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1  |  INTRODUC TION

The intensification of agriculture has resulted in an increased re-
liance on large scale pest control, both chemical and biological. 
Transgenic crops expressing insecticidal toxins have been successful 

at managing pests but are not without limitations, as numerous spe-
cies have evolved resistance (Tabashnik & Carrière, 2017). Studies 
aimed at characterizing resistance have largely focused on target- 
site or metabolic mutations in insects (Pardo- Lopez et al., 2013). 
However, microbial communities associated with insects can 
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Abstract
Evolution of resistance to transgenic crops producing toxins from Bacillus thuringiensis 
(Bt) threatens the sustainability of the technology. Examination of resistance mecha-
nisms has largely focused on characterization of mutations in proteins serving as Bt 
toxin binding sites. However, insect microbial communities have the potential to pro-
vide host resistance to pesticides in a myriad of ways. Previous findings suggest the 
killing mechanism of Bt relies on enteric bacteria becoming pathogenic in the disrupted 
gut environment of the insect following Bt intoxication. Thus, here we hypothesized 
that resistance to Bt would alter the microbiome composition of the insect. Previous 
studies have manipulated the microbiome of susceptible insects and monitored their 
response to Bt. In our study, we characterized the associated bacterial communities of 
Bt- resistant and - susceptible western corn rootworms, a widespread pest of maize in 
the United States. We found resistant insects harbor a bacterial community that is less 
rich and distinct from susceptible insects. After feeding on Bt- expressing maize, sus-
ceptible insects exhibited dysbiosis of the associated bacterial community, whereas 
the community within resistant insects remained relatively unchanged. These results 
suggest resistance to Bt produces alterations in the microbiome of the western corn 
rootworm that may contribute to resistance. We further demonstrated that by itself, 
feeding on Bt toxin- expressing seedlings caused a shift in the microbiota. This work 
provides a broader picture of the effect stressors have on microbiome composition, 
and the potential heritable changes induced as a result of intense selection.
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influence host fitness and susceptibility to pesticides, but are often 
overlooked when characterizing resistance (Douglas, 2018; Gressel, 
2018). Understanding how the microbiota affect resistance and vice 
versa, how resistance affects the microbiota, is fundamental to the 
design and success of sustainable management tactics.

Few biological controls have obtained the commercial success 
of Bacillus thuringiensis (Bt) since its discovery in 1911 (Roh et al., 
2007). A naturally occurring soil- borne bacterium, Bt displays 
toxicity in a diverse set of arthropods through the production of 
parasporal crystalline inclusions composed of pore- forming pro-
teins, or Cry proteins (δ- endotoxins) (Hofte & Whiteley, 1989). Cry 
toxins target midgut columnar cells, where binding and insertion 
into the membrane leads to pore formation and eventually os-
motic cell shock and death of the insect (Pardo- Lopez et al., 2013). 
Historically, applications of Bt have consisted of spore and crystal- 
containing sprays, which rely on ingestion and lysis inside the target 
pest, but success is limited by the relatively quick UV degradation 
of proteins (Behle et al., 1997; Roh et al., 2007). However, the ad-
vent of transgenic crops expressing Cry toxins improved delivery 
and efficacy of Bt as a control tactic, especially for belowground 
pests, while simultaneously reducing the use of conventional in-
secticides (Benbrook, 2012; Sanchis, 2011). Now, transgenic crops 
expressing Cry proteins comprise approximately 80% of field crop 
acreage in the United States, with over 100 million hectares grown 
worldwide (ISAAA, 2017; USDA- NASS, 2019). Consequently, re-
sistance to Bt has developed in a number of pest species with 
new instances continuing to appear (Tabashnik & Carrière, 2017). 
Resistance mechanisms characterized have largely been attributed 
to modifications of binding sites resulting in reduced toxin binding 
(Pardo- Lopez et al., 2013). However, the cause of death of the in-
sect itself following Bt ingestion has been a heavily debated issue 
with uncertainty in regards to the extent endogenous bacteria 
are involved (Broderick et al., 2006, 2009; Hilbeck et al., 2018; 
Johnston & Crickmore, 2009; Mason et al., 2011; Paramasiva et al., 
2015; Raymond et al., 2009; Visweshwar et al., 2015).

Previous work investigating the role of enteric bacteria in Bt 
susceptibility relied on curing the insect of bacteria prior to treat-
ment with varying sources of Bt. Removal of enteric bacteria de-
creased larval susceptibility to Bt in some insect species but not 
others. Moreover, there was variability in how various bacterial 
species in the gut community interacted with Bt and with insect 
guts of different species. For example, susceptibility was restored 
after reinoculation with an Enterobacter sp. (Broderick et al., 
2009), but not with an Enterococcus sp. (Johnston & Crickmore, 
2009; Raymond et al., 2009). Midgut bacteria can also influence 
the evolution of resistance to Bt. In selection experiments, resis-
tance to Bt toxins only developed (within three generations) in the 
presence of endogenous bacteria, yet no decrease in susceptibility 
was observed after curing the insect of its microbiota (Paramasiva 
et al., 2015). A role for gut bacteria in Bt susceptibility has been 
demonstrated (Broderick et al., 2006). However, the interpre-
tations of some findings in other studies are mired in the con-
founding effects of the antibiotics on Bt itself and the effects of 

antibiotics on host nutrition and physiology (Raymann et al., 2017; 
Raymond et al., 2009; Van Der Hoeven et al., 2008). In addition, 
these studies are almost exclusively conducted using phytopha-
gous caterpillars even though Bt is utilized against other orders 
of insects. Past experiments across insect species have used dif-
ferent diets (artificial, food source), Bt sources (bacterial lysates, 
commercial formulations, in- plant toxins), and characterization 
methods (culturing, DGGE fingerprinting, 16S rRNA sequencing), 
further complicating interpretations.

