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Abstract

Recruitment of microorganisms to the rhizosphere varies among plant genotypes, yet an understanding of whether the
microbiome can be altered by selection on the host is relatively unknown. Here, we performed a common garden study to
characterize recruitment of rhizosphere microbiome, functional groups, for 20 expired Plant Variety Protection Act maize
lines spanning a chronosequence of development from 1949 to 1986. This time frame brackets a series of agronomic
innovations, namely improvements in breeding and the application of synthetic nitrogenous fertilizers, technologies that
define modern industrial agriculture. We assessed the impact of chronological agronomic improvements on recruitment of
the rhizosphere microbiome in maize, with emphasis on nitrogen cycling functional groups. In addition, we quantified the
microbial genes involved in nitrogen cycling and predicted functional pathways present in the microbiome of each genotype.
Both genetic relatednesses of host plant and decade of germplasm development were significant factors in the recruitment of
the rhizosphere microbiome. More recently developed germplasm recruited fewer microbial taxa with the genetic capability
for sustainable nitrogen provisioning and larger populations of microorganisms that contribute to N losses. This study
indicates that the development of high-yielding varieties and agronomic management approaches of industrial agriculture
inadvertently modified interactions between maize and its microbiome.

Introduction far-reaching environmental consequences from the overuse

of inorganic nitrogen fertilizers [2]. Currently, more than

For the past 70 years, modern industrial agriculture has been
characterized by technological advances in crop breeding
and high input application of nitrogenous fertilizers [1].
Adoption of these agricultural practices has led to increases
in global food security, human population growth, and
spurred industrialization [1]. While the benefits of these
advances for humanity cannot be overstated, they also have
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five million tons of nitrogen fertilizer is applied annually to
maize production in the United States [3]. A large fraction
of nitrogen fertilizer applied to arable lands is lost through
microbial transformations that alter the mobility of nitrogen
[4, 5]. Understanding how the plant-associated microbiome
has been altered by technological innovations in agriculture
could assist in addressing these agronomic problems [6].
Sustaining future agricultural demands will require con-
trolling the detrimental outcomes of the industrial agri-
cultural systems pioneered over the past century.
Assembly of the plant rhizosphere microbiome is driven
by plant genetic and evolutionary history [7]. Plant micro-
biomes play a major role in altering plant resilience, fitness,
nutrition, and productivity [6]. Plant hosts selectively filter
microorganisms that colonize their rhizosphere [8, 9]. This
selective process is heritable across plant cultivars [10, 11],
yet the implication of heritability on rhizosphere micro-
biome function has been relatively unexplored. In modern
agriculture, microbiome functions that contribute to crop
growth and sustainability have been replaced with agro-
nomic management practices, and the development of
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modern crop germplasm has been carried out without con-
sideration of the plant microbiome and its functions as an
extended phenotype of the crop genome.

Throughout the 20th century, maize breeders have made
concerted efforts to optimize yield under a range of agro-
nomic management environments [12, 13]. Since the 1930s,
advances in breeding and agricultural management have
resulted in steady increases in yield [14]. The introduction
of synthetic nitrogen fertilizers to maize began in the 1940s
and reached modern levels around the 1980s [15]. During
this time, germplasm was selected to produce the greatest
grain yield possible under increased nitrogen conditions and
plant density [14]. The selection of maize over this period
resulted in alterations to plant nitrogen acquisition, root
architecture, insect pest interactions, and grain quality [16—
19]. In addition, similar selection pressures in other major
cereal crops, rice, and wheat, have shown modulation of
plant carbon and nitrogen metabolism, resulting in less
efficient nitrogen usage [20]. Without selection for main-
tenance of microbiome functions that contribute to sus-
tainable nutrient acquisition, crop breeding carried out
under high nitrogen (N) conditions may have altered how
maize interacts with its rhizosphere nitrogen cycling taxa.

Here, we used a germplasm chronosequence of expired
Plant Variety Protection Act maize inbred lines ranging
from 1949 to 1986 [18]. These lines act as a genotypic time
capsule of the extended phenotype selected by the historic
agronomic breeding environment. This time frame was
selected as it covers the introduction and increased usage of
synthetic N-fertilizers (Figs. 1 and S1, Table S1). The lines
used in the study come from two major genetic families:
stiff stalk (SS) and non-stiff stalk (NSS). These heterotic
groups represent the inbred genetic diversity underlying our
modern agricultural elite hybrid varieties.

