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Diversity of feeding mechanisms is a hallmark of reef fishes, but the history of this
variation is not fully understood. Here, we explore the emergence and proliferation of a
biting mode of feeding, which enables fishes to feed on attached benthic prey. We find
that feeding modes other than suction, including biting, ram biting, and an intermedi-
ate group that uses both biting and suction, were nearly absent among the lineages of
teleost fishes inhabiting reefs prior to the end-Cretaceous mass extinction, but benthic
biting has rapidly increased in frequency since then, accounting for about 40% of reef
species today. Further, we measured the impact of feeding mode on body shape diversi-
fication in reef fishes. We fit a model of multivariate character evolution to a dataset
comprising three-dimensional body shape of 1,530 species of teleost reef fishes across
111 families. Dedicated biters have accumulated over half of the body shape variation
that suction feeders have in just 18% of the evolutionary time by evolving body shape
∼1.7 times faster than suction feeders. As a possible response to the ecological and func-
tional diversity of attached prey, biters have dynamically evolved both into shapes that
resemble suction feeders as well as novel body forms characterized by lateral compres-
sion and small jaws. The ascendance of species that use biting mechanisms to feed on
attached prey reshaped modern reef fish assemblages and has been a major contributor
to their ecological and phenotypic diversification.
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Reef habitats are renowned for high biodiversity (1–5). Often, this pattern is attributed to
the structural complexity of reefs, as complex habitats provide increased opportunity for
microhabitat-related adaptations and niche partitioning (6–8). Among reef fishes, many
major drivers of phenotypic and ecological diversity have been recognized at a range of
phylogenetic scales (9–13), but we still lack a clear understanding of the processes and
mechanisms that have made reef fish faunas the most diverse in modern oceans.
One striking axis of diversity that distinguishes reef fish communities from those in

other marine habitats is the variety of feeding modes used to capture prey. Fishes can
employ a direct biting mechanism to remove attached prey from hard substrates or can
use suction feeding, which relies on the density and viscosity of an aquatic medium to
pull in water and prey via rapid expansion of the head. Suction feeding, which is most
effectively used to capture mobile prey (14–19), is both ancestral for teleost fishes (20)
and well represented on modern reefs (21). However, direct biting feeding mechanisms
characterize many iconic reef fish groups, including parrotfishes, butterflyfishes, sur-
geonfishes, and triggerfishes. The evolution of biting has allowed fishes to exploit a
variety of benthic prey that are firmly attached to reef surfaces and thus, resist suction,
including molluscs, echinoderms, cnidarians, sponges, algae, and other primary pro-
ducers (22–27). The ecosystem importance of this functional breakthrough in trophic
habits is perhaps best represented by the many benthic biting herbivores and detriti-
vores (27–32) that play a central role in energy transfer through reefs and regulating
the composition of benthic communities (33–37).
Benthic biting has been a major facet of the trophic diversity of reef fishes since at least

the Eocene. Herbivores were well established in the Monte Bolca lagerst€atte (∼50 Ma),
marking the first evidence that teleosts could graze upon the reef surface and signaling
a major shift in reef community functions (38–40). These herbivores appear to have
risen to dominance within reef ecosystems globally through expansion and colonization
following the split of the Tethys Sea and the increased availability of reef flat habitats
in the Late Cenozoic (40–44), although the implications of biting for phenotypic
diversification of reef fishes remain unknown (40). Use of a biting feeding mode prior
to the Eocene appears to be primarily the domain of nonteleost fishes. As long ago as
the Devonian, lungfishes and some arthrodire placoderms captured and crushed hard
prey with their jaws (45–48). Several lineages of early-branching ray-finned fishes used
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biting for prey capture throughout the Mesozoic, including
pycnodonts, macrosemiids, and semionotids (38, 49–51); of
these, pycnodonts persisted until the Eocene (51). The striking
lack of biting teleosts prior to the Eocene (38) may be due to a
20-My gap in major deposits of spiny-rayed (Acanthomorph)
fishes from the Late Campanian (∼75 Ma) to the Late Paleocene
(∼55 Ma) (52), during which biting by teleost fishes most likely
proliferated to its Eocene prominence. The ambiguity regarding
the origins of the expansion of biting among teleosts and its
role in morphological diversification presents an opportunity
for comparative phylogenetics to provide insight into the his-
tory of modern reef fishes.
In this study, we explored the evolutionary history of benthic