More recently, additional evidence supporting septicemia as the 
killing mechanism of Bt in caterpillars has been reported (Broderick 
et al., 2006). After silencing a common immunosuppression gene 
involved in nodulation, enteric bacteria were observed passing 
through the midgut epithelium into the haemocoel, demonstrating 
commensal bacteria could become pathogenic upon entry into the 
haemocoel (Caccia et al., 2016). If microbiota are necessary for sus-
ceptibility to Bt, then resistance to Bt could induce changes in the 
microbial community. No studies to date have examined the associ-
ated microbial community as a whole (16S rRNA sequencing) in Bt- 
resistant and - susceptible insect species fed on their natural diet, 
nor how those communities change in response to ingestion of Bt. 
In our study, we address these issues using a below- ground special-
ist herbivore, the western corn rootworm (WCR), Diabrotica virgifera 
virgifera LeConte (Coleoptera: Chrysomelidae).

WCR is one of the most severe pests of maize in the United States 
Corn Belt, and recently it has become established in Europe through 
multiple introductions and range expansions (Miller et al., 2005). Root 
feeding by the larvae causes severe injury to maize, resulting in de-
creased nutrient uptake, increased plant lodging and increased sus-
ceptibility to pathogens (Hou et al., 1997; Kahler et al., 1985; Kurtz 
et al., 2010; Riedell, 1990; Spike & Tollefson, 1991). Annual estimates 
of the combined cost of management and yield loss due to this injury 
amounts to over two billion dollars (Wechsler & Smith, 2018). WCR 
is notorious for evolving resistance to management practices includ-
ing crop rotation, chemical insecticides, RNAi and Bt toxins (Ball & 
Weekman, 1962; Gassmann et al., 2011, 2016, 2020; Khajuria et al., 
2018; Levine et al., 2002; Ludwick et al., 2017; Meinke et al., 1998; 
Parimi et al., 2006; Pereira et al., 2015; Zhu et al., 2009; Zukoff et al., 
2016). Resistance to Bt can develop quickly, in as few as three gen-
erations, with evidence of cross- resistance to multiple Cry proteins 
(Meihls et al., 2008; Zukoff et al., 2016). Yet, a complete understanding 
of the mechanisms of Bt resistance in WCR remains largely unknown.

WCR have a relatively conserved microbiome with documented 
phenotypic functionality. Bacterial communities associated with 
WCR influence oviposition preference (Lance, 1992), increase tol-
erance to plant defences (Chu et al., 2013) and confer mating in-
compatibilities between subspecies (Giordano et al., 1997). The gut 
bacterial communities of WCR are both transmitted vertically and 
filtered from the larger regional species pool encountered as they 
move through the soil and feed on corn roots (Chu et al., 2013; 
Dematheis et al., 2012; Ludwick et al., 2019; Perlatti et al., 2017; 
Prischmann et al., 2008). Other Diabrotica can vector plant patho-
gens and evidence suggests some rhizosphere bacteria acquired 
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from the environment can persist through pupation and for as long 
as two weeks in adults (Palmer & Kommedahl 1969; Snyder et al., 
1998). This system provides a unique opportunity to investigate the 
interaction between Bt resistance and the bacterial community as a 
whole in an insect with a relatively conserved microbiome known to 
have phenotypic functionality.

In this study, we asked (i) do the bacterial communities differ 
between resistant and susceptible insects when feeding on non- Bt 
maize, (ii) do the bacterial communities in resistant and susceptible 
insects respond differently to feeding on Bt maize, and (iii) does the 
presence of the soil alter the communities and their response to Bt. 
We hypothesized that resistance to Bt would produce changes in 
the associated bacterial communities, and upon ingestion of Bt, we 
would observe changes in the community of the susceptible insects 
reflective of intoxication that were not seen in the resistant insects. 
Understanding the processes that shape microbiome composition is 
important to understanding the overall fitness of the host and how 
they respond to biotic and abiotic stresses.

2  |  MATERIAL S AND METHODS

Neonate WCR larvae from Bt- resistant and - susceptible colonies 
were fed both Bt and non- Bt maize for one and three days. The bac-
terial communities associated with WCR fed different diets were 
characterized using 16S rRNA sequencing. Experiments were con-
ducted twice, once in an environment with soil present and once in 
a soilless environment.