The goal of this study was to examine if breeding and
selection of maize genotypes during the decades of
increasing nitrogen application altered how maize germ-
plasm recruits its rhizosphere microbiome, as well as
microbiome function. First, we set out to determine if the
bacterial and fungal rhizosphere microbiome changed
across our chronosequence of maize germplasm. Second,
we sought to determine if maize lines developed over the
past 50 years difference in their ability to recruit microbial
functional groups related to nitrification, denitrification, and
nitrogen fixation. Finally, to understand how the metabolic
genes of rhizosphere microorganisms change across the
germplasm chronosequence, we predicted the metabolic
pathways of microbes that responded to the germplasm
chronosequence. These results will allow us to determine if
crop breeding for yield combined with changing agricultural
practices disrupted the interactions between plants and their
microbiomes, with potential consequences for nutrient
cycling in agroecosystems. If modern breeding has
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Fig. 1 Germplasm chronosequence used in this study mapped on
to nitrogen fertilizer use over time. Maize-specific nitrogen use rate

was derived from reference [15]. Images highlight the changing root
phenotype through time and are from reference [18].

unintentionally transformed the interaction of maize with
key functional groups in its microbiome, it must be rewilded
to improve agroecosystem sustainability.

Materials and methods

Plant genotype selection and greenhouse
experiment

Maize seed stocks were obtained from the USDA North
Central Regional Plant Introduction Station (Ames, Iowa)
and Maize Genetics Cooperation Stock Center (Urbana,
Mlinois). Twenty inbred lines were selected for comparison:
these 20 lines span a breeding period from 1949 to 1986,
come from two heterotic genetic groups (SS, NSS), and are
adapted for maize production in the U.S. Corn Belt
(Table S1). The usage of heterotic groups as a treatment
factor was validated using genetic information collected in
[21] and available at www.panzea.org. Supplemental
Fig. S2 shows that maize genomes cluster based on het-
erotic genetic grouping. Additional metadata on these lines
was acquired from Maize GDB (www.maizegdb.org) and
USDA GRIN (www.ars-grin.gov). More information about
the history and development of these maize lines is pre-
sented in Table S1. Seeds were surface sterilized by soaking
for Smin in 8.25% NaClO, followed by one rinse with
sterilized distilled water, a single rinse of 70% ethanol, and
three rinses with sterile distilled water. Surface-sterilized
seeds were dried on sterile filter paper in a sterile petri dish,
then stored at 4 °C overnight before sowing.

Maize lines were grown in greenhouse conditions to
isolate the effects of inbred genotype on the microbiome.
The planting medium was a combination of live and auto-
claved soil mix. The live inoculum soil was collected from
agricultural soil located on the Crop Sciences Research and
Education Center—South Farms at the University of Illinois
at Urbana-Champaign, Urbana, IL. (40°03/31.0"N 88°14/
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13.4"W). At the time, the soil was out of agricultural
rotation (corn-soy) for at least 2 years. Inoculum soil was
sieved (2 mm) then added (10%) to a steam pasteurized mix
of soil: calcined clay: torpedo sand (1:1:1). An inoculum
sample was collected before plant growth to characterize the
microbiome before plant treatment. For each genotype, ten
replicate classic 600 pots (2 gallons) were sown with three
seeds in each. Pots were thinned a week after germination
leaving only a single plant per pot for the remainder of the
growth. In total, 200 plants were grown. They were placed
in a completely randomized design in the greenhouse with
16 h of light and 8 h of darkness. All plants were connected
to an irrigation system that fertilized plants twice a week.
Plants were fertilized with a liquid nutrient solution, spe-
cifically Cal-Mag (N15-P5-K15), at a rate of 150 ppm.
Nitrogen was applied as 11.8% nitrate nitrogen, 1.1%
ammoniacal nitrogen, and 2.1% urea nitrogen. All plant
treatments were maintained under the same fertilizer
regime. While a direct comparison of greenhouse fertiliza-
tion regime to field rates is difficult, the nitrogen level used
in this study would be comparable to modern high fertili-
zation levels (Fig. 1).

