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A B S T R A C T   

Major depressive disorder (MDD) represents a grand challenge to human health and society, but the underlying 
pathophysiological mechanisms remain elusive. Previous neuroimaging studies have suggested that MDD is 
associated with abnormal interactions and dynamics in two major neural systems including the default mode - 
salience (DMN-SAL) network and the executive - limbic (EXE-LIM) network, but it is not clear which network 
plays a central role and which network plays a subordinate role in MDD pathophysiology. To address this 
question, we refined a newly developed Multiscale Neural Model Inversion (MNMI) framework and applied it to 
test whether MDD is more affected by impaired circuit interactions in the DMN-SAL network or the EXE-LIM 
network. The model estimates the directed connection strengths between different neural populations both 
within and between brain regions based on resting-state fMRI data collected from normal healthy subjects and 
patients with MDD. Results show that MDD is primarily characterized by abnormal circuit interactions in the 
EXE-LIM network rather than the DMN-SAL network. Specifically, we observe reduced frontoparietal effective 
connectivity that potentially contributes to hypoactivity in the dorsolateral prefrontal cortex (dlPFC), and 
decreased intrinsic inhibition combined with increased excitation from the superior parietal cortex (SPC) that 
potentially lead to amygdala hyperactivity, together resulting in activation imbalance in the PFC-amygdala 
circuit that pervades in MDD. Moreover, the model reveals reduced PFC-to-hippocampus excitation but 
decreased SPC-to-thalamus inhibition in MDD population that potentially lead to hypoactivity in the hippo-
campus and hyperactivity in the thalamus, consistent with previous experimental data. Overall, our findings 
provide strong support for the long-standing limbic-cortical dysregulation model in major depression but also 
offer novel insights into the multiscale pathophysiology of this debilitating disease.   

1. Introduction 

Major depressive disorder (MDD) is a serious mental illness that is 
characterized by depressed mood, diminished interests and impaired 
cognitive function (Otte et al., 2016). It is a leading cause of chronic 

disability worldwide with a lifetime prevalence of up to 17% (Kessler 
et al., 2005). Although the exact mechanisms underlying MDD remain 
unclear, functional magnetic resonance imaging (fMRI) has revealed 
systematic functional brain alterations in MDD (Menon, 2011; Otte 
et al., 2016; Lener et al., 2017). The first highly implicated large-scale 
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brain network is the default mode-salience network. The default model 
network (DMN) is activated in the resting brain and consists of ventral 
anterior cingulate cortex (vACC), posterior cingulate cortex (PCC)/ 
precuneus, medial prefrontal cortex (mPFC), and lateral and inferior 
parietal cortex (Raichle, 2011; Dutta et al., 2014). The DMN has been 
implicated in rumination and self-referential processing (Cooney et al., 
2010; Liston et al., 2014) and increased intrinsic connectivity in the 
DMN is hypothesized to underlie excessive self-focused rumination in 
MDD (Cooney et al., 2010; Hamilton et al., 2015). The salience (SAL) 
network, on the other hand, is activated in response to salient stimuli 
including emotional pain, empathy, metabolic stress and social rejection 
(Seeley et al., 2007; Hermans et al., 2014). Anchored in the dorsal 
anterior cingulate cortex (dACC) and anterior insula, the salience 
network is involved in integrating highly processed sensory information 
with visceral, autonomic and hedonic states, making it particularly 
important for interoceptive-autonomic processing (Seeley et al., 2007). 
Disruption of DMN-SAL connectivity has been reported in a number of 
MDD studies. Manoliu et al. (2014) found that MDD patients showed 
increased functional connectivity (FC) between DMN and SAL, consis-
tent with greater resting-state FC between insula and anterior DMN 
(Avery et al., 2014). It has also been observed that FC between anterior 
DMN and SAL was positively correlated with depression severity in post- 
stroke depression (Balaev et al., 2018). Using dynamic causal modeling 
of rs-fMRI, we recently demonstrated that MDD was mainly associated 
with reduced effective connectivity within the DMN, and between the 
DMN and SAL networks (Li et al., 2020). These neuroimaging con-
nectome studies support the notion that aberrant mapping or engage-
ment of the DMN by SAL results in excessive rumination and abnormal 
interoceptive-autonomic processing in depression (Menon, 2011). 

While recent studies focused on circuit disruption in the default 
mode and salience networks, it is not clear whether it is the cause of 
MDD pathology or just the consequence of a more fundamental neural 
mechanism. Indeed, both noninvasive and invasive brain stimulation 
such as transcranial magnetic stimulation (TMS) and deep brain stim-
ulation (DBS) predominantly target the executive (e.g., dorsolateral 
prefrontal cortex) and limbic (e.g., thalamus) networks to relieve MDD 
symptoms (Leuchter et al., 2013; Delaloye and Holtzheimer, 2014; Lis-
ton et al., 2014; Raymaekers et al., 2017), suggesting the involvement of 
the executive-limbic system in MDD pathology. Opposite to the DMN, 
the executive control network (EXE) is most active during cognitive 
tasks (Seeley et al., 2007) and consists mainly of the dorsolateral pre-
frontal cortex (dlPFC) and posterior parietal cortex (PPC) (Corbetta and 
Shulman, 2002; Rogers et al., 2004; Seeley et al., 2007). The executive 
network plays a critical role in working memory maintenance, rule- 
based problem solving and decision-making during goal-directed 
cognitive tasks (Miller and Cohen, 2001; Petrides, 2005; Koechlin and 
Summerfield, 2007) as well as the regulation of emotional processing 
(Davidson et al., 2002; Phillips et al., 2008). The limbic (LIM) system, 
comprised of brain regions such as the amygdala, hippocampus and 
thalamus, underlies important brain functions including emotion, con-
sciousness, motivation and long-term memory (LeDoux, 2000; Rolls, 
2015). The involvement of the executive-limbic system in the patho-
physiology of MDD has been well documented (Drevets et al., 2008; 
Disner et al., 2011; Pandya et al., 2012; Drysdale et al., 2017). In-
dividuals with depression showed much more intense (up to 70%) and 
longer (up to three times) response in the amygdala than healthy sub-
jects in response to negative stimuli (Drevets, 2001; Siegle et al., 2002). 
It has also been observed that the amygdala response in MDD patients 
increased linearly as the intensity of a sad facial expression increased 
(Surguladze et al., 2005). By comparison, the dlPFC exhibited lower 
response to negative stimuli in individuals with MDD than healthy 
subjects (Fales et al., 2008; Hamilton et al., 2012) and hypoactivation in 
the dlPFC was associated with excessive rumination (Ochsner et al., 
2004; Ray et al., 2005). These studies suggest that insufficient control of 
the limbic system by the executive network results in aberrant emotional 
processing and depressive symptoms (Davidson et al., 2002; Beevers 

et al., 2010; Disner et al., 2011). 
Although the two neurobiological models of depression (default 

mode-salience disruption versus executive-limbic malfunction) have 
each received considerable experimental support, their relative impor-
tance in MDD pathology has not been explicitly investigated. Addressing 
this question will shed light on the core neural circuitry mediating 
depression and the auxiliary circuitry that is likely subject to the influ-
ence of the core network, which can promote more targeting treatments. 
However, existing connectome studies of MDD have focused predomi-
nantly on undirected functional connectivity (i.e., statistical correlation) 
or graph theory of fMRI blood-oxygen-level-dependent (BOLD) signals 
(Gong and He, 2015; Kaiser et al., 2015), which cannot offer a neuro-
physiological account of the aberrant neural process. Effective connec-
tivity (EC), by comparison, builds on generative models of neural 
interactions (Friston, 2011) and thus can, in principle, provide hidden 
neuronal mechanisms underlying observed fMRI data (Frässle et al., 
2017). As a predominant approach to compute EC, Dynamic Causal 
Modeling (DCM) (Friston et al., 2003) has been applied to identify 
impaired inter-regional causal interactions in MDD based on either task- 
based (Almeida et al., 2009, 2011; Lu et al., 2012; Schlösser et al., 2008) 
or resting-state (Hyett et al., 2015; Li et al., 2017b; Kandilarova et al., 
2018; Li et al., 2020) fMRI. Nevertheless, the underlying neural model of 
DCM for fMRI largely relies on a simplified linear state-space model for 
generating neural activity (Friston et al., 2003, 2014), which cannot 
capture impaired neural interactions at finer cellular and circuit levels. 

To overcome the aforementioned limitations of traditional FC and EC 
studies, we have previously developed a Multiscale Neural Model 
Inversion (MNMI) framework that can link mesoscale intra-regional 
circuit interactions with macroscale inter-network dynamics and 
enable the estimation of both intra-regional and inter-network EC based 
on rs-fMRI (Li et al., 2019). Nevertheless, as a preliminary study, we 
estimated the EC among different functional networks instead of 
different brain regions due to the scale limit (i.e., the inter-regional EC 
was restricted to inter-network EC to reduce the freely estimable pa-
rameters), which may preclude the detection of more subtle EC change 
at single region level (i.e., between a pair of regions). In addition, the 
inter-network EC was assumed to be positive (excitatory), which cannot 
account for the potentially inhibitory effect between certain brain re-
gions (e.g., the inhibitory effect from PFC to amygdala, Quirk et al., 
2003). Here, we refined the MNMI framework by not only enabling 
inter-regional EC estimation but also relaxing the positive constraint on 
inter-regional EC. Notably, we came up with a structural connectivity 
(SC)-based method to reduce the number of inter-regional connections 
to those with strong SC to avoid the problem of over-fitting and improve 
estimation efficiency for more comprehensive and realistic modeling. By 
applying the refined MNMI approach to a relatively large rs-fMRI 
dataset consisting of 98 healthy normal control (NC) subjects and 96 
individuals with first-episode drug-naïve (FEDN) MDD, we tested 
whether FEDN MDD is better characterized by default mode-salience or 
executive-limbic disruption. Results showed that MDD is primarily 
characterized by abnormal circuit interactions in the executive-limbic 
network rather than the default mode – salience network. Based on 
the findings, we proposed a neurophysiological model of executive – 
limbic malfunction that potentially explains depressive symptoms and 
pathology in MDD. Our study suggests that future treatments should 
specifically target the executive-limbic system for maximal therapeutic 
benefits. 

