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Differences in orexin-A level in the functional 
brain network of HUD patients undergoing harm 
reduction therapy
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Abstract 
Orexins regulate the reward-seeking pathway and also play a role in drug addiction. The aim of this study was an investigation of 
the changes in serum level of orexin-A as well as changes in the functional brain network in heroin use disorder (HUD) patients 
undergoing harm reduction therapy (HRT).

Twenty-five HUD patients undergoing HRT that included methadone and buprenorphine, and 31 healthy control (HC) subjects, 
were enrolled for this study. Serum orexin-A levels and brain-derived neurotrophic factor were measured with assay kits. The 
functional brain network in HUD patients and HC was investigated and assessed using seed-based analysis and functional brain 
MRI scans.

t Tested orexin-A levels were found to be significantly higher in HUD patients undergoing HRT than in HCs (P < .05). Analysis 
showed the functional activity of the right ventral anterior insula (RVAI) in HUD patients to be significantly lower than in HCs 
(P <  .05, Family-Wise Error) corrected). In addition, the internetwork functional connectivity was significantly lower in the left 
nucleus accumbens and left dorsal anterior insula in the HUD subjects than in HCs (P < .05, Family-Wise Error corrected).

In this study, no significant correlation between orexin-A levels and functional brain networks was found. However, the results 
suggest that HRT might increase orexin-A levels and decrease functional activity in RVAI in HUD patients.

Abbreviations: BDNF = brain-derived neurotrophic factor, CSF = cerebrospinal fluid, ELISA = enzyme-linked immunosorbent 
assays, EPI = echo planar imaging, FC = functional connectivity, FWE = Family-Wise Error, HC = healthy control, HRT = harm 
reduction therapy, HUD = heroin use disorder, MNI = Montreal Neurological Institute, NAc = nucleus accumbens, RAI = right 
anterior insula, VTA = ventral tegmental area.
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1. Introduction

Orexins play a role in the reward-seeking pathway. This includes 
the ventral tegmental area (VTA) and nucleus accumbens 
(NAc)[1,2] and may be related to drug addiction.[3–6] Also, orexins 
modulate dopaminergic, GABAergic, glutamatergic, and cholin-
ergic neurons.[7–9]

Orexins (hypocretins) including orexin-A and orexin-B are 
neuropeptides synthesized by neurons in the lateral and dorso-
medial hypothalamus and perifornical areas.[10,11] Two orexin 
receptors (OX1R and OX2R) mediated with orexins A and B 
can trigger different effects. In addition, a higher affinity for 
OX1R was found in orexin-A than in orexin-B. However, 
OX2R has similar affinities for both orexins A and B.[12–14] 

Some studies have shown that OX2R plays a role in the reg-
ulation of energy homeostasis and the sleep/wake cycle,[15–17] 
while OX1R modulates reward-seeking and motivated behav-
ior.[18,19] Previous reports showed that orexin-A is involved in 
drug-seeking.[18,20]

Harm reduction therapy might play a role in risky and 
injected substance use.[21] Methadone maintenance treatment 
(MMT), frequently used in harm reduction, might increase 
orexin-A levels in heroin use disorder (HUD) patients.[22]

Brain-derived neurotrophic factor (BDNF) a brain neurotro-
phin may be related to drug addiction severity[23] and may even 
regulate drug addiction-related behavior.[24–26] Some reports 
have shown that BDNF levels are lower in substance-dependent 
subjects than in healthy controls (HCs).[23,27,28]
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Numerous MRI studies have shown that chronic drug expo-
sure may be associated with a smaller frontal cortex volume, as 
well as with cognitive and decision-making problems in drug 
abusers,[29–31] enlarged basal ganglia,[32–34] and more extensive gray 
matter deficit in the cingulate, limbic, and paralimbic cortices[35] 
than in normal subjects.[36] Some reports showed that the per-
sistent craving for drugs may be positively correlated with activ-
ity in the NAc, inferior frontal/orbitofrontal gyrus, and anterior 
cingulate.[37–40] Previous study has also revealed that some brain 
regions regulate reward systems that are associated with treat-
ment response in subjects undergoing addiction intervention.[41]