Implementation of this study in the greenhouse allowed
for reduced complexity of environmental factors and
homogenization of diverse soil microbiomes typical for a
field setting. By reducing random variation, we gained
further precision and insight into how different genotypes
alter a standardized microbiome.

The roots were harvested 36 days after emergence. Plants
were approximately in V4-V5 growth stage with 4-6 fully
collared leaves. Plant rhizospheres were harvested by
extracting root systems from the soil and shaking vigor-
ously to separate loosely adhering soil. Rhizosphere soil
was extracted by placing the root system in a 1-L bottle with
40 mL of sterile distilled water and shaking vigorously for
S5Smin. The resulting soil slurry was placed into 50 mL
centrifuge tubes and lyophilized before DNA extraction
using the FastDNA for Soil DNA extraction kit (MPBio,
Solon, OH). Rhizosphere samples of all ten replicates for
each genotype were harvested for molecular analysis.

Microbial community amplicon sequencing

For this experiment, we characterized the microbiome and
diagnostic functional genes related to transformations that
occur in the nitrogen cycle: nitrogen fixation, nitrification,
and denitrification. Amplicon sequencing was performed on
prokaryotic 16S rRNA genes, fungal ITS2, amoA, nirsS,
nirK, nosZ, norB, and nifH genes. The Fluidigm access
array IFC chip was used to prepare sequencing amplicons.
This method allows for the simultaneous amplification of
target functional genes using multiple primer sets (Flui-
digm, San Francisco, CA). DNA sequencing was performed
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for bacterial, archaeal, and fungal amplicons using an HiSeq
2500 Sequencing System (Illumina, San Diego, CA). Pri-
mer information is provided in supplemental Table S2.
Fluidigm amplification and Illumina sequencing were con-
ducted at the Roy J. Carver Biotechnology Center, Uni-
versity of Illinois (Urbana, IL, USA). Fast Length
Adjustment of Short reads (FLASH) [22] software was used
to merge paired-end sequences from 16S rRNA genes. For
functional genes and fungal ITS, only forward read
sequences were used. Once reads were merged, they were
filtered by quality using the FASTX-Toolkit [23]. Reads
that did not have a minimum quality score of 30 across 90%
of the bases were removed. Using the FASTX-Toolkit, nirK
reads were trimmed to their amplicon size of 165 bp.

Once quality preprocessing was performed, FASTQ
reads were converted to FASTA format. Using USEARCH-
UPARSE version 8.1 [24], sequences were binned into
discrete OTUs based on 97% similarity and singleton DNA
sequences were removed. Quantitative insights into micro-
bial ecology (QIIME) was used to generate OTU tables for
downstream statistical analysis and to assign taxonomic
information, this is done with a combination of the
UCLUST algorithm and SILVA 138.1 database [24, 25].
Once taxonomy was assigned, chloroplast and mitochon-
drial OTUs were removed from the dataset. Rarefaction was
performed to correct for differential sequencing depth
across samples. Functional gene sequences were also
assigned using QIIME [26] with the BLAST [27] algorithm
and custom gene-specific databases generated from refer-
ence sequences obtained from the FunGene repository
(http:/fungene.cme.msu.edu/) [28]. All OTU tables used in
statistical analyses were generated in QIIME. Singleton
OTUs were filtered prior to statistical analysis.

The number of raw reads generated from sequencing run
reads present after the quality filter, and the rarefaction level
of reads per sample for 16S rRNA, ITS, and N-cycling
genes are reported in supplemental Table S3. Amplicon
sequence data for 16S rRNA genes, fungal ITS2 region, and
N-cycling functional genes is available for download on the
NCBI SRA database at accession number: P5.

Quantifying nitrogen cycling functional groups

Quantitative PCR (qPCR) was used to determine the
abundance of functional genes in each of the rhizosphere
microbial communities. Specific target amplification (STA),
explained in [29], was carried out on samples and standards
to increase template DNA for amplification. STA and qPCR
master mix recipes from [30] were used for all samples.
STA product and qPCR master mix were loaded into the
Dynamic Array™ microfluidics Fluidigm gene expression
chip where amplification and quantification of functional
genes were carried out simultaneously (Fluidigm, San
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Francisco, CA). All samples and standards were analyzed in
12 technical replicates. Fluidigm real-time PCR analysis
software version 4.1.3 was used to calculate gene threshold
cycles (CT). CT values were converted to gene copy
number using gene length and standard curves. All Flui-
digm qPCR was conducted at the Roy J. Carver Bio-
technology Center (Urbana, IL, USA). The final copy
number of each functional gene amplicon was standardized
by the ng of template DNA in the qPCR amplification.