2.1  |  Insects and seeds

Eggs of susceptible insects were originally purchased from Crop 
Characteristics (nondiapausing WCR; Farmington, MN) and subse-
quently maintained as a colony in Columbia, MO. The resistant colony 
was the same line used in Frank et al., (2013) and Geisert and Hibbard 
(2016) (eCry3.1Ab- resistant). At the time of experimentation, resist-
ant larvae had been continuously selected for resistance for 43 gen-
erations on Bt corn. Adults were housed in 30 cm3 BugDorm cages 
(Megaview Science Co., Ltd.) and provided with young maize leaves, 
artificial diet (Frontier Agricultural Sciences), zucchini slices (Cucurbita 
pepo L.) and an agar gel water source. Cages were kept at room tem-
perature (25°C) with a photoperiod of 14:10 (L:D). Petri dishes filled 
with moist, sieved soil were placed in cages to be used as oviposition 
sites for mated females. Each week, eggs were rinsed with water in an 
80 mesh sieve to remove soil and then placed in new Petri dishes con-
taining moist, sieved soil. Eggs were incubated at 25°C until neonates 
started to emerge. At this point, the remaining eggs were rinsed with 
water in a 60 mesh sieve to remove soil and placed in a 50 ml glass 
beaker. Any floating debris was poured off. Using a sterile 1.5 ml trans-
fer pipette, eggs were transferred onto a clean coffee filter in a uniform 
layer. The coffee filter was then placed inside a sterilized 16 oz. Solo® 
deli container (Solo Cup Company) with a lid that had been punctured 

with holes (#0 insect pin). Eggs inside the container were allowed to 
hatch inside an incubator at 25°C with a photoperiod of 14:10 (L:D) and 
neonates were used within the same day of hatching. Non- Bt maize 
seeds were purchased from Albert Lea Seed (Viking 42– 92; Albert Lea 
Seed, Albert Lea, MN). Maize seeds expressing Bt toxin eCry3.1Ab 
(event 5307) were provided by Syngenta AG.

2.2  |  Experimental set- up

2.2.1  |  Soil environment

Conical tubes (50 ml: Thermo Fisher Scientific) were filled with 
~30 ml of a 2:1 nonautoclaved, local topsoil:Promix mixture 
(Premier Horticulture Inc.). Approximately 3– 4 maize seeds, ei-
ther Bt or non- Bt, were then placed in each tube and covered with 
~10 ml of the soil mixture. Tubes were watered with ~10 ml of 
water, and lids were loosely attached to each tube. Larvae fed for 
either one or three days, and each time point (one or three days) 
had eight replicate tubes. Tubes were placed in growth chamber at 
25°C with a photoperiod of 14:10 (L:D), and lids were removed two 
days later. Four days after planting, 10 neonates emerging from un-
sterilized eggs in deli containers were transferred to each tube with 
a horsehair paint brush. Tubes were returned to the same growth 
chamber and allowed to grow for their designated amount of time 
(one or three days). On the day of collection, the contents of the 
50 ml tube were emptied into a modified Berlese funnel with a 
glass jar containing 10 ml of water attached to the base and left for 
one hour. Insects that fell into the jar were collected using a paint 
brush, rinsed with sterile water, and placed in a 1.5 ml Eppendorf 
tube (three insects per tube). From the eight 50 ml tubes, insects 
were collected from only four. Tubes were stored at – 80°C until 
DNA extraction.

2.2.2  |  Soilless environment

Bt and non- Bt seeds were sterilized by soaking for 3 min in 5% 
bleach solution followed by a triple rinse with sterile water. To aid 
germination, autoclaved filter papers were moistened with sterile 
water and placed in the bottom of petri dishes. Then, 3– 4 maize 
seeds were placed in Petri dishes, and dishes were wrapped with 
Parafilm. Dishes were incubated at 25°C with a photoperiod of 
14:10 (L:D) until neonates had hatched (~4– 5 days). Freshly hatched 
neonates from unsterilized eggs of either eCry3.1Ab- resistant or 
- susceptible colonies were placed on maize seedlings with a paint-
brush at a density of 20 per Petri dish, rewrapped with Parafilm and 
returned to the incubator. Resistant and susceptible insects feeding 
on either Bt or non- Bt maize were grown concurrently in quadrupli-
cate dishes for each time point. After one and three days, three living 
insects were collected, immediately placed in 1.5 μl Eppendorf tubes 
(three insects per tube, one tube per replicate, four replicates) and 
promptly frozen at – 80°C to preserve bacterial colonies.
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2.3  |  DNA extraction and 16S rRNA gene 
amplification

Bacterial DNA was extracted from frozen, whole larvae (3 per tube) using 
PowerFecal DNA Isolation Kit (Qiagen, catalogue No. 12830– 50) in ac-
cordance with the manufacturer's protocols (https://www.qiagen.com/
us/resou rces/resou rcede tail?id=00e45 13c- 597b- 4bd5- a600- 9259e 
6d62d 07&lang=en). Initial range finding experiments determined DNA 
yield and quality were optimal for samples containing between 2– 4 in-
sects (Figure S1). DNA concentration was measured using a Qubit 2.0 
fluorometer (Thermo Fisher Scientific), and extracted DNA was stored 
at – 80°C until further downstream processing was initiated. The con-
struction of and sequencing of 16S sequencing amplicon libraries were 
completed at MU DNA Core. Prior to amplification, DNA was standard-
ized to a concentration of 3.51 ng/μl. The V4 hypervariable region of 
the 16S rRNA gene was amplified using single indexed universal primers 
(U515F/806R) with Illumina standard adapter sequences. PCR reaction 
steps were as follows: 98°C(3:00)+[98°C(0:15)+50°C(0:30)+72°C(0:30)] for 25 
cycles. The resulting amplicons (5 μl) were pooled before sequencing on 
Illumina MiSeq 2 × 250 bp platform (Ludwick et al., 2019).