biting feeding mechanisms in reef fishes and the impact this
novelty had on their phenotypic diversification. We compared
benthic biting with three other feeding modes: suction feeding,
an intermediate group using a mix of both suction and biting,
and an uncommon feeding mode we refer to as “ram biting.”
To determine how the prevalence of benthic biting has changed
through time, we reconstructed the history of feeding modes
among reef-dwelling teleosts using stochastic mapping on a
time-calibrated phylogeny. We then measured the effect of
feeding mode on rates of body shape evolution across a broad
sample of 1,530 species of reef fishes spanning 111 families of
extant teleosts. If biting feeding modes have been a significant
stimulus to the diversification of modern reef fishes, we expect
to see differences in body shape occupation of morphospace
and phenotypic diversification when comparing biters with fish
that employ other feeding modes. Our results provide insight
into the evolutionary mechanisms underlying the vast pheno-
typic and ecological diversity of reef fishes.

Results

Evolutionary History of Feeding Modes. We classified 1,530
species of reef fishes by feeding mechanism; 335 (22%) were clas-
sified as biters, 277 (18%) were mixed suction and biting feeders,
830 (54%) were suction feeders, and 88 (6%) were ram biters
(Dataset S1). We also classified biters and mixed feeders by
whether they prey primarily upon algae and detritus (“herbivores/
detritivores”) or take a larger portion of animal material, such as
sponges, corals, or echinoderms. In total, 58% of dedicated biters
were herbivores/detritivores, 17% of “mixed” feeders were herbi-
vores/detritivores, and combined, 39% of biters and mixed
feeders were herbivores/detritivores.
We used stochastic character mapping to reconstruct the history

of feeding mode over the phylogeny. A distribution of 100 sto-
chastic character maps had a mean of 244.5 transitions between
feeding modes across reef-dwelling teleosts, with strongly asym-
metrical transitions between states (Fig. 1 and SI Appendix, Figs.
S1 and S2). The mean total time on the phylogeny spent in each
state varied dramatically among feeding mode groups (Table 1).
Stochastic character maps indicated a major transformation

since the Early Cenozoic in the representation of all three non-
suction modes (Fig. 1). Prior to the end Cretaceous, suction
feeding was used by at least 96% of teleost lineages that include
species on modern reefs, with the three nonsuction modes
accounting for only about 2.8% of all branches at the Creta-
ceous-Paleogene (K/Pg) boundary. Since that time, the propor-
tion of lineages using biting modes has grown to its peak in the
present at 40%. Beginning in the Early Cenozoic, a steady rise
was observed in the proportion of lineages that use the three
nonsuction modes of feeding, especially the dedicated attached

Quaternary

Neogene

Paleogene

Cretaceous

Ju
rass

ic

A

B

0.00

0.25

0.50

0.75

1.00

p
ro

p
or

tio
n 

of
 b

ra
nc

he
s

 in
 e

ac
h 

st
at

e

mixed biting & suction
Feeding
Mode

biting ram biting
suction

time before present (million year block)
170 150 130 110 90 70 50 30 10

Labridae

Anguilliformes

Tetraodontiform.

Siganidae
Acanthuridae

Chaetodontid.

Pomacanthidae

Lutjanidae
Haemulidae

Kyphosidae

Serranidae

Syngnathiform.