Statistical analysis

The microbial communities were evaluated as separate
datasets for each amplicon (16S rRNA, fungal ITS, nifH,
nosZ, norB, nirK, nirS, bacterial amoA, and archaeal amoA).
The relative effect of genotype, heterotic group, genetic
relatedness, and decade of germplasm development on the
rhizosphere microbiome composition was assessed using
permutational analysis of variance (PERMANOVA) with
the “adonis” function, from the community ecology R
package, “vegan” [31]. To visualize differences from these
models, non-metric multidimensional scaling (NMDS)
ordinations were created using the R package “phyloseq”
and plotted with R package “ggplot2” [32, 33]. Significant
differences in functional gene abundance were evaluated
using an ANOVA model, and the Tukey’s HSD test from
the “stats” package in base R [34]. Correlation between the
year of germplasm development and gene abundance was
evaluated using “cor.test” and “lm”, packages in base R
[34]. Using the “asreml-r” package [35], additional restric-
ted maximum-likelihood mixed-effects models were used to
examine the correlation between functional gene abundance
and year of germplasm development while controlling for
the genetic relatedness between maize inbred lines. TAS-
SEL was used to calculate the pedigree tree, genetic relat-
edness matrix, and the haplotype diversity (Tajima’s D)
across the genome [36, 37].

To control for the variance within individual genotypes
when performing our analysis for a decade and heterotic
group effects, we used the mean microbiome for each
genotype (n=10) (referred to as the genotypic mean
microbiome). These mean microbial communities were
generated using the “aggregate” function in base R; here
this function was used to find the mean of the amplicon data
matrix based on the replicates within each genotype.

Modules of microbial taxa responding to the germplasm
chronosequence were determined using a weighted corre-
lation network analysis (WGCNA) in R [38]. Prior to
WGCNA, amplicon data was transformed using a central
log-ratio transformation [39]. PICRUSt2 was used to pre-
dict functional pathways present in modules of microbial
taxa that change over the germplasm chronosequence [40].
Additional meta-information on predicted PICRUSt2 output

was obtained from MetaCyc Database [41]. Graphical
representation of workflow present in Supplemental Fig. S3.
Similarity percentages analysis (SIMPER) from the “vegan”
package was carried out to identify metabolic pathways that
were significantly altered in representation across the
germplasm chronosequence [42]. Correlation between the
year of germplasm release and pathway abundance was
evaluated using “cor.test” and “lm” packages in R.

Results

In this common garden study, we identified 15,072 different
16S rRNA operational taxonomic units (OTUs, 97% simi-
larity), and 1027 fungal OTUs were identified from the
ITS2 region.

Rhizosphere microbiome response across the maize
germplasm chronosequence

The decade of germplasm development, heterotic genetic
group, and genotype all had a significant effect on rhizo-
sphere microbiome composition. Plant genotype explained
a significant amount of variance in the rhizosphere micro-
biome (PERMANOVA prokaryotic: R*=0.17, p<0.001;
fungal: R>=0.13, p<0.001). When performing our analy-
sis on the genotypic mean microbiome, we revealed that a
decade of germplasm development explained 16.79% of the
variance in the prokaryotic microbiome. In comparison, the
heterotic group explained 8.1% of the variance (Fig. 2A, B,
decade p <0.01, heterotic p <0.008, Table S4.1). Fungal
microbiomes did not significantly respond to the germplasm
chronosequence (p =0.37) but differed among heterotic
groups (p =0.028) (Fig. 2C, D and Table S4.2).