2. Materials and Methods 

2.1. Overview of the MNMI framework 

The schematic diagram of the MNMI framework is depicted in Fig. 1. 
Each brain region consists of one excitatory and one inhibitory neural 
populations whose intrinsic dynamics are modeled using the biologi-
cally motivated Wilson-Cowan oscillators (Wilson and Cowan, 1972). 
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The excitatory neural population excites the inhibitory neural popula-
tion and receives feedback inhibition from the inhibitory population as 
well as recurrent excitation from itself. The excitatory neural pop-
ulations within different brain regions are interconnected via long-range 
SC links consisting of white-matter fibers whose baseline connection 
strength is determined by diffusion tractography from diffusion MRI. 
The simulated neural activity is converted to simulated rs-fMRI BOLD 
signal through a biophysical hemodynamic model (Friston et al., 2003) 
and the corresponding FC matrix is constructed. Then, genetic algo-
rithm, a biologically inspired optimization algorithm, is applied to es-
timate both local (intra-regional) and long-range (inter-regional) ECs in 
order to minimize the difference between the simulated and empirical 
FC matrices. Compared to the previous version of the MNMI framework 
(Li et al., 2019), the major changes included: 1) Inter-regional instead of 
inter-network ECs are separately estimated; 2) Inter-regional EC can be 
either positive (excitatory) or negative (inhibitory); 3) The optimization 
algorithm is changed from the Expectation-Maximization algorithm to 
the Genetic Algorithm; 4) a further expanded simulation length of the 
neural/BOLD activity (from 80 s to 200 s); and 5) a SC-guided inter- 
regional EC estimation where only strong inter-regional connections are 
allowed in the model. We applied the significantly refined MNMI model 
to two highly implicated neural systems in MDD pathology including the 
default mode – salience network and the executive – limbic network. 
Our main goal is to test which neural system underlies the more 
fundamental pathophysiological mechanism of MDD. 

2.2. Subjects 

We used the same fMRI dataset as our previous study (Li et al., 2020) 
except excluding two NCs and four MDDs who had excessive head 

motion (mean frame-wise displacement (FD) (Power et al., 2012) is 
more than three time the standard deviation from the mean of their 
respective population), resulting in 98 NC and 96 MDD subjects. The 
FEDN patients were recruited from the psychological counseling 
outpatient of the First Affiliated Hospital of Guangzhou University of 
Chinese Medicine, Guangdong, China from September 2015 to June 
2018. The MDD diagnosis was carried out by two experienced profes-
sional psychologists according to the 17-item Hamilton Rating Scale for 
Depression (HDRS-17, Hamilton, 1967) and the Diagnostic and Statis-
tical Manual 5th edition (DSM-5, American Psychiatric Association, 
2013). The selected FEDN patients were right-handed native Chinese 
speakers aged between 18 and 55 years old who were firstly diagnosed 
with MDD and had no history of any neurological illness or any other 
forms of psychiatric disorders. The healthy subjects were enrolled 
locally during the same period of time and were physically and mentally 
healthy based on their medical history and the Mini-International 
Neuropsychiatric Interview (Sheehan et al., 1998) with a total HDRS- 
17 score of less than seven. The study was approved by the ethics 
committee of The First Affiliated Hospital of Guangzhou University of 
Chinese Medicine and all participants provided written informed con-
sent complying with the Declaration of Helsinki. 

2.3. FMRI acquisition and preprocessing 

The MRI acquisition was based on a 3.0-T GE Signa HDxt scanner 
with an 8-channel head-coil within three days of diagnosis and the 
preprocessing procedures were detailed in Li et al. (2020) and briefly 
described as follows. The acquisition parameters for the rs-fMRI were: 
TR (repetition time) = 2000 ms, TE (echo time) = 30 ms, flip angle =
90◦, matrix size = 64 × 64, and slice spacing = 1.0 mm, and those for the 

Fig. 1. A multiscale neural model inversion (MNMI) 
framework to estimate both intra-regional and inter- 
regional effective connectivity based on diffusion 
MRI and resting-state fMRI data. The neural activity 
is generated by a neural mass model consisting of 
multiple brain regions (R1, R2, R3, etc). Each brain 
region contains one excitatory (E) and one inhibitory 
(I) neural populations coupled with reciprocal local 
connections. The excitatory neural population excites 
the inhibitory neural population while receiving 
feedback inhibition from the latter as well as recur-
rent excitation from itself. Different brain regions are 
connected via long-range fibers whose baseline 
connection strength is determined by structural 
connectivity based on diffusion MRI. The neural ac-
tivity is converted into corresponding BOLD signal 
via a biophysical hemodynamic model and the 
simulated functional connectivity (FC) is computed. 
The objective function is calculated as the opposite of 
the Pearson’s correlation between the empirical and 
functional FC which is minimized by the genetic al-
gorithm (GA). The model parameters (both local and 
inter-regional connection strengths) are updated 
iteratively until convergence is achieved.   
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structural MRI were: slice thickness = 1.0 mm (156 slices), no slice gap, 
matrix = 256 × 256, field of view = 256 × 256 mm2. Image pre-
processing was performed using SPM12 (www.fil.ion.ucl.ac.uk/spm) 
and Data Processing Assistant for Resting-State fMRI (DPARSF) version 
2.3 (http://rfmri.org/DPARSF) (Yan and Zang, 2010). For each subject, 
180 rs-fMRI volumes were remained after removing the first five vol-
umes. The remaining images were corrected for slice acquisition timing 
and head motion. The structural MRI was used to guide rs-fMRI regis-
tration by using unified segment and Diffeomorphic Anatomical Regis-
tration through Exponentiated Lie Algebra (DARTEL). The rs-fMRI data 
was smoothed with a 6-mm full-width-at-half-maximum (FWHM) 
Gaussian kernel and denoised by regressing out several nuisance signals, 
including the Friston-24 head motion parameters and signals from ce-
rebrospinal fluid and white matter, followed by linear detrending and 
temporal band-pass filtering (0.01–0.08 Hz). 

2.4. Structural connectivity 

To introduce structural constraint on EC, structural connectivity was 
assessed based on probabilistic tractography with the diffusion MRI data 
from the Human Connectome Project. Data from 14 unrelated and 
randomly selected subjects was processed and the resulting SC matrices 
were averaged. Specifically, for each of the 14 subjects, tissue segmen-
tation was performed on the structural MRI (aligned with the diffusion 
MRI data) from the 14 subjects based on FreeSurfer (https://surfer.nmr. 
mgh.harvard.edu/) according to the pipeline described in Smith et al. 
(2012). After minimal preprocessing of the diffusion MRI data, proba-
bilistic tractography was employed in the diffusion MRI’s native space 
using the first-order integration over fiber orientation distributions 
(iFOD1) algorithm estimated by spherical deconvolution approach that 
considered fiber crossing (Tournier et al., 2010) to reconstruct two 
million streamlines within the whole brain with random seeds. The 
output streamlines were cropped at the grey matter-white matter 
interface with a search distance of 2 mm, where the Destrieux atlas 
(included with FreeSurfer; Destrieux et al., 2010) that contains 164 re-
gions of interest (ROIs) was applied, resulting in a 164 × 164 SC matrix. 
Each element of SC represented the number of streamlines between a 
pair of ROIs which was normalized by the average volume of them. 
Based on the full SC matrix, we sampled the SC matrices for the DMN- 
SAL network and the EXE-LIM network separately. They were further 
normalized by the maximal entry of the two matrices so the SC was 
bounded between 0 and 1. 

2.5. Functional connectivity 

From the Destrieux atlas, we selected 16 key ROIs (Table 1) for the 
four functional networks (DMN, SAL, EXE and LIM; see Introduction 
section). These ROIs are visualized in Fig. 2. Of note, more ROIs could be 
easily included as a natural extension of our method in the future. The 
DMN-SAL network included seven ROIs: ventral anterior cingulate 
cortex (vACC, combining both left and right portion of it since it is in the 
medial part of the brain, similarly for other midline brain regions unless 
specified otherwise), posterior cingulate cortex (PCC, both ventral and 
dorsal parts), and left and right lateral parietal cortices (LPC, each side 
represents one ROI) from DMN, as well as dorsal anterior cingulate 
cortex (dACC), and left and right insula from SAL. The EXE-LIM network 
contained nine ROIs: left and right dorsolateral prefrontal cortices 
(dlPFC), and left and right superior parietal cortices (SPC) from EXE, as 
well as the thalamus, left and right amygdala, and left and right hip-
pocampus from LIM. Since the brain parcellation was carried out by 
Freesurfer in each subject’s native space, to apply those ROIs to the 
preprocessed rs-fMRI data in the MNI space, we used FNIRT in FSL 
(https://fsl.fmrib.ox.ac.uk/fsl) to estimate the deformation field based 
on each subject’s structural MRI after it was aligned to the same sub-
ject’s rs-fMRI, which generated the transformation from the native 
structural MRI space to the standard MNI space. This transformation was 

then used to warp the partitions from the native structural MRI space to 
the rs-fMRI space. Regional averaged BOLD rs-fMRI time series were 
extracted from the 16 ROIs and, the FC matrix was calculated using 
Pearson’s correlation. To estimate more accurate FC by removing the 
effect of potential noise and artifacts, we divided the total 360-s BOLD 
time series into ten 180-s sliding windows with an interval of 20 s. The 
final FC was computed by averaging the ten corresponding FC matrices 
after removing the outliers (more than three scaled median absolute 
deviations away from the median) for each FC link (i.e., FC matrix 
element). 

