays a key
role in pathways related to oxidative homeostasis.

In addition, significant correspondence of R8B6green
OXPHOS module with several co-expression modules from
other datasets related to alcohol withdrawal or alcohol affected
co-expression modules in human and animal studies supports
the interpretation that the R8B6green OXPHOS module is a
valid, robust co-expression module. Furthermore, detecting only

these in common also implies that OXPHOS enrichment is not
a universal regulatory mechanism found in many populations
(Langfelder et al., 2012); if this were the case, we would expect
to detect this co-expression module across many naïve mouse
models.

Our previous detailed molecular analyses of the Alcw1/Alcdp1
interval revealed remarkable genetic variation and prioritized
a list of QTG candidates that, while functionally diverse,
are notably over-represented by genes in OXPHOS pathways
(Denmark and Buck, 2008). Importantly, the evidence we
provide here that a brain antioxidant (NAC) can mitigate the
behavioral expression of severe alcohol withdrawal in mice
implicates a contribution of OXPHOS-related mechanism(s) to
the withdrawal phenotype.

Candidate QTGs and Co-expression
Network Hubs
The discovery of Alcw1/Alcdp1 led to genome-wide analyses
for genetic determinants and/or potential biomarkers of alcohol
withdrawal vulnerability, including potential QTGs that may
drive genotype-dependent DE patterns underlying behavioral
variation in alcohol withdrawal severity. Systems approaches
such as the WGCNA used here are unbiased strategies to
interrogate the Alcw1/Alcdp1-driven OXPHOS co-expression
network for highly connected genes. The highly related measures
of module membership (kME) and intramodular connectivity
(kWithin) describe the degree of relationship of a gene to a ME
and the degree of connectivity between a gene and other genes
in the module (Horvath and Dong, 2008; Oldham et al., 2008)
and can be reliably used to designate hub rank (Supplementary
Tables 3 and 4). The most highly connected genes (hubs) in
a module are biologically important in both lower organisms
as well as mammals (Edwards and Palsson, 2000; Dipple et al.,
2001; Jeong et al., 2001). Such members may represent high
priority therapeutic candidates, since disruption of hubs often
leads to functional impairment of the entire network (Jeong
et al., 2001). However, disruption of a hub gene may not be
therapeutically cogent due to far-reaching effects beyond the
phenotype of interest. Here we discuss evidence for the most
promising candidate QTGs and hubs, particularly addressing
evidence for AUD interactions and involvement in OXPHOS
mechanisms.

Ndufs2 encodes a core protein [NADH dehydrogenase
(ubiquinone) Fe-S protein 2] crucial to mitochondrial respiration
and is a promising Alcw1/Alcdp1 QTG candidate. Ndufs2 is cis-
regulated and demonstrates significant DE between R8 congenic
and background strain animals. Ndufs2 also contains a coding
region SNP between the B6 and D2 progenitor strains with
predicted functional relevance (Denmark and Buck, 2008).
Mutation of the Caenorhabditis elegans ortholog causes redox
stress and ethanol hypersensitivity (Kayser et al., 2003). Ndufs2
mRNA content is regulated by ethanol in the amygdala (Most
et al., 2015).

Sdhc (Succinate dehydrogenase complex, subunit C) is
another Alcw1/Alcdp1 QTG candidate significantly DE between
Alcw1/Alcdp1 congenic and WT mice and contains three
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functionally critical B6/D2 coding region SNPs (Denmark
and Buck, 2008). SDHC is an integral membrane protein
required for membrane-anchoring and functional assembly of
respiratory Complex II and a convergence point where substrate
metabolism is coupled to ATP-generating OXPHOS. Expression
is ethanol-regulated in the amygdala (Most et al., 2015). Sdhc is
also contained in the significant OXPHOS (SOT/NOTlightpink4)
module of the SOT/NOT selected lines for dual traits of alcohol
consumption and withdrawal (Metten et al., 2014).