Response of nitrogen cycling functional groups to
the germplasm chronosequence

From our analysis of nitrogen cycling functional genes, we
observed 1498 nifH OTUs, 95 archaeal amoA OTUs, 200
bacterial amoA OTUs, 8632 nirK OTUs, 1186 nirS OTUs,
1068 norB OTUs, and 1864 nosZ OTUs. In response to the
germplasm chronosequence, 3 of 7 nitrogen cycling genes
showed changes in community membership, and 3 of 7
nitrogen cycling genes changed in copy number per ng of
DNA (Table S5).

Nitrogen fixation genes

There is a clear shift in the recruitment of nitrogen-fixing
taxa across the germplasm chronosequence (Fig. 3A and
Table S5). The composition of diazotrophs, detected

through the nitrogenase nifH gene, was significantly
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Fig. 2 Changes in bacterial
and fungal communities across
a maize germplasm
chronosequence. NMDS
ordinations based on
Bray—Curtis dissimilarity among
prokaryotic 16S rRNA gene
sequences (A, B) and fungal ITS
gene sequences (C, D) obtained
from rhizosphere microbiome
samples, comparing prokaryotic
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impacted by the decade of germplasm development (R =
0.16, p <0.001) and heterotic group (R*>=0.13, p <0.009,
Fig. 3A, Table S6.1). The qPCR results also showed that the
abundance of nifH in the microbiome significantly
decreased across the germplasm chronosequence (r=
—0.44, p<0.05, Fig. 3B, linear model statistics in
Table S7.1). These differences were detected even though
the use of N fertilizer in our experiment abrogated any
reliance on N fixation.

Nitrification genes

The recruitment of nitrifiers (indicated by gene sequences
for bacterial and archaecal ammonia monooxygenase—
amoA) was shown to be significantly impacted by the
germplasm chronosequence and heterotic group. We found
a significant change in the composition of bacterial amoA
genes (R2 =0.13, p<0.05, Fig. 3C, Table S6.2), but did not
see a significant change in the abundance of bacterial
amoA detected in response to the chronosequence (p = 0.14,
Table S7.2). Archaeal nitrifiers showed no change in com-
munity composition over the chronosequence, but archaeal
amoA genes did increase in abundance (p <0.05, Fig. S4,
Tables S6.3, S7.3). Total gene abundance of bacterial and
archaeal amoA is significantly correlated with our chron-
osequence (r=0.47, p<0.05, Fig. 3D, Table S7.4).

Denitrification genes
Several of the denitrification genes were significantly dif-

ferent among the chronosequence and heterotic groups
(Figs. 3E, F, and S5, Tables S5, S6.4-7). Overall, changes
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0.0
NMDS1
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0.0
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in denitrifier communities had the weakest relationship to
the chronosequence but rather were consistently driven by
heterotic genetic group (Tables S6.4—7). Denitrifiers pos-
sessing the cytochrome cdl-type nitrite reductase, encoded
by nirS, were the only denitrifier group showing altered
composition in response to germplasm development (p =
0.07, Fig. 3E, Table S6.4). Only nitric oxide reductase,
norB, gene abundance was correlated to time (p = 0.056,
Tables S5, S6.7). All other denitrification genes lacked a
significant ~ correlation  to  the  chronosequence
(Tables S7.5-9). To summarize the gene abundance results,
we averaged all the denitrification genes and regressed the
mean abundance against the chronosequence (Fig. 3F).
While this regression was not significant (p =0.35,
Table S7.9), gene abundance and chronosequence still had a
positive relationship (r = 0.22).

Identification and potential function of taxa that
respond to the germplasm chronosequence

WGCNA [38] identified three unique sets of OTUs (mod-
ules) with a significant response to the germplasm chron-
osequence (Fig. 4A and Table S8). Modules 1 and 2
contained OTUs that were positively correlated to the
decade of germplasm release, while Module 3 OTUs were
negatively correlated with time. Module 1 contained 98
OTUs and was dominated by Proteobacteria. Module 2
contained 140 OTUs and was dominated by Actinobacteria.
Module 3 contained 178 OTUs and was dominated by
proteobacteria. Lists of dominant taxonomic classes from
each module are presented in Table S9. Metagenomic
functional predictions using PICRUSt2 were performed to
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Fig. 3 Changes in nitrogen cycling genes across a maize germ-
plasm chronosequence. A NMDS ordination comparing maize rhi-
zosphere nifH assemblages among decades of germplasm
development. B Linear regression of nifH gene copy number across
the maize germplasm chronosequence. C NMDS ordination compar-
ing the composition of bacterial ammonia oxidizer assemblages among
decades of germplasm development. D Linear regression of the sum of