2.6. Network modeling of neural activity 

We applied computational neuronal modeling to capture neural in-
teractions both within and between brain regions. Each brain region 
consisted of reciprocally coupled excitatory and inhibitory neural pop-
ulations (Fig. 1). The regional brain dynamics was simulated by a neural 
mass model using the biologically motivated nonlinear Wilson-Cowan 
oscillator (Wilson and Cowan, 1972). The population-level activity of 
the jth region was governed by the following two equations (Abeysuriya 
et al., 2018): 

τe
dEj(t)

dt
= − Ej(t)+ S

(
∑

k
CkjWkjEk(t)+WEEEj(t) − WIEIj(t)+ u+ ε(t)

)

(1)  

τi
dIj(t)

dt
= − Ij(t)+ S

(
WEIEj(t)+ ε(t)

)
(2)  

where Ej and Ij are the mean firing rates of the excitatory and inhibitory 
neural populations in brain region j, τe and τi are the excitatory and 
inhibitory time constants (20 ms; Hellyer et al., 2016), WEE, WEI and WIE 
are the local connection strengths from excitatory to excitatory neural 
population, from excitatory to inhibitory neural population and from 
inhibitory to excitatory neural population, respectively. The variable u is 
a constant external input, and ε(t) is random additive noise following a 
normal distribution centering at 0 with standard deviation of 0.3. It is 
important to mention that the constant input u and noisy input ε(t)
represent the extrinsic inputs from other un-modeled brain regions to 
allow the generalization ability of the model (Deco et al., 2013b; Wang 

Table 1 
ROI definitions of the default mode-salience and executive-limbic networks with 
corresponding index numbers in the Destrieux atlas included in FreeSurfer.  

Region name (abbr.) Index # (FreeSurfer) 

DMN-SAL Network  
DMN  
1 Ventral anterior cingulate cortex (vACC) 6 & 95 
2 Posterior cingulate cortex (PCC) 9, 10 & 98, 99 
3 Left lateral parietal cortex (L.LPC) 25 
4 Right lateral parietal cortex (R.LPC) 114 
SAL  
5 Dorsal anterior cingulate cortex (dACC) 7 & 96 
6 Left insula 18 
7 Right insula 107 
EXE-LIM Network  
EXE  
1 Left dorsolateral prefrontal cortex (L.dlPFC) 52 
2 Right dorsolateral prefrontal cortex (R.dlPFC) 141 
3 Left superior parietal cortex (L.SPC) 27 
4 Right superior parietal cortex (R.SPC) 116 
LIM  
5 Thalamus (Thal) 76 & 83 
6 Left amygdala (L.Amyg) 81 
7 Right amygdala (R.Amyg) 88 
8 Left hippocampus (L.HPC) 80 
9 Right hippocampus (R.HPC) 87 

Abbreviations: DMN: default mode network; SAL: salience network; EXE: exec-
utive network; LIM: limbic network 
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et al., 2019). The long-range connectivity strength from region k to re-
gion j is represented by Wkj (and that from region j to k is Wjk) that was 
derived from empirical SC and scaled by an inter-regional coupling 
factor Ckj to model individual difference. The nonlinear response func-
tion S is modeled as a sigmoid function S = 1/(1+e− (

x− μ
σ )) (µ=1.0; σ =

0.25; Abeysuriya et al., 2018). 

2.7. Hemodynamic modeling 

The neural activity of each brain region was converted into corre-
sponding BOLD signal using a well-established hemodynamic model 
(Friston et al., 2003). Specifically, for each region j, the fluctuation in 
neuronal activity xj (Ej and Ij) gives rise to a vasodilatory signal sj that is 
subject to self-regulation. The vasodilatory signal causes change in the 
blood flow fj leading to subsequent change in blood volume vj and 
deoxyhemoglobin content qj. The hemodynamic state equations with 
parameters are given by: 

dsj

dt
= xj − κsj − γ(fj − 1) (3)  

dfj

dt
= sj (4)  

τ dvj

dt
= fj − v1/α

j (5)  

τ dqj

dt
=

fj

ρ
[
1 − (1 − ρ)1/fj ] −

qj

vj
v1/α

j (6)  

where κ is the rate of decay (0.65 per second), γ is the rate of flow- 
dependent elimination (0.41 per second), τ is the hemodynamic transit 
time (0.98 s), α is the Grubb’s exponent (0.32) and ρ is the resting ox-
ygen extraction (0.34). The neural activity from excitatory and 

inhibitory populations is summed up within each region with respective 
weighting (2/3 for excitatory and 1/3 for inhibitory; Becker et al., 2015) 
to obtain the overall regional neural activity xj. The simulated BOLD 
signal is taken to be a static nonlinear function of volume and deoxy-
hemoglobin that depend on the relative contribution of intravascular 
and extravascular components: 

yj = v0(k1
(
1 − qj

)
+ k2(1 − qj/vj) + k3(1 − vj)) (7)  

where v0 is the resting blood volume fraction (0.02), and k1, k2 and k3 
are the intravascular, concentration and extravascular coefficients, 
respectively (k1 = 7ρ, k2 = 2, and k3 = 2ρ − 0.2). 

2.8. Numerical integration 

The Wilson-Cowan and hemodynamic models were simulated using 
the 4th order Runge-Kutta (RK) scheme (Abeysuriya et al., 2018) with 
an integration step of 10 ms (Wang et al., 2019); shorter integration step 
had no significant effect on the results reported. We simulated the 
network for a total of 200 s, and the first 20 s of the BOLD activity was 
discarded to remove transient effects. The remaining 180-s (3-min) time 
series were downsampled to 0.5 Hz to have the same temporal resolu-
tion as the real, recorded BOLD rs-MRI signals. 

2.9. Estimation of model parameters 

The free parameters in the neural network model included both local 
(intra-regional) and long-range (inter-regional) ECs. For the local pa-
rameters, we estimated both the recurrent excitation (WEE, excitatory to 
excitatory) and recurrent inhibition (WIE, inhibitory to excitatory) 
weights in each brain region. The excitatory to inhibitory weight (WEI) 
was assumed to be constant and equaled to three (Abeysuriya et al., 
2018) as the effect of WEI could be accommodated by the change in WIE. 

Fig. 2. Regions of interest (ROIs) included in the MDD model. (A) ROIs in the default mode network. (B) ROIs in the executive control network. (C) ROIs in the 
salience network. (D) ROIs in the limbic network. vACC: ventral anterior cingulate cortex, PCC: posterior cingulate cortex, LPC: lateral parietal cortex, dlPFC: dorsal 
lateral prefrontal cortex, SPC: superior parietal cortex, dACC: dorsal anterior cingulate cortex, HPC: hippocampus. 
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The inter-regional coupling factor Ckj was also estimated in the neural 
mass model. As mentioned, the DMN-SAL network contained seven ROIs 
and the EXE-LIM network consisted of nine ROIs, which gave rise to 42 
and 72 inter-regional connections, respectively (diagonal connections 
were excluded as we estimated recurrent excitation and inhibition 
separately; Demirtaş et al., 2019). To improve model estimation accu-
racy and efficiency, we performed one sample t-test on each structural 
connection link across the 14 subjects from the Human Connectome 
Project and only preserved the links with strong SC (p < 0.0001, un-
corrected). The threshold was chosen so that about half of the (weaker) 
inter-regional connections were removed for either network while 
neither network would have more than half of the connections removed. 
We performed SC thresholding due to two important reasons. First, SC 
pruning is needed to remove invalid connections. It is well known that 
diffusion tensor imaging (DTI) based tractography is subject to noise and 
could contain invalid bundles even though there are no true fiber con-
nections (Maier-Hein et al., 2017). To avoid false positive connections, it 
is reasonable to remove weak SC connections. Second, SC pruning is 
necessary to avoid overparameterization and enable more accurate EC 
estimation. As the number of inter-regional EC parameters increases 
exponentially with the number of brain regions, it could lead to potential 
problems of overfitting. Such problems can be eased by removing weak 
SC links (most likely due to noise) in the model. It is noted that pre- 
estimation EC pruning has been implemented in connectome modeling 
such as spectral DCM which uses FC to place shrinkage priors on 
implausible effective connections (Razi et al., 2017). Our method differs 
from spectral DCM in that we use SC instead of FC to constrain the 
number of EC parameters. Practically, it assumes that the (direct) EC 
(between two brain regions) is zero in the absence of a direct SC link, 
although indirect or high-order EC may still exist due to polysynaptic 
influences (Sokolov et al., 2020). Using the SC pruning strategy, twenty 
links were removed from each of the DMN-SAL and EXE-LIM networks, 
resulting in 22 and 52 inter-regional connections for the two much 
sparser networks, respectively. In addition, the external input (u) was 
also estimated and assumed to be identical for all brain regions of a 
subject. Consequently, a total of 37 (14 local, 22 inter-regional, and one 
for shared external input) parameters were estimated for the DMN-SAL 
network and a total of 71 (18 local, 52 inter-regional, and one for shared 
external input) parameters were estimated for the EXE-LIM network. 