Some research results suggest that gray matter reduction in 
the bilateral hypothalamus, thalamus, NAc, anterior cingulate 
cortex, left mid-orbital and rectal gyri, right inferior frontal, 
and superior temporal gyri may be related to the orexin path-
way in narcolepsy.[42] However, there are few reports of the cor-
relation of orexin levels with the functional brain network in 
HUD patients undergoing harm reduction treatment (HRD). 
Therefore, the aim of this study was an investigation of changes 
in serum levels of orexin-A and the functional brain network 
in HUD patients undergoing harm reduction therapy (HRT).

2. Method

2.1. Patients and study design

Twenty-five HUD (22 males, 3 females) patients who were under-
going HRT at the Kaohsiung Chang Gung Memorial Hospital 
were enrolled as subjects for the study. Twenty-four of them were 
on methadone maintenance treatment and 1 was undergoing 
buprenorphine therapy. Inclusion criteria were as follows:

 1. A diagnosis of HUD based on DSM-5 (The Diagnostic and 
Statistical Manual of Mental Disorders, Fifth Edition);

 2. Age from 20 to 65 years;
 3. No history of psychotic, bipolar, major depressive, or sub-

stance use disorder except heroin or nicotine use;
 4. Seronegative for human immunodeficiency virus; and
 5. Stable physical condition. Data collected included age, 

body mass index (kg/m2), methadone or buprenorphine 
dose, onset age, duration of HRT, serum orexin-A, and 
BDNF levels. A single board-certified psychiatrist made 
the diagnosis of HUD for each participant. Blood was 
drawn from each subject during the no-heroin with-
drawal period.

Thirty-one HC subjects (27 males, 4 females) were also 
recruited. No subjects with any medical or mental disorder were 
included. All were healthy and none were taking medication.

All participants underwent functional brain MRI scans to 
compare the functional brain networks of the 2 groups. All 
participants signed informed consent agreements after the aims 
and procedures of the study had been explained to them. This 
study had the prior approval of the Institutional Review Board 
of the hospital (IRB number: 201801378A0C601A3) and was 
carried out at the Kaohsiung Chang Gung Memorial Hospital in 
accordance with the Declaration of Helsinki and Good Clinical 
Practice guidelines.

2.2. Laboratory data

Firstly, blood samples (15 mL) were drawn from a forearm vein 
of each subject after a fast of at least 8 hours. The samples were 
immediately centrifuged at 3000g for 10 minutes to separate 
the serum which was stored at −80°C (1–3 months) for analysis. 
Enzyme-linked immunosorbent assays were carried out using 
commercially available assay kits for orexin-A (MyBioSource) 
and BDNF (Promega Corporation, Wisconsin, WI). One trained 
laboratory technician performed all the analyses in the same 
laboratory.

2.3. MR image acquisition and processing

Functional imaging data were acquired using a 3.0 T GE 
Signa MRI scanner (Milwaukee, WI). Resting state images 
were gathered using an echo planar imaging (EPI) sequence 
(repetition time: 2500  ms; echo time: 27  ms; field of view: 
1540 × 1540 mm; flip angle: 77°; matrix size: 64 × 64; slice: 
3.4  mm). For the resting state experiment, the scanner room 
was darkened and the subjects were required to relax, with their 
eyes closed, and to think of nothing without falling asleep. 3D 
T1-weighted anatomic images were obtained using an inversion 
recovery fast spoiled gradient-recalled echo pulse sequence (rep-
etition time: 25 ms; echo time: 7.5 ms; flip angle: 24°; field of 
view: 192 × 256 mm; matrix size: 288 × 384).