2.4  |  16S rRNA community analysis

Sequence assembly and annotation were conducted at the MU 
Informatics Research Core Facility. Raw sequences are available at 
NCBI (Bioproject number PRJNA531879). Overlaps in sequences 
of paired- ends were joined using FLASH (Magoč & Salzberg, 2011) 
and filtered after trimming for base quality of less than 31. Minimum 
and maximum overlap was set to 200 bp and 225 bp. Primers were 
trimmed using Cutadapt (http://journ al.embnet.org/index.php/
embne tjour nal/artic le/view/200/479) in two rounds, first removing 
forward primers with an error rate of 0.11 mismatches and minimum 
length of 19 bp. After discarding untrimmed contigs, a second round 
of trimming from the 3’ end was executed with an error rate of 0.1 
mismatches and minimum length of 20 bp. Contigs were removed 
if errors were greater than 0.5 using USEARCH (http://drive5.com/
index.htm) and the remaining contigs were trimmed to a length of 
248 bp. Remaining contigs were clustered de novo into OTUs using 
uparse (http://drive5.com/upars e/) and detected chimeras were 
removed using Qiime v1.9 (Kuczynski et al., 2012). Clustering into 
OTUs was done de novo at a 97% nucleotide identity similarity. 
Annotation of OTUs was conducted using BLAST against the SILVA 
database of 16S rRNA sequences and compiled into OTU biom ta-
bles for data analysis (Quast et al., 2013). After creation of OTU biom 
tables, OTUs matching to chloroplast and mitochondria were filtered 
and removed using phyloseq::filter_taxa in RStudio version 3.5.2 
(McMurdie & Holmes, 2013). Taxa were filtered based on prevalence 
across samples and 1450 taxa found to be present in only one sam-
ple were filtered out using phyloseq::prune_taxa in RStudio. Taxa la-
beled “uncharacterized” at the phylum level were also removed. The 
resulting table containing data from soilless and soil environments 
was used for the analysis of alpha and beta diversity in RStudio.

2.5  |  Statistical analysis

Wolbachia, a common insect endosymbiont, had a very high 
relative abundance in the majority of WCR samples, which sig-
nificantly impacted inverse Simpson's D indices but had little 
impact on Chao- 1. Therefore, we filtered Wolbachia before gen-
eration of inverse Simpson's D diversity indices. Metrics of alpha- 
diversity (Chao- 1, inverse Simpson's D) were generated using 
phyloseq::estimate_richness function on raw, nonrarefied data 
sets (McMurdie & Holmes, 2014). To determine if bacterial com-
munities of susceptible and resistant insects differ and whether 
soil influences those differences, comparisons of Chao- 1 richness 
and inverse Simpson's D indices between environments (soil and 
soilless), colony (susceptible on non- Bt, resistant on non- Bt) and 
days (1 and 3) were made using a linear mixed effects model with 
PROC GLIMMIX in SAS 9.4. Cohorts nested within environment 
were treated as a blocking variable in a randomized complete 
block design testing for main effects of environment, colony and 
day as well as all two-  and three- way interactions. Alpha diversity 
indices were rank transformed to correct for nonrandom residu-
als. Two cohorts were used to increase the statistical power from 
the added variation within environments. To identify changes in 
alpha diversity within the colonies after ingestion of Bt, we ana-
lysed each colony in separate models (susceptible on non- Bt vs. 
Bt, resistant on non- Bt vs. Bt). Again, analysis of differences in 
Chao- 1 richness and inverse Simpson's D indices were made with 
environment, trait (Bt and non- Bt) and days as main effects with 
cohort nested within environment as the random effect in a lin-
ear mixed effects model with PROC GLIMMIX in SAS 9.4. Alpha 
diversity indices were rank- transformed to correct for nonrandom 
residuals. Pairwise comparisons for all models were considered 
significant at p < .05.

We then investigated the differences in bacterial community 
composition between resistant and susceptible insects reared 
on Bt and non- Bt maize in both environments. Since WCR bac-
terial communities contained very high relative abundances of 
Wolbachia, analyses were conducted with and without Wolbachia 
to properly assess robustness of any findings. Community level re-
sults without Wolbachia present can be found in the Tables S1– S4. 
For parametric multivariate analysis of between group differences, 
samples were log transformed to correct for high sparsity prior 
to analysis using the vegan::adonis function in R (Oksanen et al., 
2019). Similar to alpha diversity, analysis of beta- diversity between 
colonies across days on non- Bt were conducted using a three- way 
permutational multivariate analysis of variance (PERMANOVA) 
based on Bray- Curtis and Jaccard distances (Tables S5, S6) be-
tween environments, colony and day with cohort as the random 
variable specified by “strata”. Bray- Curtis distances allow us to ac-
count for the presence and absence of bacteria, as well as their 
relative abundance within a sample, whereas Jaccard is based on 
presence/absence of taxa. As we were not directly interested in 
the three- way interaction, if it was found to be nonsignificant 
(p > .05), it was removed from the model. Interactions found to 