We used the genetic algorithm (function “ga”) contained in the 
MATLAB’s global optimization toolbox to estimate the model parame-
ters. Genetic algorithm (GA) is a biologically inspired method for solving 
both constrained and unconstrained optimization problems based on 
natural selection, the process that drives biological evolution (Mitchell, 
1995). GA repeatedly modifies a population of individual solutions. At 
each step, it selects individuals at random from the current population to 
be parents and uses them to produce the children for the next genera-
tion. Over successive generations, the population “evolves” toward an 
optimal solution. GA differs from other regular optimization algorithms 
in that it generates a population of points (instead of a single point) at 
each iteration and uses stochastic (instead of deterministic) computation 
to select the next population, which is suitable for optimization prob-
lems involving discontinuous, non-differentiable, stochastic or highly 
nonlinear objective functions. When using the “ga” function in MATLAB, 
initial conditions of the free parameters are not needed but parameters 
can be constrained within a prescribed range. In the MNMI framework, 
the free parameters were bounded within certain ranges to achieve 
balanced excitation and inhibition in the network; those ranges were 
selected based on previous modeling work as well as extensive simula-
tions to avoid excessive network excitation or inhibition. Based on a 
previous model (Abeysuriya et al., 2018), we assumed a default value of 
3.0 for both recurrent excitation (WEE) and inhibition (WIE) strengths, 
and a default value of 0.3 for the external input (u). Therefore, we set the 
searching ranges around the default values, i.e., [2.0 4.0] for both 
recurrent excitation and inhibition weights, and [0.2 0.4] for the 
external input, by allowing a maximum of 33.3% variation from the 

default value. We allowed the inter-regional connection weight to be 
either positive (excitatory) or negative (inhibitory), so we set the 
searching range to be [-2.0 2.0] for the inter-regional coupling factor 
(Ckj). This allows a relatively wide range for inter-regional EC weight, 
but at the same time, avoids unconstrained parameter estimation that 
could generate extreme and unrealistic estimates. Note that we assumed 
the inter-regional inhibition could occur directly between excitatory 
neural populations (instead of via local inhibitory neurons) for 
simplicity. 

We set the objective function to be the distance, measured by the 
opposite of the Pearson’s correlation, between the simulated and 
empirical FC matrices, so that the genetic algorithm could maximize the 
Pearson’s correlation between the simulated and empirical FC for each 
subject. The tolerance was set to be 0.001 and the maximal number of 
generations was set to be 128. We observed good convergence within 
128 generations for all the subjects and an even smaller tolerance did not 
change the estimated parameters in any significant way. The genetic 
algorithm repeatedly generated a population of solutions (or parameter 
set) based on stochastic computation in each iteration and evaluated the 
objective function by numerically integrating the neural mass and he-
modynamic models (for each parameter set) until the average change in 
the fitness value (the value of the objective function) was less than the 
functional tolerance. The entire MNMI optimization procedure with 
model integration was coded with MATLAB (R2018b) and run at a 
Linux-based high-performance cluster. The genetic algorithm program 
was run in parallel with 12 cores using the Parallel Computing Toolbox 
in MATLAB. The typical computing time (for each individual subject) 
ranged from 10 to 20 h for the DMN-SAL network and 12 to 30 h for the 
EXE-LIM network with a few subjects taking more than 30 h. 

2.10. Ground-truth simulation 

To assess the face validity of MNMI, we generated 20 new synthetic 
individuals for each of the DMN-SAL and EXE-LIM networks for which 
the ground truth (i.e., the parameter values) was known (Frässle et al., 
2017). To ensure the data were realistic, we randomly sampled model 
parameters from the parameter distributions estimated from the full 
dataset (i.e., N = 194 subjects), as a previous study (Singh et al., 2020). 
More specifically, the mean and standard deviation of each free 
parameter (37 for DMN-SAL and 71 for EXE-LIM) were estimated first 
from the full dataset (i.e., empirical models were inverted first). The 
corresponding ground-truth parameter was then drawn from the normal 
distribution with the estimated mean and standard deviation. If a 
randomly selected ground-truth parameter exceeded the upper bound or 
fell below the lower bound as specified above, it was set to the upper 
bound or lower bound. With selected ground-truth parameters, the 
neural mass and hemodynamic models were simulated as described 
above to generate synthetic BOLD time series (180 s with TR = 2 s). For 
sensitivity analysis, the final simulated BOLD signal was added white 
gaussian noise with zero mean to model the measurement error (Frässle 
et al., 2017; Singh et al., 2020). Based on previous definition of signal-to- 
noise ratio (SNR; Frässle et al., 2017), we introduced noise-to-signal 
ratio (NSR) as the ratio between standard deviation of the noise and 
standard deviation of the BOLD signal (i.e., NSR = σnoise/σsignal). We 
systematically varied the NSR from 0 to 0.5 with a step of 0.1 and 
computed the simulated FC using Pearson’s correlation. The synthetic 
FC was then used as input to the MNMI to estimate ground-truth 
parameters. 

2.11. Statistical analysis 

The model parameters were estimated for each subject and compared 
between the NC and MDD groups. We used a two-sample t-test to 
compare each of the estimated model parameters and the significant 
level was set to a false discovery rate (FDR; Benjamini and Yekutieli, 
2001) of q < 0.05. We also reported the Cohen’s d effect size which is 
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determined by calculating the mean difference between the NC and 
MDD groups, and then dividing the result by the pooled standard de-
viation. We did not use network-based statistics (NBS, Zalesky et al., 
2010) as our previous study (Li et al., 2020) did because we estimated 
both intra- and inter-regional EC and we removed weak inter-regional 
connections making it difficult to fulfill the topological cluster require-
ment of NBS. 

2.12. Data and code availability 

The data and code that support the findings of this study are avail-
able from the GitHub repository at https://github.com/Guoshi-Li/ 
MNMI_MDD. The structural and diffusion MRI data for the 14 subjects 
used to construct SC was randomly selected from the WU-Minn HCP 
Dataset (1200 subjects) available from the Connectome Database (htt 
ps://db.humanconnectome.org/). All structural and functional connec-
tivity matrices along with BOLD fMRI time series are available from the 
GitHub repository given above. 

3. Results 

3.1. Participants 

The demographic and clinical characteristics of the participants are 
shown in Table 2. There was no significant difference in age (p = 0.99, 
two-sample t-test), gender (p = 0.35, chi-square test), or education (p =
0.34, two-sample t-test) between the NC and MDD groups. The disease 
duration was 8.76 ± 11.04 months, and the HDRS-17 score was 22.08 ±
3.10 for the MDDs. 

3.2. Model parameter estimation with synthetic data 

Model inversion with MNMI requires a baseline SC matrix (Fig. 1). 
The SC matrices of the DMN-SAL network and EXE-LIM network derived 
from diffusion MRI are shown in Fig. 3A, B, respectively. In the DMN- 
SAL network, the strongest connections existed between vACC/PCC 
and dACC followed by the connections between vACC and PCC. In the 
EXE-LIM network, relatively high level of connections appeared be-
tween left and right SPC, thalamus and SPC, thalamus and hippocampus, 
and amygdala and hippocampus. According to the one-sample t-test 
results, strong links were preserved (green edges in Fig. 3C, D) while the 
remaining connections were removed. 

We first conducted ground-truth simulations to evaluate the face 
validity of MNMI by generating 20 synthetic subjects for the DMN-SAL 
network and EXE-LIM network respectively (see Materials and 
Methods). After optimization, the simulated FC closely matched the 
ground-truth FC for both networks (Supplemental Fig. S1). Indeed, the 
average fitness value (measured by Pearson’s correlation between the 
simulated and ground-truth FC matrices) was 0.98 ± 0.03 for the DMN- 
SAL network and 0.97 ± 0.02 for the EXE-LIM network. By maximizing 
the similarity between simulated and ground-truth FC, MNMI was able 
to recover the ground-truth parameters with relatively high accuracy at 

individual subject level for both networks (Supplemental Fig. S2). The 
population-averaged ground-truth and estimated EC parameters are 
shown in Fig. 4 (note that recurrent inhibition weight is shown positive 
due to the preceding negative sign in Eqn (1)). We observed that the 
estimated parameters were similar to the ground-truth parameters at the 
population level in that most of EC estimations followed the sign and 
amplitude of the ground-truth parameters in a close matter. Out of 36 EC 
parameters in the DMN-SAL network, only one parameter showed un-
corrected significance (p < 0.05, uncorrected) between estimated and 
ground-truth EC (Fig. 4C). By comparison, out of 70 EC parameters in 
the EXE-LIM network, four parameters showed uncorrected significance 
between estimated and ground-truth EC (Fig. 4B, D). It should be noted 
that none of the difference could pass multiple correction, indicating 
that MNMI was able to faithfully recover the population EC mean. We 
next introduced white Gaussian noise into the simulated BOLD signal 
and assessed the sensitivity of parameter fitting to unmodeled mea-
surement error. We varied the noise-to-signal ratio (NSR) from 0.1 to 0.5 
(with a step of 0.1) and inverted the neural mass model using MNMI 
under each noise level for all 20 synthetic subjects for both networks. We 
then computed the Pearson’s correlation between the estimated EC and 
ground-truth EC for all 20 synthetic subjects together as a function of 
NSR (Fig. 5). Expectedly, the correlation showed an overall decreased 
profile as the NSR increased, for both intra-regional and inter-regional 
EC (Fig. 5A, B). Specifically, the correlation coefficient (R) of the 
intra-regional EC decreased from about 0.5/0.4 (DMN-SAL/EXE-LIM) to 
about 0.3/0.2 while that of the inter-regional EC reduced from about 
0.4/0.33 to about 0.2/0.22 as the NSR increased from 0 to 0.5. Notably, 
the correlation profile started to level off or even slightly increased when 
the NSR exceeded 0.3, suggesting the inherent robustness of MNMI to 
large measurement error. Such robustness may result from the fact that 
at high noise level the neural model inversion dynamics has reached a 
steady state and GA used stochastic computation to search for optimal 
solution, which can naturally handle large noise variation and enable 
stable parameter estimation. Also, we noted that for intra-regional EC, 
parameter fitting was better for the DMN-SAL network compared with 
the EXE-LIM network, while for inter-regional EC, the two networks had 
quite similar performance (compare Fig. 5A with Fig. 5B). As the EXE- 
LIM network contained almost twice the number of free parameters as 
the DMN-SAL network (71 vs. 37), it suggests that expansion of the 
network dimension would have a larger effect on the estimation accu-
racy of intra-regional EC. The associated p values displayed in Fig. 5C, D 
indicated that the correlation between estimated and ground-truth EC 
was highly significant (p < 1e-5) for low NSR (NSR < 0.3) and remained 
significant (p < 0.005) even for large NSR (NSR ≥ 0.3). Overall, the 
ground-truth simulation demonstrates that MNMI is able to recover the 
ground-truth parameters reasonably well and the estimation perfor-
mance remains fairly stable to large variation of measurement noise. 