Apogonidae

Gobiidae

Sphyraenidae

Pomacentridae

Blenniidae
Beloniformes

Scombridae

Synodontidae
Holocentridae

Scorpaeniform.

Lethrinidae

Carangidae

Fig. 1. (A) An ancestral-state reconstruction of feeding mode using stochas-
tic character mapping in reef-dwelling teleost fishes. Branches are colored
by feeding mode, with selected major lineages labeled to the right. Back-
ground bars (white and gray) indicate the geologic time period. (B) A bar plot
showing the proportion of branches at million-year intervals in each feeding
mode state, averaged across 100 stochastic character maps. The proportion
of branches in each feeding mode is on the y axis, with bars along the x axis
at million-year intervals starting 192 Ma (Left) and progressing rightward
toward the present. The dashed line indicates the time of the end-
Cretaceous mass extinction event 66 Ma. Note the dramatic increase of
biting and mixed feeding modes following the mass extinction event.
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prey biting category, which clearly accelerated in representation
over the past 30 My.

Morphological Disparity and Occupation of Shape Space. We
explored how feeding mode affects the morphological diversity
of reef fishes, estimating three-dimensional body shape with
eight linear measurements of length, depth, and width of the
head; body; jaws; and caudal peduncle. When visualizing body
shape diversity with a scatterplot of principal components 1
and 2, most species in our dataset were concentrated in an
oval-shaped region of morphospace distributed in the upper
half of Principal Component Axis 1 (PC1) and across PC2. A
low-density spur spanned the majority of PC1, composed of
eels and other elongate species, such as pipefishes and needle-
fishes. Standard length, body depth, and head depth were the
major axes of diversity dominating PC1, which accounted for
43.1% of the total variation, with smaller roles for caudal
peduncle depth and width (Fig. 2 and SI Appendix, Table S1).
PC1 defined an axis with elongate, slender bodies with shallow
heads on one side and deeper, shorter bodies and deeper heads
on the other. PC2, which contained 26.8% of the variation,

was dominated by width and jaw traits: body width, lower jaw
length, and mouth width. PC3 and PC4, which each contained
∼10% of the variation in the data, were made up of fish width
and caudal peduncle traits as well as lower jaw length, caudal
peduncle width, and fish width, respectively.

All eight body shape traits differed between feeding mode
categories in phylogenetic analyses of variance (ANOVAs) at
α = 0.05 and all traits except maximum fish width at α = 0.01
(SI Appendix, Fig. S3 and Table S2). All traits had low explana-
tory power and small effect sizes, except lower jaw length,
where feeding mode explained 6% of the variation in the data.
Similarly, in a phylogenetic multivariate analysis of variance
(MANOVA) including all eight body shape traits, there was a
significant effect of feeding mode on body shape (P < 0.0001),
explaining 2.8% of the overall variance in body shape and
an effect size of 5.98. Random forest model fitting identified
lower jaw length as the most important trait for discriminating
between feeding mode groups, with over threefold higher
importance in correctly categorizing species than any other trait
(SI Appendix, Table S3). We found a trend among feeding
mode groups along a gradient of prey evasiveness, where ram
biters had elongate, slender bodies with large jaws and species
using biting had shorter, deeper heads and bodies with short
jaws. Suction feeders typically had intermediate body shapes
between ram biters and benthic biters but with substantial
variation.

To analytically compare which feeding mode groups had the
most variation in body shape, we used multivariate disparity
analyses. Body shape disparity was highest in ram biters fol-
lowed by suction feeders, biters, and mixed biting and suction
feeders (Table 1). This pattern was generally repeated among
univariate disparity analyses with the notable exceptions of
maximum body depth and mouth width, where ram biters had
the lowest disparity, and maximum fish width, where there was
very little variation between groups (SI Appendix, Table S4).