archaeal amoA and bacterial amoA gene abundance across the maize
germplasm chronosequence. E NMDS ordination comparing assem-
blages of denitrifiers (based on nirS gene) across breeding decades.
F Linear regression of the average gPCR abundance of denitrification
genes (nirS, nirK, norB, nosZ) across the chronosequence. A complete
list of statistical analyses of nitrogen cycling genes is presented in the
supporting information: Tables S5-7 and Fig. S4.
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A. Module 1 Module 2 Module 3

' 7
S S

Increasing in Time Increasing in Time
(cor = 0.35, p=4x107) (cor=0.15, p=0.04)
98 OTUs 140 OTUs
304 Pathways 286 Pathways

Decreasing in Time
(cor =-0.28, p=5x10-)
178 OTUs
378 Pathways

Phylum Key

I Acidobacteria
Actinobacteria

[ Armatimonadetes
Bacteroidetes
Chlorobi

I Chloroflexi

I Cyanobacteria

I Fibrobacteres

I Firmicutes

I Gemmatimonadetes

[ Nitrospirae

[ Planctomycetes
Proteobacteria
Verrucomicrobia
Latescibacteria

Module 3

Fig. 4 Taxa modules and predicted metabolic pathways for the
maize rhizosphere microbiome, based on WGCNA and PICRUSt2
metabolic pathway predictions. A Modules (hierarchically clustered
OTUs) that showed a significant correlation with the germplasm
chronosequence. Module membership varies in size and taxonomic
composition, grouped by phylum here. A list of dominant classes is
presented in Table S9. B Venn diagram shows metabolic pathways
shared across the three modules. Information on pathways is presented
in Tables S10-12.

predict the function of the taxa identified by WGCNA.
Metagenomic functional predictions for the taxa in each
module are presented in Figs. S6-7. PICRUSt2 predicted
that the taxa in Module 1 had 304 pathways, Module 2 had
286 pathways, and Module 3 had 378 pathways. Among all
modules, there was a high degree of shared predicted
metabolic pathways (Fig. 4B). Module 1 and 2 (taxa
increasing over the chronosequence) cumulatively con-
tained only five unique pathways not present in Module 3.
Module 3 (taxa decreasing in relative abundance across the
chronosequence) had 62 unique pathways (Fig. 4B and
Table S10). All modules revealed changes in the predicted
abundance of pathways across the germplasm chronose-
quence: 83% of pathways in Module 1, 85% of pathways in
Module 2, and 78% of pathways in Module 3 significantly
changed across the germplasm  chronosequence
(Table S11). The rhizosphere microbiomes from germplasm
developed during the 1940-50s were the most distinct in the
predicted abundance of pathways compared to the lines
released during the 1960s, 1970s, and 1980s. When com-
paring predicted microbial metabolic pathway differences
among maize lines from the 1960-70s to the 1980s, little to
no difference in abundance (0-0.002%) was found. This
analysis allowed us to determine the pathways that showed
the strongest response to our chronosequence (Table S12).
Module 3 showed the most complex patterns of enrichment
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and depletion across our three decadal classifications (Fig.
S6A). Module 1 and 2, while taxonomically distinct,
appeared to be functionally redundant. Module 3 showed
decreases across the chronosequence in pathways related to
the degradation of organic nitrogen sources (Fig. S6B and
Table S12). Across time all three modules were predicted to
contain a greater number of gene pathways related to
aerobic respiration and amino acid synthesis (Fig. S6C, D
and Table S12). PICRUSt2 analysis was performed on
correlated taxa modules. Description and analysis are pre-
sented in Supplemental materials.