Activating transcription factor 6 (Atf6) is an Alcw1/Alcdp1
QTG candidate encoding a transmembrane endoplasmic
reticulum (ER) protein cleaved in response to ER stress. While
there are no B6/D2 SNPs, Atf6 is DE between Alcw1/Alcdp1
congenic and background strain mice and is a candidate QTG
in reciprocal QTLs for ethanol withdrawal and drinking in a
heterogenous stock (HS4) population (Hitzemann et al., 2009).

With high kME and kWithin values, Hsp90aa1 (Heat shock
protein 90, alpha, class A member 1) is a hub candidate in
the reciprocal congenic OXPHOS modules. Hsp90aa1 is also
co-expressed with Ndufs2 in an alcohol-regulated module via
miRNA interactions in mouse frontal cortex (Nunez et al.,
2013). HSP90AA1 is decreased in B6 mouse cortex in a chronic
intermittent ethanol exposure paradigm (Gorini et al., 2013) and
is decreased in macrophages after short-term, and increased after
long-term, ethanol exposure (Mandrekar et al., 2008). Hydrogen
peroxide-induced renal cell death partly degrades HSP90AA1
and is associated with increases in lipid peroxidation, both of
which can be prevented by NAC (Nowzari et al., 2000).

Map2k1 (Mitogen-activated protein kinase 1) is a hub
candidate in our studies that is also implicated in multiple
alcohol studies, including WGCNA in SOT/NOT selected lines
where Map2k1 is a hub in the OXPHOS (SOTNOTlightpink4)
module enriched for MAP kinase (MAPK) signaling-associated
transcripts (Metten et al., 2014). Expression profiling also
identifies changes associated with ethanol withdrawal in the
MAPK pathway in B6 and D2 mice (Daniels and Buck, 2002).
OXPHOS-generated ROS activate MAPK pathways (McCubrey
et al., 2006; Son et al., 2013) and antioxidants block MAPK
activation (Son et al., 2013).

Heat shock protein 5 (Hspa5) is a moderate OXPHOS hub
candidate that has many other factors to support it as a candidate:
it resides in a SOT/NOT QTL, is DE between the selected lines
(Metten et al., 2014), and is implicated in alcohol consumption
(Tarantino et al., 1998; Belknap and Atkins, 2001; Bell et al., 2009).
Although there are no B6/D2 SNPs, QPCR (Supplementary
Table 2) confirms trans-regulation of Hspa5 by the Alcw1/Alcdp1
interval, as well as trans-regulation of two interaction partners
(Atf6, Atf4). Atf4 is a transcription factor that activates the
Hspa5 promoter (Luo et al., 2003). Hspa5 is a member of the
MAPK signaling pathway (hub candidate listed above, Chen
et al., 2000) and is a biomarker of ER stress (Hampton, 2000;
Harding et al., 2002). HSPA5 (also called GRP78/BIP), is an ER
chaperone protein which retains ATF6 in the ER by inhibiting
its Golgi localization signals. Dissociation of HSPA5 during ER
stress allows ATF6 to be transported to the Golgi (Shen et al.,
2002). Chronic exposure to moderate levels of ethanol in neurons
(in vitro) increases the levels of HSPA5 (Romero et al., 2015).

Hspa5 expression is also altered by chronic ethanol consumption
in rats (Bell et al., 2009).

Each of these candidate QTGs or hubs requires follow up
studies to confirm them as a biomarker or as a potential target
for therapeutic intervention. Current molecular techniques offer
many options to validate of these candidates. For example,
traditional knockout animals could confirm gene effect on
alcohol withdrawal, and newer mutation techniques such as
CRISPR/Cas9 could validate genetic effects on withdrawal
severity. Next we discuss the OXPHOS mechanism in a network
of co-expressed genes and the role of NAC as a pharmacological
agent to disrupt the OXPHOS network.