We used hypervolumes to compare the multidimensional mor-
phospace occupation of feeding mode groups. Hypervolumes

Table 1. Comparison of results of multivariate disparity,
stochastic character mapping, and evolutionary rate
analyses among feeding mode groups

Feeding group Disparity*
Time

on tree,† % Rate‡

Biting 0.103 12.1 1.426
Mixed suction and biting 0.121 14.4 0.966
Ram biting 0.324 7.4 0.77
Suction 0.189 66.0 0.838

*Disparity represents multivariate disparity across all eight body shape traits.
†Time on tree represents the proportion of the total branch length on the phylogeny
reconstructed to be in each state using stochastic character mapping, averaged across
100 reconstructions.
‡Rates are calculated as the state-dependent rate of multivariate evolution, which
excludes background evolution on each branch.
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Fig. 2. A plot of 1,530 reef fish species on principal components 1 and 2 based on eight body shape traits, with Inset showing a high-density region. Points
represent species averages, and each species is colored by feeding mode. Several fishes are drawn to illustrate the shapes of fishes at different regions of
morphospace. Main plot (clockwise from the upper right): Aeoliscus strigatus, Remora remora, Halieutichthys aculeatus, Tylosaurus acus, and Rhinomuraena
quaesita. Inset (starting with the upper right): Zebrasoma scopas, Amanses scopas, Scarus guacamaia, Lutjanus cyanopterus, Paragobiodon modestus, Hypsoblen-
nius hentz, Parapercis millepunctata, Sphyraena jello, Ostorhinchus holotaenia, Cephalopholis cruentata, Equulites stercorarius, Stegastes obreptus, and Chaetodon
multicinctus. Fish images drawn by K.A.C.
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composed of the first six dimensions of a principal component
analysis (PCA) revealed modest differences in the amount of
unique shape space occupied by feeding mode groups when each
was compared with a group containing all other species. However,
no comparisons were more extreme than 95% of a “null” distri-
bution of hypervolumes randomly generated from our data (SI
Appendix, Table S5). Notably, 19% of the space occupied by a
composite group of all species using any form of attached prey
biting, formed by combining the biting group and the mixed bit-
ing and suction group, was unique when compared with a group
composed of ram biters and suction feeders (SI Appendix, Fig. S4
and Table S5).

Evolutionary Models of Body Shape Diversity. Feeding mode
had a strong effect on the multivariate rate of body shape evo-
lution (across body shape traits; posterior probability of state
dependence = 1.0) (Fig. 3). Attached prey biters evolved traits
1.5-fold faster than species that use mixed suction and biting,
1.7-fold faster than suction feeders, and 1.9-fold faster than
ram biters (Table 1). The substantial variation in background
rate of body shape evolution uncovered and accounted for in
these models is not surprising given the vast amounts of evolu-
tionary time and taxonomic breadth encompassed by our data-
set and SI Appendix, Fig. S5.

Discussion

Our results reveal that the end-Cretaceous mass extinction pre-
ceded a sustained growth in the preponderance of teleost reef
fish lineages that use biting for prey capture. The timing indi-
cated in our reconstruction suggests that the prominence of
herbivorous teleosts in the Middle Eocene fossil record (10,
38–40) resulted from a rapid escalation of biting feeding modes
among reef fishes, as the frequency of biting had only begun to
increase among teleosts in the previous 15 My. These Eocene
fossil teleosts show the shortened lower jaws that characterize
benthic biters (9, 53), a novel invasion of functional morpho-
space specialized for feeding on attached prey (38). This rise in
benthic biting overlaps with the emergence in the Paleogene
and Neogene of lineages that are foundational to modern coral
reefs, such as scleractinian corals and crustose coralline algae,
and that are major substrates for the feeding activities of ben-
thic biting reef fish (54, 55). Coupled with these novel func-
tional abilities in marine fishes, the evolution of modern reefs
in the Early Cenozoic appears to have facilitated a dramatic
shift in the distribution of feeding modes used by reef teleosts.
We find that the ecological composition of modern reef fish
faunas is a relatively recent state and is very different from the
historical distribution of feeding modes; the ancestors of mod-
ern reef fishes used almost exclusively suction prior to the
Cenozoic, but on today’s reefs, fully 40% of species use some
degree of biting to capture their prey. Furthermore, these ben-
thic feeders are a major driver of reef fish phenotypic diversifi-
cation as they show substantially elevated rates of body shape
evolution when compared with suction feeders despite reduced
disparity (Figs. 2 and 3 and Table 1). Taken together, these
results suggest that reef biters, which uniquely exploit the flora
and fauna that compete for and attach to hard substrates on
modern reefs, capitalized on mechanical modifications of the
teeth and jaws to diversify around the novel ecological opportu-
nities represented by this resource.
It appears that the expansion of biting in the Early Cenozoic