Genomic changes across the chronosequence

Supplementary analysis of the genomic variation within
these maize lines was performed to assess whether we could
gain mechanistic insight into the phenotypes causing our
observed microbiome pattern. First, using TASSEL we
scanned the haplotype diversity within the chronosequence
population and found 87 large genetic regions (p <0.05)
showing evidence of undergoing recent selection events
according to Tajima’s D statistic. Eighty-five of these
regions were suggestive of a selective sweep and two of
balancing selection (Supplemental materials Fig. S8). Next,
we attempted to determine if changes in genomic variation
corresponded to changes in our chronosequence timeline
(Fig. S9). Using the maize HapMap, we first determined the
population G matrix in TASSEL and then found the NMDS
axes that explained most of the genetic variation (Figs. S2
and S9). These major NMDS axes were then regressed
against our chronosequence timeline. Taken together this
additional genetic analysis on the maize lines used in this
study suggest that multiple alleles and a considerable
amount of genetic variation were changed across this time
period of maize development. Unfortunately, the design of
this study lacks the power to determine the exact genes and
traits driving this chronosequence microbiome pattern.

Discussion

Plant rhizosphere microbiomes are, in part, shaped by plant
genetics [10, 11]. Here we provide one of the few examples
showing that selection (via breeding) on the plant genotype
across a changing agronomic environment (i.e., increased
synthetic N, increased plant density) drives changes in
recruitment of the plant microbiome. We show that altered
rhizosphere microbiome recruitment was reflected in func-
tional genes for nitrification and nitrogen fixation and pre-
dicted metabolic pathways. Ultimately, these results suggest
that breeding has altered the recruitment of soil microbiome
and specific N-cycling functional groups in the maize
rhizosphere.
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Our results show a shift in rhizosphere prokaryotic
microbiomes across a chronosequence of inbred maize
lines, independent of broad genetic relatedness (heterotic
group) (Fig. 2). These conclusions are based entirely on
inbred maize lines and do not include hybrids. We decided
to focus solely on inbred lines as hybrid maize genotypes
exhibit a high degree of heterosis [18] and typically repre-
sent a highly genetically diverse combination of different
heterotic pedigrees. This is important, as recent research has
now established that this hybrid vigor can have considerable
impacts on the assembly of the rhizosphere microbiome
[43, 44]. Consequently, previous studies that included
hybrids in their attempts to examine the effects of selection
on maize through time unknowingly confounded heterosis
and selection effects [45, 46]. Further research is needed to
fully disentangle how hybridization shapes maize’s inter-
actions with microbiomes and microbial functions related to
agricultural sustainability.

The consequences of these microbiome changes extended
to the composition and abundance of microbial genes asso-
ciated with nitrogen cycling observed in the rhizosphere. We
saw decreases in the abundance and changes in the compo-
sition of diazotrophs, indicated by nifH, in more recently
developed germplasm (Fig. 2A, B). The increased usage of
synthetic nitrogen fertilization through time has decreased
maize’s reliance on microbial N provisioning. It is well
established that the maintenance of belowground mutualistic
N-fixation comes at a carbon cost [47], and alters above-
ground carbon allocation across the plant [48]. In addition,
altering nutrient availability modifies how a plant host
assembles the microbiome [49]. In the breeding process,
selection has been tuned to grain production [50] and wea-
kened belowground carbon allocation [51]. Other findings in
maize suggest that some landrace cultivars have a heightened
ability to recruit associative diazotrophs [52]. Maize lines that
host nitrogen-fixing bacteria produce specialized carbon-rich
mucilage exudates to attract these microbes and gain sub-
stantial plant-available nitrogen from this interaction [47, 52].
Allocating carbon resources to the production of exudates
comes at a cost to yield, and reliance on fixed N from dia-
zotrophs is unnecessary under high nitrogen conditions [48],
weakening any selection for maintenance of nutritional
mutualisms that may have been present in ancestral maize
lineages. Furthermore, under continuous high nitrogen ferti-
lization, diazotrophs can evolve to become less efficient
mutualistic nitrogen fixers [53]. A combination of these fac-
tors explains why maize’s recruitment of diazotrophs changes
as a consequence of decades of crop selection.