https://www.qiagen.com/us/resources/resourcedetail?id=00e4513c-597b-4bd5-a600-9259e6d62d07&lang=en
https://www.qiagen.com/us/resources/resourcedetail?id=00e4513c-597b-4bd5-a600-9259e6d62d07&lang=en
https://www.qiagen.com/us/resources/resourcedetail?id=00e4513c-597b-4bd5-a600-9259e6d62d07&lang=en
http://journal.embnet.org/index.php/embnetjournal/article/view/200/479
http://journal.embnet.org/index.php/embnetjournal/article/view/200/479
http://drive5.com/index.htm
http://drive5.com/index.htm
http://drive5.com/uparse/
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be significant between environment and colony were followed by 
models and ordinations (PCoA) restricted to one environment. A 
significant day by environment interaction led us to analyse mod-
els on separate days to investigate the differences driving the 
interaction. Centroids for use in PCoA were generated by extract-
ing PCA1 and PCA2 using vegan::betadisper and scores function 
within treatment groups. Axis variance measurements were taken 
from phyloseq::plot_oridination output. Beta dispersion between 
colonies was tested using a permutational test (vegan::permutest) 
of the distances to centroid of each colony generated with veg-
an::betadisper. Pairwise comparisons were made for significant 
differences observed in PERMANOVA using EcolUtils::adonis.pair 
at corrected p < .05 (Salazar, 2020). Large differences observed in 
beta diversity between environments led us to restrict beta diver-
sity analysis to within environments to better delineate the differ-
ences in colonies when feeding on Bt. Pairwise comparisons were 
made for significant differences using EcolUtils:adonis.pair at cor-
rected p < .05. Comparisons of differentially abundant taxa pres-
ent between samples were conducted using DESeq2 in RStudio 
with the lowest taxonomic level being genus (Love et al., 2014). 
We compared taxa between and within resistant and susceptible 
colonies using data from both cohorts combined at the day level as 
a more conservative estimation. Each environment was analysed 
separately.

3  |  RESULTS

We compared the bacterial communities associated with Bt- 
susceptible and - resistant insects after feeding on Bt and non- Bt 
maize seed for one and three days in two different environments, 

with and without soil. Sequencing of the 16S rRNA libraries generated 
from bacteria associated with all insects regardless of environment, 
day, or maize type yielded an average (± SE) of 80,190.39 ± 3218.29 
sequences (Figures S2, S3).

3.1  |  Differences in bacterial communities between 
Bt resistant and susceptible WCR

We found bacterial communities differed between resistant and sus-
ceptible insects and changed over time, regardless of the environment 
in which the insects were reared (Figures 1, 2). In comparisons of alpha 
diversity metrics between environments (soil vs. soilless), richness and 
diversity as estimated by Chao- 1 index and inverse Simpson's D, respec-
tively, were significantly higher in insects reared on maize seedlings in 
soil compared to insects reared on germinated maize seedlings in soilless 
petri dishes (Chao- 1: p = .0271; Simpson: p = .0095; Table 1; Figure 1). 
Additionally, there was a significant colony ×environment interaction for 
richness but not for diversity (p < .0001). We found susceptible insects 
had a 2.5- fold higher predicted richness (Chao- 1) compared to resist-
ant insects when reared on non- Bt maize seedlings in soil, but found 
no differences between colonies in the soilless environment (Figure 1). 
Susceptible and resistant insects showed no differences in diversity as 
measured by inverse Simpson's D within either environment.

We then compared the composition of Bt- resistant and 
- susceptible WCR bacterial communities reared on non- Bt maize. 
The three- way interaction between environment, colony and day 
was not significant. We found a significant colony × environment 
interaction, with the differences seen in environment attributed to 
the magnitude of the effect alone (Table S7). WCR harbored sig-
nificantly different bacterial communities when reared in different 

F I G U R E  1  Comparisons of (a) richness (Chao- 1) and (b) diversity (Inverse Simpson's D) of Bt- resistant and - susceptible western corn 
rootworm larval bacterial communities when fed on non- Bt maize in two different environments, with and without soil. Sample means 
are represented as a bold data point with accompanying standard error bars. Differences are pairwise comparisons from the three- way 
interaction with environment, trait and day using LSMeans at p < .05
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environments (Figure 2; p = .001; Table 1), and resistant and sus-
ceptible insects harbored distinct bacterial communities that varied 
with day regardless of environment (Colony: p = .001; Day: p = .005; 
Figure 2). Beta dispersion was significantly different between envi-
ronments with increased heterogeneity in insects reared in the soil 
environment (p = .001; Figure 2). However, we found no differences 
in colony beta dispersion when testing within environments (soil: 
p = .757; soilless: p = .075). Beta dispersion between days nested 
within colony was not different in either environment. The signifi-
cance of these results was unchanged when Wolbachia was excluded 
from analyses (Table S1, S2).