took advantage of already-shifting reef communities. Reefs dur-
ing the Early Cretaceous were formed by groups of rudist

bivalves, bryozoans, corals, and some algae (55–58), and there
is little evidence from the fossil record to suggest that teleosts
fed on these substrates (38, 39, 55). However, by the Late
Cretaceous, a transition was underway to reef structures dominated
by grazing-resilient forms of algae and corals that are directly fed
on by modern reef fishes and provide substrate for attachment of
many other benthic prey (55, 58). The transition to reef struc-
tures that succeed despite breakage and excavation, which pre-
ceded the expansion of biting in fishes, may have been driven
by recently evolved herbivorous urchins and deep-boring lim-
pets (55). Thus, ecological shifts toward grazing-resilient struc-
tures in response to invertebrate grazers may have made reef
conditions increasingly favorable for biters and able to support
larger communities of high-efficiency attached prey feeders (55),
such that when fishes began to use biting and evolved functional
features adapted for benthic feeding, like shortened jaws and
flexible teeth (28, 38, 39, 59), they were extremely successful
and were able to diversify within this broad adaptive zone. This
pattern could contribute to the previously observed increase in
morphological and species diversification of acanthomorph
fishes in the Early to Mid-Cenozoic (60). A similar ecological
mechanism may explain the dramatic rise of dedicated biting in
the last 30 My (Fig. 1), where colonization of highly productive
reef flat habitats may have offered new opportunities for intense
attached prey feeding by fishes (61); the novelty of reef flats
appears to have also stimulated herbivore speciation in this
period (43).

Our results demonstrate that biting feeding mechanisms ele-
vate body shape diversification. While we find that dedicated
biters evolve body shape most rapidly, we also observe subtly
increased rates of body shape evolution of mixed feeders that
use both suction and biting (∼1.15× faster than dedicated suc-
tion feeders). The pairing of a reduced reliance on biting in
mixed feeders with a minor rate shift suggests that the magni-
tude of the role of biting in a fish’s feeding repertoire may cor-
relate with the magnitude of increase in evolutionary rate.
While reliance on a biting feeding mechanism is not common
in the marine realm outside of reef habitats, our results general-
ize across 111 families of teleost fishes and extend findings
from other studies that a biting lineage, the parrotfishes, has
the highest rates of evolution of functional morphological traits
(12, 62), although this effect is not uniform between and
within families as other ecological factors may affect body shape
evolution of species (Fig. 3). However, previous studies have
found significant but small effects of major habitat transitions
on fish body shape diversification (63, 64) that contrast with
the significant and stronger results from our phylogenetic
MANOVA, suggesting that feeding mode has a relatively
strong influence on body shape and its evolution when com-
pared with the effects of other ecological traits.