Various functional genes related to denitrification and
nitrification increased in abundance and changed in com-
position through the germplasm chronosequence (Fig. 2C-F
and Table S5). While not all functional genes related to
these processes responded to the chronosequence,

especially those genes related to denitrification, there is still
a clear pattern across time and germplasm selection.
Changes in the abundance of N-cycling genes could be
important in predicting losses of nitrogen and the produc-
tion of GHGs from agroecosystems [54], as microorganisms
that perform denitrification and nitrification can remove or
alter the chemical structure and mobility of plant-available
N [55]. Selective exudation of specialized metabolites from
maize roots could be an explanation for shifts in the nitri-
fiers and denitrifiers across the germplasm represented in
this study. For instance, different cereal grasses (sorghum,
rice, wheat) have the ability to exude secondary phyto-
chemical compounds that can suppress the metabolism of
nitrifying organisms [56]. Here we hypothesize that a nar-
rowing of germplasm diversity by inbreeding [12] could
have eroded complex metabolic characteristics important
for shaping interactions with nitrogen cycling microbial
taxa [57]. Breeding of maize may have resulted in trait
changes that influence how different cultivars recruit
nitrogen cycling microbes. A growing body of research
suggests that plants can drive the variability and activity of
nitrifiers and denitrifiers in the soil ecosystem [56, 58—61].
Demonstrating that agroecosystem management and crop
breeding altered the plant microbiome and potentially its
functions suggest that plant-microbiome interactions are
mutable—theoretically mutable enough that we can inten-
tionally select for rhizosphere microbiome traits that con-
tribute to nutrient retention, reduced GHG production, and
improved soil health.

Plant species regulate microbial enzyme production and
metagenomic capacity in the rhizosphere [62, 63]. Here we
predicted changes in the microbial metagenome as a func-
tion of germplasm development. We found increases in the
relative abundance of gene pathways related to amino acid
biosynthesis and aerobic respiration. Gene pathways related
to nitrogen substrate degradation decreased through the
germplasm chronosequence (Figs. 3 and 4). These results
imply that plants from earlier decades in this chronose-
quence support microbiomes that mineralize soil organic
nitrogen, while later lines do the opposite. The rhizosphere
microbiome of more recent germplasm is enriched for
microbial taxa that have greater numbers of predicted
metabolic pathways for respiration and amino acid synth-
esis. The predicted metagenome results suggest that the
microbiome recruited by more modern germplasm is in a
state of growth and biosynthesis. Coincidentally, these
modern microbiomes are also predicted to have a lower
capacity to mineralize free organic nitrogen sources; we
hypothesize they are obtaining their nitrogen for biosynth-
esis from inorganic fertilizers, thereby potentially compet-
ing with the plant for nutrients instead of working
mutualistically. The shift to aerobic respiration and simple
sugar breakdown may indicate that the newer maize lines
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are recruiting copiotrophs [64]. These alterations to
belowground predicted microbial metabolism could explain
the observed yield gap between conventional and organic
agroecosystems [65]. Maize lines that recruit fewer nutrient-
mineralizing microbes may be compromised for the acqui-
sition of nitrogen through organic nitrogen sources, result-
ing in lower yields. Currently, it is not well-established
what type of soil metabolism would be ideal to meet our
sustainability goals [6, 66]. However, these results indicate
that we could breed germplasm to recruit microorganisms
with traits that are aligned with soil management practices.
In conclusion, industrial breeding practices and agronomic
management approaches have transformed maize’s interac-
tions with its rhizosphere microbiome at a taxonomic and
functional genomic level. These microbiome differences
potentially alter nitrogen processing among plant cultivars and
the movement of nitrogen in the agroecosystem as a whole.
These changes likely occurred because of the combination of
intense selection for aboveground traits and increased use of
synthetic nitrogen fertilizers that reduced reliance on
microbially-mediated nitrogen cycling processes. Modem
agricultural practices have disrupted and accelerated the
reactive nitrogen cycle. Maize has been a major contributor to
this global disruption as it is one of the most farmed and
fertilized crops in the world [67]. Alteration of plant micro-
biome function is indicated by recruitment of distinct
assemblages of nitrogen-cycling taxa and predicted metabolic
pathways in the rhizosphere microbiome of maize germplasm
developed in different decades. Modern agricultural practices
have accomplished the alteration of maize’s interaction with
its root microbiome in the span of 50 years. Following these
observations, the next steps would be to determine if the
differences in microbiome recruitment are contributing to
unsustainable outcomes in the agroecosystem and if unsus-
tainable aspects of this microbiome recruitment are reversible.
Approaching the microbiome and its functions as an extended
phenotype of the plant genome will be a necessary step
towards optimizing agricultural systems for sustainability.
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