3.3. MNMI performance with empirical data 

After the MNMI framework was validated with synthetic data, we 
applied the method to empirical rs-fMRI dataset with 98 NC and 96 MDD 
subjects. As described in the Methods section, we fit the model param-
eters of both the DMN-SAL and EXE-LIM networks based on individual 
rs-fMRI data. By comparing the estimated EC parameters between NCs 
and MDDs for both networks, we aimed to identify disrupted connec-
tions in MDD and determine which network was more significantly 
impaired in FEDN-MDD. We observed that the GA converged within 128 
iterations/generations for all subjects and within 80 generations for 
most of the subjects. Exemplary convergence curves for the DMN-SAL 
and EXE-LIM networks from a randomly selected NC subject are sepa-
rately shown in Fig. 6A, B. The estimation converged rapidly within the 
first 20 generations and became relatively flat after 40 generations until 
convergence. The average model fitness value (measured by Pearson’s 
correlation between the simulated and empirical FC matrices) was 0.92 
for both NC and MDD in the DMN-SAL network (p = 0.8, two-sample t- 

Table 2 
Demographic and clinical characteristics of participants.  

Characteristics MDD (n = 96) NC (n = 98) t/χ2 p 

Age (years) 29.64 ± 9.51a 29.48 ± 10.29 − 0.02 0.99b 

Gender (F/M) 63/33 58/40 0.86 0.35c 

Education (years) 12.51 ± 3.26 12.93 ± 2.77 − 0.96 0.34b 

Duration (months) 8.76 ± 11.04 NA NA NA 
HDRS-17 22.08 ± 3.10 NA NA NA 

Abbreviations: MDD, major depressive disorder; NC, normal control; HDRS-17, 
17-item Hamilton Depression Rating Scale. 

a Mean ± standard deviation. 
b The p values were obtained by two-sample t-test. 
c The p value was obtained by a chi-square test. 
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test; Fig. 6C) and 0.87 for both NC and MDD in the EXE-LIM network (p 
= 0.49, two-sample t-test; Fig. 6D). Note that the model fitness value was 
considerably lower for empirical data compared with synthetic data 
(~0.98) because the synthetic data was generated by the neural mass 
model while there was considerable variance in empirical data. Also, the 
fitness value in the EXE-LIM network was significantly lower than that in 
the DMN-SAL network for both NC (p < 0.05, two-sample t-test; Cohen’s 
d: − 0.98) and MDD (p < 0.05, two-sample t-test; Cohen’s d: − 0.88) 
groups. Such difference largely reflected the fact that the dimension of 
the FC matrix in the EXE-LIM network (9× 9) was larger than that in the 
DMN-SAL network (7× 7). The simulated results for the DMN-SAL and 
EXE-LIM networks (using the optimized parameters) from a randomly 
selected NC subject are shown in Figs. 7 and 8, respectively. We found 
that the simulated neural activity and BOLD signals displayed rhythmic 
fluctuations in a fast and slow temporal scale, respectively. The average 
oscillation frequency of the simulated neural activity was about 7 Hz, 
which resembled alpha oscillations during relaxed wakefulness (Hughes 
and Crunelli, 2005). The oscillation frequency of the simulated BOLD 
signals ranged between 0.02 and 0.08 Hz, consistent with previous 
experimental observations (Tong et al., 2019). There was no significant 
difference between NC and MDD groups, for both DMN-SAL (NC: 0.06 ±
0.008 Hz; MDD: 0.06 ± 0.009 Hz, p = 0.29, two-sample t-test) and EXE- 
LIM networks (NC: 0.05 ± 0.013 Hz; MDD: 0.05 ± 0.013 Hz, p = 0.74, 
two-sample t-test). In addition, the pattern of the simulated FC matched 
closely with that of the empirical FC (compare Fig. 7C with 7D, and 
Fig. 8C with 8D). Overall, the MNMI model performed effectively in 
finding out the optimal parameters that generated realistic and biolog-
ically meaningful neural signals and led to simulated FC closely matched 
to the empirical one. 

3.4. Marginal EC group differences in the default mode-salience network 

The group-averaged recurrent excitation and inhibition weights 
within each of the seven ROIs in the DMN-SAL network are shown in 
Fig. 9A, B, respectively, where no significant MDD vs. NC group differ-
ence was observed. The network-averaged recurrent excitation and in-
hibition weights within the DMN and SAL networks are shown in 
Fig. 9C, D respectively. Again, there was no significant difference be-
tween the NC and MDD groups. Notably, the average recurrent excita-
tion weight in the DMN was slightly higher than that in the SAL, while 
the average recurrent inhibition weight was slightly lower than that in 
the SAL, for both NC and MDD groups. The relatively high excitation 
with low inhibition may underlie the higher activation of the DMN 
during the resting state. The average inter-regional coupling weight 
within the DMN-SAL network is shown in Fig. 10. Out of the 22 esti-
mated inter-regional weights, only the vACC → dACC connection 
strength was significantly decreased (p < 0.05, uncorrected; Cohen’s d: 
0.37) from − 0.43 (for NC) to − 0.07 (for MDD); but such a result was not 
significant after correction for multiple comparisons (which may only 
indicate marginal difference). To ensure that the lack of significant re-
sults was not due to removal of certain inter-regional connections, we 
applied the MNMI approach to the full DMN-SAL network and estimated 
all 42 inter-regional EC links (i.e., not conducting the SC-based pre-se-
lection but excluding diagonal connections) with results shown in Sup-
plemental Fig. S3 (no significant difference in any local connection 
weight) and Supplemental Fig. S4 (no significant difference in any inter- 
regional EC weight after multiple correction). Therefore, the model 
indicated that in the DMN-SAL network, there was no significant dif-
ference in connectivity between the NC and MDD groups. 

Fig. 3. Structure connectivity of the DMN-SAL network and the EXE-LIM network with corresponding reduced networks. (A) Normalized structure connectivity of 
the DMN-SAL network. (B) Normalized structure connectivity of the EXE-LIM network. (C) Reduced DMN-SAL network. (D) Reduced EXE-LIM network. Green edges 
indicate the connections that remain in the network. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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3.5. Significant EC group differences in the executive-limbic network 

We next applied the MNMI approach to the EXE-LIM network, 
another prevalence hypothetic model, and compared both intra- and 
inter-regional EC between the same two groups of subjects. The group- 
averaged local recurrent excitation and inhibition weights and their 
network-specific averages are shown in Fig. 11, and the inter-regional 
coupling weight is shown in Fig. 12. Different from the DMN-SAL 
network, we observed significant difference in the intra-regional 
connection weight. Besides a marginal increase for the MDD in the 
recurrent excitation weight within the left SPC (p < 0.05, uncorrected; 
Cohen’s d: 0.3; Fig. 11A), we found the recurrent inhibition weight 
within the left amygdala (in the limbic system) was significantly 
decreased in MDD (p < 0.05, FDR corrected; Cohen’s d: − 0.44; 
Fig. 11B). In addition, the network-averaged recurrent excitation weight 
within the EXE was significantly elevated in MDD (p < 0.05, FDR cor-
rected; Cohen’s d: 0.36; Fig. 11C), while the average recurrent inhibition 
weight within the LIM was significantly reduced in MDD (p < 0.05, FDR 
corrected; Cohen’s d: − 0.37; Fig. 11D) compared to NC. 

In addition to intra-regional EC, the inter-regional EC in the EXE-LIM 

network also showed more significant differences in more connections 
between NC and MDD compared with the DMN-SAL network (Fig. 12 
and Fig. 13). In particular, the within-EXE connection from the left SPC 
to the right dlPFC was found to switch from excitation (0.39) in NC to 
inhibition (-0.18) in MDD (p < 0.05, FDR corrected; Cohen’s d: − 0.51) 
and the EXE-to-LIM connection from the left SPC to the right amygdala 
was significantly increased from 0.015 in NC to 0.56 in MDD (p < 0.05, 
FDR corrected; Cohen’s d: 0.47). In addition, we observed that the EXE- 
to-LIM connection from the left dlPFC to the left hippocampus was 
significantly reduced (from 0.57 to 0.039; p < 0.05, FDR corrected; 
Cohen’s d: − 0.46) and its mirrored connection on the other hemisphere 
(from the right dlPFC to the right hippocampus) was marginally 
decreased (from 0.73 to 0.33; p < 0.05, uncorrected; Cohen’s d: − 0.38) 
in MDD. Moreover, the inhibitory EXE-to-LIM connection from the right 
SPC to the thalamus was found to be marginally reduced (from − 0.47 to 
− 0.12; p < 0.05, uncorrected; Cohen’s d: 0.31) in MDD. Nevertheless, 
we did not observe any significant difference in the network-averaged 
connection strength (Supplemental Fig. S5). 