Among reef fishes, herbivores have been found to evolve
functional traits most rapidly, alongside top predators (11).
Our results suggest that this effect extends to all fishes that feed
by biting benthic prey, as only 39% of species across both our
biting and “mixed biting and suction feeders” fed specifically
on plant material or detritus. Evolution of biting prey capture
mechanisms allowed access to a group of novel trophic niches
for fishes (28) involving a diversity of prey types with distinct
functional properties. This group includes several lineages that
feed on turfs, leafy algae, detritus, and benthic microbial com-
munities that must be scraped, browsed, or yanked off the sub-
strate (65, 66); predators of colonial cnidarians that either
scrape the coral surfaces (e.g., many butterflyfishes) or bite off
pieces of the colony, complete with bits of the skeleton (e.g.,
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some filefishes and pufferfishes); species that scrape encrusted
dead coral to feed on the mix of turf algae, detritus, and cyano-
bacteria that reside on and within the skeleton (e.g., parrot-
fishes) (23, 27, 29, 67); and even species that grab and extract
more mobile invertebrate prey, including urchins and bivalve
molluscs, from holdfasts (e.g., some triggerfishes and wrasses).
These different prey impose diverse functional requirements on the
prey capture apparatus (68), providing the opportunity for func-
tional and morphological diversification. Reliance on biting for
prey capture often results in a highly modified feeding apparatus;

indeed, jaw length was the strongest variable in differentiating
between feeding mode groups, with biters having shorter jaws on
average (SI Appendix, Fig. S3). Many biters have evolved substan-
tial novelties that increase access or processing of attached prey,
such as a pharyngeal mill (69), an intramandibular joint within the
oral jaws (25, 70), or elongated teeth, an innovation that improves
access to loosely attached algae and detritus (28). Such novelties
may also promote morphological diversification (71–76).

Biters densely populate a region of shape space characterized
by shorter jaws and laterally compressed bodies (Fig. 2),
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consistent with observations that biters have shortened jaws for
improved force transmission during prey capture (38, 53) and
predictions that they use a deep body shape for agile maneuvering
among the complex reef substrate (77). Biting species with the
most extreme body shapes in this region are fully outside the
range shown by suction feeding species (SI Appendix, Fig. S4).
However, the dynamic body shape evolution of attached prey
feeders also led to occupation of morphospace that is shared with
fishes using other feeding mechanisms, indicating that feeding
mode is not a rigid predictor of body shape. The relatively recent
proliferation of biting among reef fishes and the elevated rates of
biters’ body shape evolution suggest that the emergence of biting
in the Cenozoic exposed a range of underexploited feeding niches
with consequences for both feeding and locomotor functional
morphology. We propose that this novel landscape of diverse
feeding opportunities, made possible by adept biting, stimulated
jaw and body shape evolution.
Our results demonstrate the relative recency of feeding mode

diversity among teleost fishes on reefs, dominated by the emer-
gence of the major ecological group of benthic biters that play a
prominent role in modern ecosystem processes. We reconstruct
the evolution of mechanisms of feeding on attached prey, find-
ing a steady increase in the proportions of reef fishes using biting
throughout the Cenozoic. Coupled with evolutionary model-
fitting results showing that biters have elevated rates of morpho-
logical diversification, our results suggest that ecological changes
surrounding the end-Cretaceous mass extinction event set the
stage for the diversification of benthic biters, which uniquely
took advantage of new more grazing-resilient reefs in the Ceno-
zoic. A major role for feeding on attached prey appears to be one
key to the spectacular diversity of modern reef fishes.

Materials and Methods

Morphological Trait Data. Body shape data were drawn from a previously
published collection of measurements we made from museum specimens of tel-
eost fishes (63, 78–80). Wherever possible, species values were computed as
averages of measurements from three adult specimens. The dataset consisted of
eight linear measurements spanning three dimensions: standard length and
jaw length; mouth, body, and caudal peduncle width; and head, body, and cau-
dal peduncle depth. We used the R package “rFishBase” (81) to identify 1,530
species from the larger body shape dataset that were both marine and reef asso-
ciated according to FishBase (82) and extracted these species for use in our
analyses. These 1,530 species spanned 486 genera and 111 families, nearly
one-quarter of all extant teleost fish families (Dataset S2).