Phylogenetic classification of OTUs from insects reared on 
non- Bt maize resulted in assignment to 41 unique bacterial phyla 
with the most common across environments being Proteobacteria, 
Actinobacteria, Firmicutes and Bacteroidetes, in order of rela-
tive abundance. Resistant and susceptible insects reared in both 
soil and soilless environments were dominated by the classes 
Alphaproteobacteria and Gammaproteobacteria, followed by the 
less abundant Actinobacteria and Bacteroidia. In soil, DNA recovered 
from resistant insects was composed of 96.9% Alphaproteobacteria 
and 1.61% Gammaproteobacteria, while DNA from suscepti-
ble insects was composed of 74.13% Alphaproteobacteria and 
15.87% Gammaproteobacteria. DNA recovered from resistant in-
sects reared in a soilless environment were composed of 52.61% 
Alphaproteobacteria and 47.24% Gammaproteobacteria, and 

while DNA from susceptible insects were composed of 70.22% 
Alphaproteobacteria and 28.43% Gammaproteobacteria (Figure 3).

Alphaproteobacteria includes the genus of the common insect 
endosymbiont Wolbachia, which accounts for 98.35% of the class's 
composition across samples. Within the Gammaproteobacteria 
class, several genera were commonly found across environments 
and insects. The most relatively abundant genera were Serratia, 
Acinetobacter, Rahnella, Pseudomonas, Burkholderia- Caballeronia- 
Paraburkholderia, Klebsiella, Azotobacter, Aquabacterium, Massilia and 
Stenotrophomonas. The largest number of differentially abundant 
taxa between resistant and susceptible insects was observed in the 
soil environment, with the majority of taxa being enriched in the 
susceptible insect (Figure S4). In the soilless environment, resistant 
insects were enriched in taxa from the genera Rahnella, Pantoea, and 
Bradyrhizobium, whereas susceptible insects were enriched in taxa 
from the genera Mycobacterium and Tsukamurella (Figure S4).

3.2  |  Effect of Bt ingestion on resistant and 
susceptible WCR bacterial communities

Overall bacterial communities of resistant and susceptible in-
sects responded differently to Bt ingestion. In susceptible insects, 
there was a significant interaction of environment and maize type 
(p = .0035) and environment and day (p = .0076) for Chao- 1 richness 

F I G U R E  2  Principal coordinate analysis of bacterial communities in Bt- resistant and - susceptible western corn rootworm larvae reared on 
non- Bt maize roots in soilless and soil environments for one and three days. Centroids are based on beta- dispersion of colonies on each day 
in each environment
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(Table 2). In soil, we found bacterial richness was significantly lower 
when susceptible insects fed on Bt maize compared to non- Bt maize 
(pairwise comparison, p = .016), but was not different in the soilless 
environment (pairwise comparison, p = .0723; Figure 4a). However, 
we found richness of bacterial communities of resistant insects was 
not different when fed Bt or non- Bt regardless of environment (main 
effect: p = .9311; interaction: p = .5007; Figure 4b). We observed 
a significant interaction between environment and day in resistant 

insects with richness increasing with age only in the soil environ-
ment (p = .0236). We observed a decrease in richness over time in 
the soilless environment in susceptible insects. Bacterial diversity 
as measured by inverse Simpson's D exhibited a similar overall pat-
tern. Diversity of bacterial communities of susceptible insects sig-
nificantly decreased when insects fed on Bt maize compared to 
non- Bt maize in soil (pairwise comparison, p = <.0001; Figure 4c), 
but was not different in the soilless environment (pairwise compari-
son, p = .763). Again, no differences were observed in bacterial com-
munity diversity of resistant insects when fed Bt or non- Bt maize, 
regardless of environment (p = .5007; Figure 4d). Susceptible insects 
showed a decrease in richness with age only in the soilless environ-
ment (interaction: p = .0176).

Previously observed differences in community structure based 
on environment led us to analyse beta diversity separately within 
each environment. Regardless of environment, we found a signifi-
cant interaction between colony and maize type (soil: p = .027; soil-
less: p = .022; Figure 5; Table 2). This implies associated bacterial 
communities of resistant and susceptible WCR are distinct in their 
response to Bt ingestion by the insect. As expected, when suscepti-
ble insects fed on Bt expressing maize, their bacterial communities 
were significantly different than when feeding on non- Bt express-
ing maize in both soil (pairwise comparison: p = .017) and soilless 
environments (pairwise comparison: p = .036). Yet, when resistant 
insects fed on Bt, the structure of their bacterial communities re-
mained relatively unchanged (pairwise comparison, soil: p = .36; soil-
less: p = .47; Figure 5). Beta dispersion between colonies on Bt and 
non- Bt was not significantly different in either environment (soil: 
p = .926, soilless: p = .167). We were interested in the impact the 
number of days feeding would have on the bacterial communities of 
resistant and susceptible insects. Two separate models were used 
for one day or three days of feeding. We found a significant three- 
way interaction between environment, colony and maize type only 
after one day of feeding (Day 1: p = .011; Day 3: p = .585; Table 
S3). Again, the significance of these results was unchanged when 
Wolbachia was excluded from analyses (Table S4). These results 
demonstrate susceptible insects experience disruption of their bac-
terial communities (dysbiosis), whereas resistant insects prevent or 
contain bacterial community disturbances.