Fig. 4. Comparison between ground-truth 
parameters and estimated parameters in the 
absence of measurement noise. (A) Group- 
averaged intra-regional EC in the DMN-SAL 
network. (B) Group-averaged intra-regional 
EC in the EXE-LIM network. (C) Group- 
averaged inter-regional EC in the DMN-SAL 
network. (D) Group-averaged inter-regional 
EC in the EXE-LIM network. The pink star 
indicates uncorrected significant connection 
(p < 0.05, uncorrected). Error bars indicate 
standard error. (For interpretation of the 
references to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   
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3.6. A hypothetical model of executive-limbic malfunction in MDD 

Based on the findings, we hypothesize that the executive-limbic 

network plays a central role in MDD pathophysiology and we thus 
propose a hypothetical model that potentially explains the disrupted 
cortical-limbic interactions and dynamics leading to depressive 

Fig. 5. Correlation between ground-truth 
parameters and estimated parameters as a 
function of noise to signal ratio. (A) Corre-
lation coefficients of intra-regional EC. (B) 
Correlation coefficients of inter-regional EC. 
(C) P values of associative intra-regional EC 
correlation. (D) P values of associative inter- 
regional EC correlation. Correlation is 
calculated for all 20 synthetic subjects. Re-
sults are shown in blue for the DMN-SAL 
network and red for the EXE-LIM network. 
The P values are shown in log scale. (For 
interpretation of the references to colour in 
this figure legend, the reader is referred to 
the web version of this article.)   

Fig. 6. Convergence of the genetic al-
gorithm (GA). (A) Convergence of the 
GA for the DMN-SAL network (one sub-
ject). Blue dots: mean fitness value; 
black dots: best fitness value. (B) 
Convergence of the GA for the EXE-LIM 
network (one subject). (C) Average 
fitness value for the DMN-SAL network. 
(D) Average fitness value for the EXE- 
LIM network. Error bars indicate stan-
dard deviation. (For interpretation of the 
references to colour in this figure 
legend, the reader is referred to the web 
version of this article.)   
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Fig. 7. Simulated output of the DMN-SAL network for one representative subject. (A) A segment of simulated activity of the excitatory neural populations from the 
seven ROIs. (B) Simulated BOLD signals from the seven ROIs (mean removed). (C) Empirical functional connectivity. (D) Simulated functional connectivity. 

Fig. 8. Simulated output of the EXE-LIM network for one representative subject. (A) A segment of simulated activity of the excitatory neural populations from the 
nine ROIs. (B) Simulated BOLD signals from the nine ROIs (mean removed). (C) Empirical functional connectivity. (D) Simulated functional connectivity. 
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symptoms (Fig. 14). According to this model, the recurrent excitation 
within the left SPC (in EXE) is substantially increased while the recur-
rent inhibition within the left amygdala (in LIM) is greatly reduced in 
MDD, which could lead to over-excitation of these two brain regions. In 
the meantime, the EC from the left SPC to the right dlPFC switches from 
excitation in NC to inhibition in MDD, which might lead to diminished 
response in the right dlPFC. The SPC is involved in attending to 
perceptual cues in the environment (Vincent et al., 2008) and the dlPFC 
plays a pivotal role in attentional control and executive functioning 
(Elliott, 2003; Wang et al., 2018). Disrupted SPC and dlPFC activity may 
underlie biased attention for negative stimuli and impaired cognitive 
regulation of emotional processing in MDD (Fales et al., 2008; Beevers 
et al., 2010; Disner et al., 2011). In addition, as the EC from the right 
dlPFC to the right amygdala is inhibitory for both NC and MDD 
(Fig. 13A, B), the reduced right dlPFC response will decrease the inhi-
bition on the right amygdala. Such a reduced inhibition, together with 
the significantly increased excitation from the left SPC (due to increased 
left SPC activity and elevated L.SPC → R.Amygdala connection 
strength), finally lead to overly elevated response of the right amygdala 
in MDD (Fig. 14). Because of the critical role of the amygdala in 
emotional processing and fear expression (LeDoux, 2000), excessive 
amygdala responses might result in depressive symptoms including 
increased anxiety and cognitive bias over negative stimuli (Disner et al., 
2011). In another pathway, the excitatory EC from the dlPFC (in EXE) to 
the hippocampus (in LIM) is significantly reduced in MDD, which could 
in turn decrease the hippocampal responses. Due to the important role of 
the hippocampus in memory function (Tulving and Markowitsch, 1998), 
reduced hippocampal excitation may be responsible for memory im-
pairments (Hammar and Ardal, 2009) and biased memory for negative 
stimuli in MDD (Disner et al., 2011). The impaired EXE-to-LIM 
connection also manifests as the decreased inhibition from the right 
SPC to the thalamus, which could in turn result in over-excitation of the 

Fig. 9. Average recurrent excitation and inhibition weights between NC and MDD populations in the DMN-SAL network. (A) Average recurrent excitation weight 
within each ROI. (B) Average recurrent inhibition weight within each ROI. (C) Average recurrent excitation weight within the DMN and SAL networks. (D) Average 
recurrent inhibition weight within the DMN and SAL networks. Error bars indicate standard error. 

Fig. 10. Average inter-regional EC between NC and MDD populations in the 
DMN-SAL network. The pink star indicates uncorrected significant connection 
(p < 0.05, uncorrected). Error bars indicate standard error. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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thalamus. As the thalamus plays a central role in thalamocortical os-
cillations (Huguenard and McCormick, 2007; Li et al., 2017), increased 
thalamic excitation may lead to impaired thalamocortical rhythms 
through its widespread projection to the neocortex, as observed in MDD 
patients (Llinas et al., 1999; Hughes and Crunelli, 2005). Since thala-
mocortical oscillations are associated with important brain functions 
including arousal, attention and sensory processing (Steriade et al., 
1993; Buzsaki and Draguhn, 2004; Timofeev and Bazhenov, 2005), 
disrupted thalamocortical rhythms may lead to insomnia, anhedonia 
and impaired cognitive functions in MDD. 

4. Discussion 

Major depressive disorder (MDD) is a complex mental disorder 
involving impairments in multiple large-scale brain networks and cir-
cuits (Drevets et al., 2008; Price and Drevets, 2010; Pandya et al., 2012; 
Drysdale et al., 2017). To achieve mechanistic understanding of this 
devastating disease, it is important to identify which functional net-
works play a central role and which functional networks play a subor-
dinate role in the pathophysiology of MDD. Revealing the relative 
important role of different networks in MDD also helps to develop more 
effective treatments to specifically target the pathological focus for 
maximal therapeutic benefit. However, existing analytic approaches in 
fMRI focus primarily on macroscopic connectome modeling such as 
undirected FC and graph theory, which cannot provide a mechanistic 
account of circuity dysfunction. To overcome this limitation, we 
significantly refined a newly developed Multiscale Neural Model 
Inversion (MNMI) framework and applied it to test two competing hy-
potheses of MDD pathology (default mode – salience network disruption 
vs. executive – limbic network malfunction). We demonstrated that 
MDD is more likely caused by disrupted interaction and dynamics in a 
core “executive-limbic” network rather than “default mode-salience” 
network, consistent with the limbic-cortical dysregulation model 
(Mayberg, 1997, 2002; Davidson et al., 2002; Disner et al., 2011). Our 

improved MNMI approach went one step further to reveal detailed un-
derlying mechanisms of executive-limbic dysregulation at the cellular 
and circuit levels. 

4.1. fMRI-based connectome modeling 

There exist two major approaches in fMRI-based connectome 
modeling. The first one is statistical approach including static/dynamic 
FC, independent component analysis (ICA), k-means and hidden Markov 
models (Li et al., 2009b; Sporns, 2014; Preti et al., 2017). Despite the 
great success of these statistical techniques in characterizing the com-
plex organizational topology of large-scale functional brain networks, 
their clinical translation and application to fundamental neuroscience 
problems are still limited in that such macroscopic network analysis is 
largely descriptive and superficial (Stephan et al., 2015; Braun et al., 
2018). The second approach is generative modeling which relies on 
mechanistically or biophysically plausible neural models to simulate 
fMRI data and estimate model parameters using optimization algorithms 
(i.e., model inversion) (Friston et al., 2003; Friston, 2011). Compared to 
statistical approaches, generative modeling has the advantage of con-
necting microscale neuronal or circuit properties with macroscale 
network dynamics thus enabling mechanistic neuronal account of fMRI 
connectome. Notably, generative modeling has been widely used to infer 
effective connectivity (EC) among different neural populations based on 
fMRI (Friston et al., 2003, 2014, 2019; Gilson et al., 2016; Demirtaş 
et al., 2017). 

Two classes of generative models have been proved to be particularly 
useful in studying fMRI connectome: biophysical network models 
(BNMs) and dynamic causal models (DCMs). BNMs of fMRI typically 
represent each network node with a neural mass or mean-field model of 
local neuronal populations and different nodes are connected via long- 
range fibers estimated from diffusion imaging data; the resulting 
network activity is then fed into a measurement model to predict fMRI 
signal (Honey et al., 2007; Deco and Jirsa, 2012; Deco et al., 2013b). 

Fig. 11. Average recurrent excitation 
and inhibition weights between NC and 
MDD populations in the EXE-LIM 
network. (A) Average recurrent excita-
tion weight within each ROI. (B) 
Average recurrent inhibition weight 
within each ROI. (C) Average recurrent 
excitation weight within the EXE and 
LIM networks. (D) Average recurrent 
inhibition weight within the EXE and 
LIM networks. One pink star indicates 
uncorrected significant connection (p <
0.05, uncorrected), and double pink 
stars indicate corrected significant 
connection (p < 0.05, corrected by 
FDR). Error bars indicate standard error. 
(For interpretation of the references to 
colour in this figure legend, the reader is 
referred to the web version of this 
article.)   
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While BNMs have the advantage of linking population firing rates with 
BOLD dynamics at high spatial and temporal resolution, their ability to 
estimate full-scale model parameters is limited in term of individual- 
level data due to model complexity (Stephan et al., 2015; Singh et al., 
2020). Common practices include using structural connectivity as a 
proxy for synaptic efficiency (Honey et al., 2007; Deco et al., 2013a; 
Jirsa et al., 2017), estimating a single scaling parameter for all inter- 
regional connections (Deco et al., 2013b; Wang et al., 2019), or esti-
mating a small subset of parameters typically at the group-average level 
(Deco et al., 2014a, 2014b; Demirtaş et al., 2019). As structural con-
nectivity is symmetric and undirected, and the use of a global scaling 
factor precludes the detection of selective changes at individual con-
nections, BNMs may not accurately predict raw fMRI time series (Singh 
et al., 2020). It should be noted that recent advances in BNMs have 

started to overcome such limitations. Using multivariate Ornstein- 
Uhlenbeck (MOU) process, Gilson et al. (2016, 2018, 2020) have 
developed BNM models that permit the inference of individual inter- 
regional connection strengths in large-scale networks, though intra- 
regional circuit interactions are not estimated. 