Oxidative Stress and the Brain
The mitochondrial respiratory chain (MRC) consists of four
protein complexes that use electron transport to drive OXPHOS
and generate ATP, producing ROS as byproducts that are
normally balanced by multiple antioxidant mechanisms. The
brain is particularly vulnerable to redox imbalance and
ROS accumulation due to (1) high oxygen metabolism, (2)
relative under-abundance of antioxidant defenses, and (3)
high polyunsaturated fatty acid content of neural membranes,
which are ROS substrates (Sun and Sun, 2001). A growing
body of evidence has uncovered natural variation in redox
homeostasis among B6, D2, and B6D2-derived mice, which
disproportionately affects tissues with high energy demand,
including brain (Bhave et al., 2006; Misra et al., 2007). We
recently demonstrated that B6 and D2 exhibit remarkable
differences in brain MRC organization and function (Buck et al.,
2014). Alcohol interferes with brain oxidative homeostasis, as
metabolic byproducts of alcohol (including acetaldehyde and
ROS) drive OXPHOS, impair antioxidant defenses, and can
persist long after the initial exposure (Sun and Sun, 2001;
Bailey, 2003). In contrast, barbiturate exposure appears to have
neutral or anti-oxidative effects (Smith et al., 1980; Almaas
et al., 2000; Ueda et al., 2007). While alcohol-induced oxidative
damage is well-established, changes during alcohol withdrawal
remain mostly uninvestigated. The few available rodent studies
show increased brain ROS several hours after ethanol exposure
(Dahchour et al., 2005) and a correlation with withdrawal seizure
severity (Vallett et al., 1997).

N-Acetylcysteine (NAC)
The Comparative Toxicogenomics Database (CTD; Davis et al.,
2015) provides manually curated data about the human health
consequences of chemicals and represents a triad of chemical-
gene, chemical-disease, and gene-disease interactions. According
to CTD, NAC interacts with 835 genes, including R8B6green
module member human homologs: ACTA2, CHKA, HSPA5, ID2,
JAK1, MAP2K1, PCNA, and YWHAZ. Of these 835 genes, 48
are annotated as “response to oxidative stress” (GO:0006979,
p = 5.8 × 10−23). Another database, Drug2gene (Roider et al.,
2014), shows evidence of 387 human NAC-affected genes,
including R8B6green module homologs: HSPA5, JAK1, PCNA,
TFRC, and CALR. Of these 387 genes, 38 are annotated as
“response to oxidative stress” (GO:0006979, p = 1.0 × 10−23).
According to Drug2gene, CTD or both, NAC also interacts
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with ATF6, a cis-regulated gene in the R8 interval and several
confirmed R8 trans-regulated genes (Supplementary Table 2):
ALDH2, EIF2A, DDIT3, GCLC, ATF3, ATF4, HMOX1, CEBPB,
BDNF, MT1, MT2, and NDUFB6.

Among others, NAC is a mitochondria-targeted antioxidant
with powerful radical scavenging activity (Samuni et al., 2013)
with an established safety record in adults and children and
approved by the FDA since 1963 (McClure et al., 2014). NAC
administration enhances the redox potential of glutathione
(GSH)/glutathione disulfide (GSSG), the cysteine/cystine cycle,
and cystine/glutamate antiporter activity, with a net effect of
lessening oxidative cellular dysfunction (Berk et al., 2013).
Ethanol induces oxidative stress in many tissues and contributes
significantly to the mechanisms by which ethanol produces
liver injury (Cederbaum et al., 2009). Antioxidants appear
hepatoprotective in some models (Wang et al., 2015; Xiao
et al., 2015), including inhibition of alcohol-induced oxidative
stress by NAC co-administration in rat liver (Ozaras et al.,
2003). In another study of alcohol-exposed rat liver, NAC
inhibited mitochondrial biogenesis genes, but did not prevent
mitochondrial damage (Caro et al., 2014). To our knowledge,
only one study has assessed potential NAC effects after alcohol
cessation. Schneider et al. (2015) reported that 4 days of
NAC treatment prevented alcohol cessation related decreases in
open field activity and prevented increases in peripheral blood
corticosterone and leptin levels otherwise observed in rats after
5 days of alcohol cessation (Schneider et al., 2015). However,
there are numerous differences between this study and the
current one, including genetic model, alcohol exposure model,
assessment of peripheral vs. centrally mediated effects of NAC,
and the dose NAC given.