As expected, both resistant and susceptible insects feeding on Bt 
were dominated by Alphaproteobacteria and Gammaproteobacteria. 
However, the response of the resistant and susceptible commu-
nities to Bt was unique. When feeding on Bt- expressing maize, 
DNA recovered from susceptible insects was composed of 57.84% 
Alphaproteobacteria and 40.02% Gammaproteobacteria in the soil-
less environment, and 50.91% Alphaproteobacteria and 47.31% 
Gammaproteobacteria in the soil environment. This represents 
an 11.59% and 31.26% increase in Gammaproteobacteria rela-
tive abundance in the soilless and soil environments, respectively, 
when compared to communities within susceptible insects that 
had been reared on non- Bt maize (Figure 3). Resistant insects ex-
perienced much smaller perturbations. DNA recovered from re-
sistant insects reared in the soilless environment and fed Bt maize 

TA B L E  1  Alpha and beta diversity differences between insect 
colonies, environments, days and their interaction

Response Factor df F p

Chao−1

Environment 1,2 35.44 .0271

Colony 1,54 22.76 <.0001

Day 1,54 0.06 .8069

Environment ×Colony 1,54 5.2 .0266

Environment ×Day 1,54 3.33 .0737

Colony ×Day 1,54 5.2 .0266

Environment ×Colony 
× Day

1,54 0 .9443

Inverse Simpson's D

Environment 1,2 103.94 .0095

Colony 1,54 0.41 .5249

Day 1,54 3.69 .0602

Environment ×Colony 1,54 2.59 .113

Environment ×Day 1,54 1.81 .1839

Colony ×Day 1,54 0.78 .3813

Environment ×Colony 
× Day

1,54 0.94 .3359

Community

Environment 1,63 42.417 .001

Colony 1,63 5.245 .001

Day 1,63 1.975 .006

Environment ×Colony 1,63 5.698 .001

Environment ×Day 1,63 1.38 .043

Colony ×Day 1,63 1.091 .159

Beta dispersion

Environment 1,62 39.44 .001

Colony 1,62 4.5659 .035

Day 1,62 0.2764 .615

Notes: Results of models for western corn rootworm bacterial 
community richness (Chao- 1) and diversity (inverse Simpson's D) and 
composition from Bt- resistant and - susceptible colonies. Experimental 
data are from assays conducted in soil or soilless environment where 
insects fed on non- Bt expressing maize roots for one or three days 
(day). Richness and diversity results are from ANOVA using rank 
transformed data with two replicated cohorts as a blocking variable. 
Community results are from multivariate PERMANOVA model using a 
Bray- Curtis distance matrix with log- transformed data. Beta dispersion 
results are from PERMANOVA model using average distance to 
centroid for groups.
Significant results are presented in bold
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were composed of 53.24% Alphaproteobacteria and 46.26% 
Gammaproteobacteria while soil reared insects were composed of 
88.22% Alphaproteobacteria and 1.04% Gammaproteobacteria. We 
found a decrease in Gammaproteobacteria relative abundance of 
0.98% in the soilless environment and 0.57% in the soil environment 
compared to resistant insects reared on non- Bt maize (Figure 3). To 
further investigate these shifts in Gammaproteobacteria, we com-
pared differentially abundant genera between susceptible insects 
after feeding on Bt or non- Bt maize and found several OTUs were 
in higher relative abundance in Bt fed insects (Figure 6). Among 
these OTUs were the genera Klebsiella, Citrobacter, Serratia, and 
Acinetobacter. Several less abundant taxa decreased in relative abun-
dance in Bt fed susceptible insects compared to non- Bt fed insects. 
In order of magnitude of decrease, these genera were Lysobacter, 
Steroidobacter, Acidibacter, Haemophilus and Rhodanobacter 
(Figure 6). We found no differentially abundant genera in the soil-
less environment using the same method. Similarly, we found no 
differentially abundant taxa from the Gammaproteobacteria class in 
resistant insects after feeding on Bt in either environment. Specific 
taxa are changing in relative abundance in response to Bt ingestion 
in the susceptible insect, but these changes are minimal in resistant 
insects.

4  |  DISCUSSION

Evolution of resistance to pesticides is an increasingly salient issue 
(Gould et al., 2018). In the case of Bt, elucidation of resistance mech-
anisms mainly focuses on alterations in toxin binding sites, upstream 
processing/activation of toxins or broad identification of genetic 
loci involved with resistance (Flagel et al., 2015; Pardo- Lopez et al., 
2013). However, evidence of septicemia induced by endogenous 

bacteria exists and led us to consider whether resistance to Bt could 
affect the microbiome of insects (Broderick et al., 2006; Caccia et al., 
2016). Using 16S rRNA amplicon sequencing, we characterized the 
bacterial communities associated with resistant and susceptible 
WCR larvae after feeding on Bt and non- Bt maize. We found Bt re-
sistance is correlated with a simplified bacterial community that is 
unresponsive to Bt ingestion. In comparison, WCR susceptible to Bt 
experience disturbances in their bacterial community after feeding 
on Bt for one day, further implicating the role of septicemia in Bt 
induced mortality.