Body shape is a key aspect of morphology that interacts functionally with
feeding mode. Although feeding mechanisms have long been linked to the evo-
lution of the feeding apparatus, recent research suggests that motions of the
body are integral to successful prey capture across feeding mechanisms. Suction-
based prey capture is only effective within approximately one mouth diameter of
the jaws (83), and so, suction feeders must swim toward their prey; these for-
ward swimming motions are the major axis of variation among suction kinemat-
ics (84), and muscles of the body power the rapid motions of the cranium that
produce suction (85). For herbivores and other attached prey feeders, motions of
the body and fins are crucial to prey capture as they can be the dominant cause
of the forces that detach prey items from the substrate (65).

We conducted most statistical analyses in the R computing environment ver-
sion 4.0.2 (86). Measurements were size corrected using the preferred method
from previous comparisons of size correction with this dataset (78): log shape
ratios (87, 88). We created a “size” variable as the geometric mean of standard
length, body depth, and body width for each species. Then, we calculated scaled
trait values as the ratio of each trait and the new size variable and took the log
of those values.

Feeding Mode Categorizations. We categorized fishes into feeding modes
based on the prey that each species feed on using a combination of the primary

literature, our own field and laboratory-based observations, and FishBase (82)
(Dataset S1). We used the functional characteristics of the prey to infer the likely
feeding mode required to capture that prey item (further details are provided in
SI Appendix).

“Suction feeders” were categorized as species where >90% of the prey were
free swimming or otherwise nonattached (including but not limited to fishes,
many crustaceans, errant polychaetes, and zooplankton). Examples of suction
feeders include most grunts (Haemulidae), groupers (Serranidae), and jacks
(Carangidae).

A “biter” was a species for whom >50% of the prey require direct contact
with the jaws for acquisition in order to graze, scrape, or dislodge the item from
a substrate (e.g., many molluscs, hard and soft corals, sponges, algae, hydroids,
bryozoans, detritus, and some echinoderms). Examples of biters include parrot-
fishes (Scarinae), most angelfishes (Pomacanthidae), most surgeonfishes (Acan-
thuridae), porcupinefishes (Diodontidae), and most triggerfishes (Balistidae). Not
all biters are herbivores feeding on plant material or detritivores feeding on
detritus; instead, some benthic biters consume higher proportions of metazoan
prey, such as sponges, corals, molluscs, echinoderms, or fish scales. We used
data on prey type to describe whether biters were herbivores/detritivores or not
by categorizing a species as an herbivore/detritivore if 50% or more of its
attached prey were plant material and/or detritus.

In classifying feeding modes, we discretized a naturally continuous trait. To
accommodate this uncertainty, we added a third category, “mixed biting and
suction,” for species for which between 10 and 50% of their prey were attached
prey items that require direct biting actions to capture, and the remainder of
their diet was prey that would likely be captured using suction. For example, we
classified many wrasses (Labridae), most porgies (Sparidae), and some puffer-
fishes (Tetraodontidae) as mixed feeders that rely on both suction and biting.

Our final category was ram biters, which were categorized as species that use
direct biting actions of the jaws but minimal suction to capture evasive or free-
swimming prey (89–92). This feeding mode was only possible to designate in
cases where the literature contained information on the mechanism of prey cap-
ture or we had personal observations. Most ram biters are piscivorous, including
moray eels (Muraenidae), barracudas (Sphyraenidae), and many lizardfishes
(Synodontidae).

Phylogeny of Teleost Fishes. In order to align the time calibration closely
with community consensus of divergence times (93–95), we calibrated a pruned
phylogram of our 1,530 species (96) by aligning it with a smaller recent phylog-
eny based on genomic ultraconserved elements for which divergence times had
been estimated with fossils (94). We used the R package “geiger” version 2.0.7
(97–99) to “congruify” these trees by identifying nodes shared between both
trees and a penalized likelihood program (treePL) to estimate divergence times
across the rest of the phylogeny’s nodes using the shared nodes as starting cali-
brations (100–102).