While BNMs typically focus on simulating fMRI data, DCMs are 
specifically designed to infer individual connection strength at single 
subject level (Friston et al., 2003, 2014). Built on the Bayesian frame-
work, DCM estimates model parameters and their marginal likelihood 
for both specific connections (Daunizeau et al., 2011) and network ar-
chitecture (Penny et al., 2004). While DCM of electrophysiological data 
has incorporated biologically plausible neural mass models (NMM) to 
address physiological questions related to human cognition (Moran 
et al., 2011), attention (Auksztulewicz and Friston, 2015), and cortical 
hierarchies (Bastos et al., 2015), DCM for fMRI has primarily relied on a 
simplified bilinear state-space model (Friston et al., 2003), though two 
variations of DCM (stochastic DCM and spectral DCM) have been 
developed to specifically work with rs-fMRI (Li et al., 2011a; Friston 
et al., 2014). To account for intrinsic (within region) connectivity, 
earlier DCM used a simple two-state model including one excitatory and 
one inhibitory neural populations, extended from the one-state model, 
for each brain region (Marreiros et al., 2008). Nevertheless, the two- 
state model is still inherently linear, which may not capture the long- 
term pattern of brain spatio-temporal dynamics (Singh et al. 2020). It 
was not until recently the latest DCM for fMRI incorporated a more 
sophisticated, hierarchical convolution NMM (Friston et al., 2019). In 
this new version of DCM for fMRI, each brain region contains four 
neuronal populations and each population is represented with two im-
plicit hidden states; the four populations are coupled with intrinsic 
connections modeling the inter- and intralaminar connectivity in 
cortical microcircuitry. The incorporation of sophisticated NMM enables 
DCM to explore more physiologically informed questions (Friston et al., 
2019) and represents a convergence between DCMs and BNMs (Stephan 
et al., 2015). Of note, both the two-state DCM and NMM-based DCM 
currently apply to task-based fMRI only, though such limitation can be 
circumvented by using Fourier series as driving inputs to the models, as 
done previously (Di and Biswal, 2014). 

Our proposed MNMI model attempts to combine the advantages of 
BNMs with DCMs to estimate both intra-regional and inter-regional 
connectivity for each individual connection and individual subject 
based on rs-fMRI, in a similar spirit as the latest NMM-based DCM 
(Friston et al., 2019). The MNMI framework differs from the two-state or 
NMM-based DCMs in several aspects including using the well- 
established Wilson-Cowan oscillator (Sejnowski, 1976; Amit and Bru-
nel, 1997; Destexhe and Sejnowski, 2009) and a more general network 
architecture (instead of cortical microcircuitry) to model intrinsic neural 
dynamics, utilizing structural connectivity to prune inter-regional con-
nections, fitting parameters to FC matrix instead of fMRI time series, and 
using GA to estimate model parameters (instead of variational Bayesian 
scheme; Friston et al., 2007). Of note, GA does not require prior EC 
expectation and allows easy computing parallelization when imple-
mented using the MATLAB global optimization toolbox. Also, our 
framework is highly flexible and can be easily customized. One may 
choose any specific type of NMM, network architecture, objective 
function, and free parameters to estimate depending on the problem of 
interest. As an effort to bridge BNM with DCM, Singh et al. (2020) 
invented a new modeling framework termed Mesoscale Individualized 
Neurodynamic (MINDy) modeling, which fits nonlinear dynamical sys-
tems models directly to individual-level rs-fMRI data in a highly efficient 
matter (inversion of a large-scale model with hundreds of nodes in a few 
minutes). One major difference between MNMI and MINDy is that the 
former includes a more biologically informed NMM with excitatory/ 
inhibitory interactions, while MINDy employs a single neural population 
at each node. Other differences lie in the model timescale (population 
firing scale vs. fMRI scale), utilization of structural information (with 
structural constraint vs. no structural constraint), and the specific 

Fig. 12. Average inter-regional EC between NC and MDD populations in the 
EXE-LIM network. One pink star indicates uncorrected significant connection 
(p < 0.05, uncorrected), and double pink stars indicate corrected significant 
connection (p < 0.05, corrected by FDR). Error bars indicate standard error. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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optimization scheme and algorithm (GA vs. gradient descent). 

4.2. Executive-limbic malfunction as a core mechanism of MDD 

One of the major finding of this study is that we identified executive- 
limbic malfunction as a core pathophysiological mechanism of MDD. It 
has long been suggested that limbic-cortical dysregulation mediates the 
pathogenesis of MDD (Mayberg, 1997, 2002, 2003; Davidson et al., 
2002; Disner et al., 2011). However, for human MDD, it is unclear 
whether the dysregulation originates from limbic or cortical system and 
whether such dysregulation results from intrinsic (intra-regional) or 
inter-regional interactions. Our results demonstrate that both limbic and 
cortical systems and both intra-regional and inter-regional connectiv-
ities could play a role. First, we demonstrated that multiple intra- 
regional and inter-regional mechanisms underlie disrupted prefrontal- 
amygdala connectivity balance. Impaired prefrontal-amygdala interac-
tion is a key component of the limbic-cortical dysregulation model 
(Price and Drevets, 2010; Disner et al., 2011) and an inverse relationship 
between amygdala and dlPFC activation has been observed (Fales et al., 

2008), suggesting the existence of an inhibitory pathway from dlPFC to 
downregulate amygdala. Consistently, the model reveals an inhibitory 
EC from the right dlPFC to the right amygdala, for both NC and MDD 
(Fig. 13A, B). Also, the model suggests a critical role of the SPC in dlPFC 
hypoactivity and amygdala hyperactivity, and SPC affects dlPFC and 
amygdala activity through both intrinsic and external mechanisms. On 
one hand, the recurrent excitation within the left SPC is marginally 
increased in MDD, potentially leading to increased activity of this brain 
region. On the other hand, the EC from the left SPC to the right dlPFC 
switches from excitation in NC to inhibition in MDD and the excitatory 
EC from the left SPC to the right amygdala greatly increases, which may 
account for over-inhibition of the right dlPFC and over-excitation of the 
right amygdala (Fig. 14). Reduced activity of the right dlPFC would 
decrease inhibition on the right amygdala, further contributing to 
amygdala hyperactivity. It should be noted that the absolute EC from the 
left SPC to the right dlPFC is reduced in MDD (from 0.39 to − 0.18; 
Fig. 13A, B), consistent with decreased frontoparietal connectivity in 
MDD revealed by a large-scale meta-analysis of resting-state FC (Kaiser 
et al., 2015). Moreover, the model indicates a critical role of intrinsic 

Fig. 13. Connectivity matrices within the EXE-LIM network for NC and MDD groups. (A) Average inter-regional EC for the NC group. (B) Average inter-regional EC 
for the MDD group. The links with significant group difference are highlighted in pink (p < 0.05, FDR corrected) and purple (p < 0.05, uncorrected) boxes. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 14. A hypothetical model of executive-limbic 
malfunction in MDD. MDD is mediated by increased 
recurrent excitation in the left superior parietal cortex 
(L.SPC) and reduced excitation (or increased inhibi-
tion) from the L.SPC to the right dorsolateral pre-
frontal cortex (R.dlPFC), leading to increased 
response of L.SPC and decreased response of R.dlPFC, 
which underlie biased attention for negative stimuli 
and impaired cognitive control function. Also, the 
recurrent inhibition within the left amygdala (L. 
Amyg) is deceased while the excitatory drive from the 
L.SPC to the right amygdala (R.Amyg) is significantly 
increased, resulting in amygdala hyperactivity that 
causes biased processing of negative stimuli and 
increased anxiety. In addition, the excitatory projec-
tion from the left/right dlPFC to the left/right hip-
pocampus (HPC) is abnormally decreased, leading to 
reduced activity of the HPC underlying biased mem-
ory for negative stimuli and other memory impair-
ments. Moreover, the inhibition from the R.SPC to the 
thalamus (Thal) is reduced, which results in thalamic 
hyperactivity responsible for abnormal thalamocort-
ical rhythms and insomnia. The green arrows indicate 
the change of the effective connectivity in MDD from 
normal control. The UP/DOWN arrows next to the 
brain regions indicate the change in neural responses 

in MDD compared to NC. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)   
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inhibition in amygdala hyperactivity, manifested by significantly 
reduced recurrent inhibition within the left amygdala (Fig. 11B). The 
amygdala is a heterogeneous structure consisting of multiple nucleus 
with excitatory and inhibitory intrinsic connections (Maren, 2001; Paré 
et al., 2004). The abnormally reduced recurrent inhibition within the 
left amygdala is consistent with the essential role of intrinsic inhibition 
in regulating amygdala activation and fear expression (Li et al., 2009a, 
2011b). 