2.4. Image preprocessing of rs-fMRI dataset

Preprocessing of resting state functional MRI datasets was car-
ried out using the FMRIB Software Library.[43,44] The following 
standard preprocessing pipeline was applied for each subject:

 1. Removal of the first 10 volumes from the whole-time 
series to allow for T1-equilibration effects;

 2. Correction of temporal shifts in rs-fMRI data acquisition 
(slice timing correction);

 3. Realignment of the rs-fMRI data to the first volume of the 
whole-time series dataset using MCFLIRT (the FMRIB 
Motion Correction Linear Image Registration Tool);[45]

 4. Removal of non-brain tissue using the BET Brain 
Extraction Tool;[46]

 5. Spatial smoothing with a 6 mm full width at half maxi-
mum Gaussian kernel;

 6. Grand–mean intensity normalization;
 7. Band-pass temporal filtering (0.01–0.1 Hz) to remove 

low-frequency drift and high-frequency noise; and
 8. Removal of nuisance signals to minimize nonneural noise 

(head motion, white matter, and cerebrospinal fluid [CSF] 
signals).

In addition, 3-dimensional rigid-body motion correction 
(realigned to the first EPI acquisition) was carried out using 
MCFLIRT. Any subject showing a maximum rotation of 2° 
or displacement of 2 mm in any direction was excluded from 
further analysis. To ensure that the final functional connectivity 
(FC) results were not biased by head motion, the 3 rotational 
and translational displacement parameters from MCFLIRT 
were also used to calculate the mean frame displacement of each 
subject, the criterion was 0.5 mm. After preprocessing, residual 
RS-fMRI datasets were entered into the Montreal Neurological 
Institute (MNI) EPI template space and interpolated to a voxel 
size of 2 m3 (2 × 2 × 2). The preprocessed RS-fMRI data were 
used in the following seed-based FC analysis.

2.5. Seed-based functional connectivity

To compute the resting state FC of the insula and NAc, 8 spher-
ical seed regions of interest (radius = 6 mm) were defined using 
previously published NAc and insular subdivisions,[47,48] each 
corresponding to the left and right NAc (MNI coordinates: −8, 
8, −8 and 10, 8, −8), the left and right ventral anterior insula 
(MNI coordinates: −33, 13, −7 and 32, 10, −6), the left and right 
dorsal anterior insula (MNI coordinates: −38, 6, 2 and 35, 7, 3), 
and the left and right posterior insula (MNI coordinates: −38, 
−6, 5 and 35, −11, 6, see Fig. 1).

Pearson’s correlation analysis was carried out for between-
group comparisons of seed time series and the time series of all 
voxels in the brain for each subject. To improve the normality 
of the correlation coefficients, Fisher’s r-to-z transformation was 
used to convert correlation maps to Z-value maps. Group analy-
ses were performed for the correlation maps of each seed region. 
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The correlation maps of HC and HUD were t tested and used 
separately to demonstrate brain regions with significant positive 
correlations with the NAc and subregions of insula, see Figure S1, 
Supplemental Digital Content, http://links.lww.com/MD/H13.

2.6. Within network connectivity analysis

For between-group comparisons, all individual subject correla-
tion maps were subjected to analysis of covariance with age, sex, 
and mean FD as covariates (P < .05, Family-Wise Error [FWE] 
corrected).

2.7. Between network connectivity analysis

Pearson’s correlation analysis was used to compute the correlation 
coefficient among the correlation maps which had been derived 
from the 8 seed regions. For normality correlation, coefficients 
were transformed to z-scores using Fisher’s r-to-z transforma-
tion. The correlation coefficients were then used in an analysis of 
covariance with age, sex, and mean FD as covariates to compare 
difference of FC between the groups (P < .05, FWE corrected).

2.8. Statistical analysis

The results were expressed as the mean ± standard deviation. 
Comparisons between the orexin-A and BDNF in both HUD 
patients undergoing HRT and the control group were assessed 
using the t test. Pearson correlation was used to estimate the 
relationships between the FC of brain networks, and orexin-A 
and BDNF in patients with HUD. A P value of <0.05 was con-
sidered statistically significant.