Models of Discrete and Continuous Character Variation. To reconstruct
the history of feeding modes along the phylogeny, we used “phytools” version
0.7–80 to generate a distribution of 100 stochastic character maps (103, 104)
(further details are in SI Appendix). We generated a distribution of character
maps to account for uncertainty in the timing and number of feeding mode tran-
sitions throughout the evolutionary history of teleost fishes. While using a distri-
bution allows us to alleviate some uncertainty, the reconstructions are confined
to the information in our sampled dataset of 1,530 species. It is possible that
biases among unobserved speciation and extinction events may also influence
our trait reconstructions.

We used a PCA on the correlation matrix of all eight body shape variables to
visualize body shape variation in our dataset. We conducted phylogenetic
ANOVAs and MANOVA to examine the effect of feeding mode on average body
shape in the R package “geomorph” version 3.3.1 (105, 106).

We used random forest models to understand which body shape traits were
most powerful in discriminating between feeding mode groups. Random forest
models are a machine-learning method of categorization using decision trees
that uses combinations of continuous variables (body shape data) to categorize
species by feeding mode group (107). We used cforest in the R package “party”
version 1.3–5 (108, 109) to fit random forest models using conditional inference
trees, which are more robust to interactions between the continuous variables.
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We trained the model on a subset of 70% of the data (sampled randomly and
without replacement) and then fit the model on the remaining 30% of the data-
set, generating a distribution of 5,000 decision trees. We estimated the impor-
tance of each continuous variable across the distribution of decision trees as the
mean decrease in categorization accuracy when that variable is excluded from
the analysis (further details are in SI Appendix).

We used geomorph to compute multivariate and univariate morphological
variance for each of the four feeding mode groups. To further compare morpho-
space occupation among feeding mode groups, we generated hypervolumes
using the R package “hypervolume” version 3.0.0 (110, 111), which each con-
tained the six-dimensional morphospace that a given set of species occupied.
We used the first six axes of a PCA on the correlation matrix, which together
accounted for 98.5% of the variance in the data. Hypervolumes were generated
for species in each feeding mode group and for sets of species not in each group
(e.g., comparing all suction feeders with all species not coded as suction
feeders). We compared the overlap of the hypervolumes in order to estimate
how much of the morphospace occupied by each feeding mode group was
unique. To assess how similar our comparisons were to random groupings of
our data, we simulated a null distribution of hypervolumes by permuting group
assignments among our species data and compared the percentile of unique
space occupation of our data with the distribution of permuted hypervolumes
(more details are in SI Appendix).

We used MuSSCRat [implemented in RevBayes version 1.0.10 (112, 113)] to
compare rates of body shape evolution between feeding mode groups (114).
MuSSCRat is a Bayesian model of multivariate Brownian motion that estimates
the effect of a discrete character (feeding mode) on rates of continuous character
evolution (body shape evolution) while controlling for “background” variation in

rates. We used an uncorrelated log-normal (UCLN) clock to place an independent
parameter on each branch to model background rate variation that is not due to
the discrete trait of interest (similar to the UCLN relaxed clock model for molecular
evolution) (115). The Monte Carlo Markov Chain (MCMC) ran for 200,000 genera-
tions. We used Tracer version 1.7.1 (116) to verify convergence of the MCMC and
the package “RevGadgets” version 0.1.0 in R to visualize and plot results (117).

Data Availability. Feeding mode categorizations and morphological data have
been deposited in Dryad (https://doi.org/10.25338/B8NM0K) (118) and scripts
are available on Zenodo (https://doi.org/10.5281/zenodo.6804220) (119). Previ-
ously published data (80) were used for this work (https://datadryad.org/stash/
dataset/doi:10.25338/B8TG8S).
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