Second, the model reveals disrupted prefrontal-hippocampus EC as 
an important contributor of executive-limbic malfunction. We observed 
that the excitatory projection from the dlPFC to the hippocampus is 
significantly reduced in MDD (Fig. 13), potentially resulting in reduced 
activity of the hippocampus. This is in agreement with decreased hip-
pocampal volume that has been consistently found in MDD (Otte et al., 
2016), possibly because the prolonged stress leads to overall neuronal 
atrophy and synaptic depression in the hippocampus (Chaudhury et al., 
2015; Thompson et al., 2015). The potentially reduced hippocampal 
excitation in MDD could be in opposite to the hyperactive amygdala. 
Such differential excitation/inhibition modulation agrees well with the 
experimental observations that unlike the hippocampus, the amygdala 
displays increases in volume in MDD (Frodl et al., 2003) as chronic stress 
could induce dendritic hypertrophy (Vyas et al., 2002). 

Lastly, the model indicates impaired SPC-thalamus EC in the EXE- 
LIM network. The thalamus is highly implicated in the MDD pathol-
ogy (Drevets et al., 2008; Price and Drevets, 2010) and one previous 
study showed impaired PFC-thalamus FC as a key feature of treatment- 
resistant depression (Li et al., 2013). We found that the inhibitory EC 
from the right SPC to the thalamus was marginally reduced in MDD, 
which could potentially lead to elevated activity of the thalamus. Such a 
finding agrees with the experimental observation that during MDD, or 
the depressed phase of bipolar disorder, the glucose metabolism in the 
medial thalamus is abnormally increased (Price and Drevets, 2010). 
Thus, it is possible that the abnormal SPC-thalamus FC already exists in 
early depression episode, which gives way to more significant PFC- 
thalamus disconnectivity in the more serious, treatment-resistant 
depression. 

4.3. Role of the default mode and salience networks in MDD 

As mentioned earlier, many neuroimaging studies implicate the 
default mode and salience networks in the pathophysiology of MDD 
(Menon, 2011; Dutta et al., 2014; Mulders et al., 2015). Disrupted FC 
within the DMN has been frequently associated with excessive rumi-
nation and self-referential processing in MDD (Cooney et al., 2010; 
Hamilton et al., 2015). However, in contrast to the EXE-LIM network, 
the DMN-SAL network only shows marginal difference in one inter- 
regional EC link (Fig. 10). The marginal difference in EC is not likely 
due to the excessive removal of weak connections because only two 
inter-regional connections display marginal significance in the network 
without removal of weak connections (Supplemental Fig. S4). Our 
findings suggest that the DMN-SAL network may not be the core neural 
system underlying the pathogenesis of MDD. Instead, we think that they 
could rather constitute a secondary system whose dysfunction originates 
from the EXE-LIM network (and then further induces FC or EC abnor-
malities in the DMN and SAL). Indeed, in an integrated cognitive- 
biological model of MDD, it is proposed that excessive ruminative 
thoughts and sustained self-referential processing associated with the 
DMN is facilitated by heightened emotional processing from the amyg-
dala and sustained by attenuated top-down inhibition from the dlPFC 
and ventrolateral PFC (Disner et al., 2011). Subsequent disrupted con-
nectivity in the DMN may become more stable as the disease progresses, 
as a recent large-cohort meta-analysis study reported reduced FC in the 
DMN only in recurrent MDD, but not in FEDN (Yan et al., 2019). 

On the surface, our results may be at odd with our previous study 
which shows that MDD is mainly associated with abnormal EC within 
the DMN and between the DMN and SAL networks (Li et al., 2020). Two 

main factors may account for such discrepancies. First, the analysis 
approach is different. In the previous study, we used spectral DCM 
(Friston et al., 2014) to estimate inter-regional EC among the DMN, EXE, 
SAL and LIM networks, while in the current study, we used the MNMI 
framework to evaluate both intra- and inter-regional EC within the 
DMN-SAL network and the EXE-LIM network separately. The underlying 
neural model of spectral DCM is essentially a linear state-space model 
and it estimates inter-regional EC in the frequency domain (Friston et al., 
2014). By comparison, the MNMI method uses the more biologically 
realistic neural mass model and estimates both intra-regional and inter- 
regional EC in the time domain. The increased biological realism may 
enable us to reveal more fundamental neurophysiological mechanisms 
of depression. Second, as mentioned above, dysfunctional connectivity 
within the DMN-SAL network may be caused by executive-limbic mal-
function. When the DMN-SAL network is isolated from the EXE-LIM 
network, most of the abnormal connectivity patterns within the DMN- 
SAL network may disappear. It should be noted that in Li et al., 
(2020), we did observe substantial abnormal EC links involving the 
executive and limbic networks using the parametric empirical Bayes 
(PEB) approach (Fig. 5b of Li et al., 2020). 

4.4. Clinical implication to MDD treatment 

Our findings indicate executive-limbic malfunction as a core mech-
anism of MDD pathophysiology. Specifically, the model predicts 
elevated neural activity in the superior parietal cortex, amygdala, and 
thalamus, along with reduced neural activity in the dlPFC and hippo-
campus. Based on such a hypothetic mechanism, effective treatments 
can be proposed to restore normal activity patterns in these brain re-
gions to alleviate depressive symptoms. Indeed, repetitive transcranial 
magnetic stimulation (rTMS), an effective therapeutic modality for 
MDD, predominantly targets the dlPFC (Leuchter et al., 2013). The 
stimulation presumably increases dlPFC’s excitability with concomitant 
downstream effects on the limbic system (Li et al., 2004; Fox et al., 
2012). According to our model, boosted dlPFC activity would impose 
stronger inhibition on the amygdala, reducing biased processing of 
emotional stimuli. Besides, deep brain stimulation (DBS) of the inferior 
thalamic peduncle (ITP) has been shown to be effective to treatment- 
resistant MDD (Raymaekers et al., 2017; Dandekar et al., 2018). The 
ITP is a bundle of fibers that reciprocally interconnect with the thalamic 
reticular nucleus (TRN; Drobisz and Damborská, 2019), a subcortical 
structure that exerts strong inhibition on the dorsal thalamic nuclei 
(Pinault, 2004). Thus, stimulation of the ITP most likely reduces 
thalamic excitability via the TRN inhibition, which is well aligned with 
our model. Our model also suggests that stimulation that can dampen 
amygdala and superior parietal cortex activity while enhancing hippo-
campus excitability may have therapeutic benefit for MDD. 

4.5. Model limitations 

There are a few limitations associated with the present study. One 
major limitation is the relatively small network sizes (7 and 9 ROIs) 
relative to the parcellation atlas (more than 100 regions). We chose 
small networks as we want to focus on the core regions implicated in 
MDD (see Introduction). Technical considerations of MNMI (computa-
tional burden and potential over-fitting) also prevent a large-scale 
network inversion at present. Despite this concern, modeling a sub-
graph of a larger distributed network is justified provided the subgraph 
contains the Markov blanket of the regions in interest. Practically, this 
implies that the influences from outside the subgraph (i.e., other brain 
regions) need to be modeled with experimental inputs or endogenous 
fluctuations, which is naturally furnished by MNMI as every node is 
endowed with endogenous fluctuations. Future extension of MNMI 
would allow for inversion of a much larger circuit model to study MDD. 
A second limitation concerns the separate estimation of the DMN-SAL 
network and EXE-LIM network. Though we could potentially estimate 

G. Li et al.                                                                                                                                                                                                                                        



NeuroImage: Clinical 31 (2021) 102758

17

a full network model with all regions in interest and make inference on 
the functional roles of subnetworks, we elected to estimate the DMN-SAL 
and EXE-LIM networks separately because we wanted to specifically test 
the default mode – salience network disruption versus the executive – 
limbic network malfunction hypotheses. If we combine both systems 
together, we may not be able to disentangle which system is the cause of 
pathology and which system is the consequence of pathology (as dis-
rupted activity may pass from one system to the other). Indeed, it is 
considered a good practice to restrict hypothesis testing or model 
comparison to a small number of nodes to ensure the data from the 
selected nodes are the most informative (Stephan et al., 2010; Dauni-
zeau et al., 2011). Estimation of a larger network may also increase the 
model’s susceptibility to potential over-fitting as mentioned above. It 
should be noted that dysconnectivity may exist among the inter-network 
connectivity between DMN-SAL and EXE-LIM (e.g., DMN-LIM dyscon-
nectivity, Admon and Pizzagalli, 2015), which has not been considered 
by our study. Third, when using structural connectivity to constrain EC, 
we only considered direct (first-order) anatomical connections, while 
recent study has reported that indirect (high-order) anatomical con-
nectivity can significantly sculpt EC via network diffusion (Sokolov 
et al., 2020). Though high-order connections were not explicitly 
modeled, we did observe that brain regions that are not directly coupled 
can still be functionally connected owing to indirect connectivity 
(Figs. 3, 7 and 8), which supports the role of high-order connections in 
EC. Lastly, for simplification, MNMI assumes fixed hemodynamic model 
parameters as other fMRI-based dynamic models (e.g., Frässle et al., 
2017; Singh et al., 2020). This assumption is likely incorrect as inter- 
regional variability in BOLD dynamics could confound estimation of 
EC at the neuronal level (David et al., 2008). Future improvements of 
MNMI will specifically account for such regional variability by esti-
mating hemodynamic parameters. 

5. Conclusion 

In conclusion, using a multiscale neural model inversion (MNMI) 
framework, we demonstrated that major depressive disorder is more 
likely characterized by disrupted circuit interactions within the 
executive-limbic network, rather than the default mode-salience 
network. We found that impaired frontoparietal effective connectivity 
within the executive network may contribute to hypoactivity in dlPFC, 
while decreased intrinsic inhibition combined with increased SPC 
excitation could lead to amygdala hyperactivity, together resulting in 
predominant PFC-amygdala activation imbalance in MDD. In addition, 
we observed disrupted top-down PFC-hippocampus and SPC-thalamus 
connectivity in MDD that could contribute to impaired memory func-
tion and abnormal thalamocortical oscillations. Our findings support the 
long-standing notion that limbic-cortical dysregulation underlies the 
pathogenesis of MDD. Future treatments should specifically target the 
executive-limbic system for maximal therapeutic benefits. 
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