3. Results

3.1. Characteristics of the included sample

The samples included 25 HUD patients undergoing HRT and 
31 healthy subjects.

Table  1 shows the demographic data of the HUD 
patients that underwent HRT. The average age of the sub-
jects was 46.03  ±  4.38 years, their average body mass 
index was 25.11  ±  4.22, average age at first time heroin 
use was 23.24  ±  7.1, the average dose of methadone was 
58.12 ± 29.8 mg per day, and average length of treatment was 
38.22 ± 38.8 months.

3.2. Orexin-A level in HUD patients

The (t tested) serum levels of orexin-A were significantly higher 
in HUD patients undergoing HRT than in the HC (P < .001). 
However, changes in BDNF levels were insignificant, see Table 2.

3.3. Functional connectivity between groups

Figure 2 shows the difference in intranetwork FC between the 
groups. HUD subjects showed significantly lower FC in the 
right ventral anterior insula functional network (P < .05, FWE 
corrected) than those in the HC group. However, no significant 
differences were observed in the intranetwork FC in left ventral 
anterior insula, bilateral NAc, bilateral dorsal anterior insula, 
and bilateral posterior insula, between the 2 groups.

Figure  3 shows the difference of internetwork FC between 
the groups and more analyses were conducted to determine 
internetwork FC differences. These showed that FC between left 
NAc and left dorsal anterior insula (P  <  .05, FWE corrected) 
was significantly lower in the HUD group subjects than in those 
of the HC group.

Further correlations were analyzed to assess the relation-
ship between the level of orexin-A and strength of the network. 
However, no significant correlation between orexin-A level and 
the functional brain network was found in this study.

4. Discussion
One of important finding in this study was that HUD patients 
undergoing HRT had significantly higher serum levels of 

Figure 1. Functional brain network seed points. Four areas in the bilateral brain were defined as seed points. LDAI = left dorsal anterior insula, LNac = left 
nucleus accumbens, LPI  =  left posterior insula, LVAI  =  left ventral anterior insula, RDAI  =  right dorsal anterior insula, RNac  =  right nucleus accumbens, 
RPI = right posterior insula, RVAI = right ventral anterior insula.

http://links.lww.com/MD/H13
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orexin-A than the HC group subjects. In addition, the func-
tional brain networks indicated significant differences in RVAI 
between 2 groups. Although the correlation between orexin-A 
and functional brain network was not significant, further study 
of their association was needed. There may be some undefined 
reason(s) to explain why the correlation was not significant. The 
limited sample size could be 1. Orexins commonly exist in CSF 
and levels fluctuate slightly with the diurnal cycle, where the 
highest levels are seen in the middle of the night.[49] Orexin is also 
present in human plasma with an uncertain secretion source[50] 
and the level may be about 30% lower than that observed in the 
CSF.[51] In addition, a previous study showed no significant dif-
ference in plasma orexin-A level over a period of 1 day.[50] This 
means that plasma orexin-A level may not be a true reflection of 
its function in the central nervous system.

As we know, of all the neurotransmitters, dopamine is most 
closely related to the mechanism of drug addiction. Orexin-A 

could activate the VTA dopamine neurons by mediating with 
OX1R and the dopamine would then be released from VTA.[52] 
A previous study revealed that addictive substances originating 
from the VTA act on the mesocorticolimbic dopamine system 
and cause elevated dopamine concentrations in the NAc.[53]

It has been shown that the NAc might play a role in addic-
tion-related behavior. The dopamine transmission in the NAc 
shell could be stimulated by the addictive drug and cause 
drug-conditioned behavior.[54] Furthermore, the glutamatergic 
projections within the NAc might regulate drug-seeking and 
cause a relapse to substance use.[55]

Data from the present study suggest that functional RVAI 
activity in HUD subjects undergoing HRT show less significant 
differences in the intranetwork in FC than in HC. Another find-
ing was that HUD group subjects showed significantly lower 
internetwork FC between left NAc and left dorsal anterior 
insula compared to those in a HC group (P < .05).