In humans, NAC oral bioavailability is 4–10% and may be
limited by nausea or vomiting (Borgström et al., 1988) in humans.
Published reports about whether NAC delivered orally crosses the
blood brain barrier (BBB) are contradictory (see Samuni et al.,
2013 for review). With such low bioavailability, therapeutic effects
of oral NAC are likely secondary (e.g., induction of glutathione
synthesis) and could also be true of intravenous administration
(Fishbane et al., 2004). Due to restricted BBB passage of NAC,
the amide form (NACA) may be more therapeutically relevant.
NACA is significantly more lipophilic, allowing ready BBB and
cell penetration and subsequent scavenging of free radicals
(Semple, 2014). Future studies of the potential of NAC to mitigate
withdrawal severity may thus benefit from testing this amide
form.

Limitations
While a primary goal of these studies was to determine genetic
influences on gene expression, epigenetic influences are also likely
at play. These analyses may detect the effects of those influences,
but miss the specific cause. Additionally, resolving DE and
WGCNA in specific brain regions involved in alcohol withdrawal
circuitry (e.g., substantia nigra pars reticulata or prefrontal
cortex) may reveal more detailed co-expression networks and/or
DE genes by reducing potential noise vs. the whole brain
assessment performed here. The use of whole brain may also
explain our lack of detection of any cell-type enrichment.

Since we evaluated only males, it remains to be determined
to what extent our findings may generalize to females. With
full containment of the distal chromosome 1 interval in both
congenics, it was not possible to confirm its influence here.
The small sample size also precludes us from determining the
influence of additional factors such as cage or family effect. A final
limitation is that we tested only one genotype for the NAC effects.
Future directions will include analyses of the NAC effects on
other genotypes, as well as gene expression analyses following
alcohol and/or NAC treatments.

CONCLUSION

Network-based approaches to human disease have multiple
potential applications, even beyond identification of disease
genes. These include better targets for drug development,
more accurate biomarkers, and improved disease classification
(Barabasi et al., 2011). Understanding the larger biological
systems (of which genes are just one part) is critical to realizing
the ultimate goals of personalized and precision medicine.

Taken altogether, our data implicate oxidative
homeostasis/stress and Alcw1/Alcdp1 as having key roles in
genetic vulnerability for alcohol physical dependence and
associated withdrawal and suggest OXPHOS as a potential
pathway target for clinical management of alcohol withdrawal.
Importantly, this leads to the hypothesis that antioxidants
(e.g., NAC) may be appropriate therapeutic agents for reducing
severity of alcohol withdrawal symptoms. Future studies will be
needed in order to assess how OXPHOS co-expression modules
change after alcohol exposure and withdrawal, to assess whether
hub gene disruption affects behavioral expression of withdrawal,
and to determine if other antioxidant pharmacotherapies (e.g.,
NACA) can also ameliorate withdrawal.
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TABLE 1 | Differential expression between R8 and B6 and overlap of
significantly (p < 0.01) differentially expressed genes with MSigDB
Hallmark gene sets. Differential expression between R2 and D2 and overlap of
significantly (p < 0.01) differentially expressed genes with MSigDB Hallmark gene
sets.

TABLE 2 | QPCR confirmation of differential expression of R8 cis- and
trans-regulated genes.

TABLE 3 | R8B6 co-expression network analyses, with module
assignment, kWithin (intramodular connectivity), kME (module
membership), and GSP (gene significance p value). Overlap of module genes
with MSigDB Hallmark gene sets.

TABLE 4 | R2D2 co-expression network analyses, with module
assignment, kWithin (intramodular connectivity), kME (module
membership), and GSP (gene significance p value). Overlap of module genes
with MSigDB Hallmark gene sets.
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