For years, neuroscience research has supported the idea that 
the anterior insula is associated with emotional experience,[56] 
bodily sensation,[57] and affective feelings.[58] A ventral anterior 
insula region connected with the limbic system participates in 
affective processes, and a dorsal anterior insula subdivision with 
connections to frontal, anterior cingulate, and parietal regions 
is involved in cognitive control processes.[59–61] Some studies 
highlight the important role of the left anterior insula in social 
function, such as empathy.[61–63] More recent functional imaging 
studies of the left anterior insula also present its function in lan-
guage, especially the motor aspects of speech production.[64–66] 
The right anterior insula (RAI) might participate in sympathetic 
nervous system function, because lesions in the RAI may cause 
elevated heart rate[67] and peripheral noradrenergic transmitter 
levels.[68]

Recent evidence indicates that the insula plays a role in drug 
addiction.[69] The probable role in conscious urges to take drugs 
was noted in the insula.[64,70] In addition, elevated RAI activity 
is seen in subjects with anxiety disorders[71] and might regulate 
decision making that involves uncertain risk and reward.[72,73] 
Some reviews indicated that decreased insula activity may cause 
some of the abnormal decision making that may lead to relapse 
and further drug use.[74,75] Also, previous research showed 
decreased gray matter in the insula in substance-dependent 
patients.[76,77] The left insula was more affected in methamphet-
amine users, whereas in cocaine users it was the right insula.[78] 
Those findings were consistent with our results showing lower 
FC in RAVI in HUD patients undergoing HRT than in HC.

Table 1

Demographic data of HUD patients undergoing harm reduction 
therapy.

Variable Patients (n = 25) 

Age (yr) 46.03 ± 4.38
Sex 22 males, 3 females
BMI (kg/m2) 25.11 ± 4.22
Age at first time of heroin use (yr) 23.24 ± 7.1
Methadone dosage in a recent single month (mg/d) (n = 1, 

buprenorphine 2 mg/d)
58.12 ± 29.8

Duration (mo) of harm reduction therapy 38.22 ± 38.8

Plus-minus values are given as mean ± standard deviation.
BMI = body mass index, HUD = heroin use disorder.

Table 2

Orexin-A and BDNF of HUD and healthy controls.

Variable Patients (n = 25) Controls (n = 31) t Test 

Age (yr) 46.03 ± 4.38 49.35 ± 10.06  
BMI (kg/m2) 25.11 ± 4.22 25.66 ± 3.82  
Orexin-A (pg/mL) 537.95 ± 123.8 404.21 ± 99.63 P < .001
BDNF conc (pg/mL) 20,709.93 ± 6326.21 21,676.58 ± 4698.65 P = .528

Plus-minus values are given as mean ± standard deviation.
BDNF = brain-derived neurotrophic factor, BMI = body mass index, HUD = heroin use disorder.

Figure 2. Group comparison of RVAI functional network. The HUD group subjects showed significantly lower FC in the right caudate (x, y, z = 16, 12, 14) 
and left putamen (x, y, z = −18, 12, −4) in the RVAI functional network (P < .05, FWE corrected) than those of the control group. FC = functional connectivity, 
FWE = Family-Wise Error, HUD = heroin use disorder, RVAI = right ventral anterior insula.
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Our study was limited by sample size. It was also not clear 
if there was a significant correlation between orexin-A and the 
functional brain network. Future study will involve far more 
subjects.

5. Conclusions
In conclusion, the orexin-A levels in HUD subjects undergo-
ing HRT showed significantly greater differences than those in 
the HC group. However, the functional brain network showed 
lower FC in HUD patients undergoing HRT than in HC. Our 
results suggest that HRT might increase orexin-A levels and 
decrease functional activity in RVAI in the HUD subjects.
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