WCR larvae live in a rich, microbial landscape that has a direct 
impact on its bacterial community. We found significantly higher 
richness and diversity in bacterial communities of WCR reared in soil 
compared to without soil (Figure 1). Previous work has shown WCR 
selects for a conserved bacterial community regardless of the soil 
bacterial community composition reared in (Ludwick et al., 2019), 
yet it appears the presence of the soil has a significant impact on 
the composition of the community. Bacterial communities of insects 
reared in soil were more heterogenous, more diverse and more tax-
onomically rich than when reared without soil (Figures 1 and 2). 
The maize root rhizosphere is a diverse microbial community that 
is largely shaped by root exudates and the microbial bank provided 
by the soil, which can be influenced by numerous abiotic and biotic 
factors (Bais et al., 2006; Berg & Smalla, 2009). Emerging neonates 
encounter bacteria attached to the chorion of eggs as well as any 
bacteria colonizing the maize root rhizosphere or the maize root 
when feeding. In the soilless environment, access to bacterial inocu-
lum is limited to the egg and any surviving endophytes on the maize 
root. These differences could be driving the divergence between the 
environments.

The differences between environments had little impact on the 
differences seen between resistant and susceptible colonies reared 

F I G U R E  3  Family level stacked bar chart of average relative abundance of (a) total bacterial communities and (b) Gammaproteobacteria 
class from Bt- susceptible and - resistant western corn rootworm larvae reared in soil and soilless environments on Bt or non- Bt expressing 
maize roots for one and three days. Each bar is an average of eight samples from two replicated experiments. ((+) = Bt maize roots, (- ) = non- 
Bt maize roots)

(a) (b)
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TA B L E  2  Alpha and beta diversity differences between maize trait, environments, days and their interaction

Condition Response Factor df F p

Susceptible

Chao−1

Environment 1,2 128.44 .0077

Trait 1,54 0.21 .6461

Day 1,54 0.75 .3914

Environment ×Trait 1,54 9.33 .0035

Environment ×Day 1,54 7.68 .0076

Trait ×Day 1,54 0.37 .5439

Environment ×Trait × Day 1,54 1.53 .2216

Inverse Simpson's D

Environment 1,2 18.7 .0495

Trait 1,54 14.22 .0004

Day 1,54 2.31 .1346

Environment ×Trait 1,54 11.17 .0015

Environment ×Day 1,54 5.99 .0176

Trait ×Day 1,54 3.19 .0796

Environment ×Trait × Day 1,54 0.01 .9433

Resistant

Chao−1

Environment 1,2 14.74 .0616

Trait 1,54 0.01 .6461

Day 1,54 6.44 .0141

Environment ×Trait 1,54 9.33 .5007

Environment ×Day 1,54 5.43 .0236

Trait ×Day 1,54 1.7 .1978

Environment ×Trait × Day 1,54 0.07 .7953

Inverse Simpson's D

Environment 1,2 37.36 .0257

Trait 1,54 3.91 .0531

Day 1,54 2.66 .1085

Environment ×Trait 1,54 0.89 .351

Environment ×Day 1,54 1.76 .1908

Trait ×Day 1,54 0.09 .7599

Environment ×Trait × Day 1,54 3.99 .05009

Soil

Community

Colony 1,63 7.0224 .001

Trait 1,63 1.7772 .031

Day 1,63 3.143 .003

Colony ×Trait 1,63 1.7279 .027

Colony ×Day 1,63 1.0189 .297

Trait ×Day 1,63 0.8895 .463

Soilless

Community

Colony 1,63 9.4306 .001

(Continues)
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Condition Response Factor df F p

Trait 1,63 1.5619 .024

Day 1,63 1.8561 .007

Colony ×Trait 1,63 1.5219 .022

Colony ×Day 1,63 1.5782 .024

Trait ×Day 1,63 0.7149 .533

Notes: Results of models for western corn rootworm bacterial community richness (Chao- 1), diversity (inverse Simpson's D) and composition from 
Bt- resistant and - susceptible colonies. Experimental data are from assays conducted in soil or soilless environment where insects fed on Bt or 
non- Bt expressing maize (trait) for one or three days (day). Results for richness and diversity are from ANOVA using rank transformed data with two 
replicated cohorts as a blocking variable. Community composition results are from multivariate PERMANOVA model using a Bray- Curtis distance 
matrix with log- transformed data.
Significant results are presented in bold

TABLE 2 (Continued)

F I G U R E  4  Comparisons of richness (Chao- 1) and diversity (Inverse Simpson's D) of (a) Bt- susceptible and (b) - resistant western corn 
rootworm larval bacterial communities reared on Bt and non- Bt maize roots for one and three days in two different environments, with and 
without soil. Sample means are represented as a bold data point with accompanying standard error bars. Differences are based on pairwise 
comparisons from three- way interaction with environment, maize type and day for each colony using LSMeans at p < .05 [Colour figure can 
be viewed at wileyonlinelibrary.com]

(a) (b)

(c) (d)

www.wileyonlinelibrary.com
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within them. We found bacterial communities of resistant and sus-
ceptible insects were compositionally distinct from each other in 
both the soil and soilless environments (Figure 2). The largest dif-
ferences were seen in the soil environment where resistant insects 
harbored significantly fewer taxa compared to susceptible insects 

(Figure 1). Similar responses have been documented in mosquitos 
where Bt- tolerant larvae harbour a microbiome with significantly 
fewer species of bacteria and is less diverse overall (Tetreau et al., 
2018). These findings suggest Bt- resistant insects are more selective 
of occupying bacteria.

F I G U R E  5  Principal coordinate analysis of bacterial communities in Bt- resistant and - susceptible western corn rootworm larvae reared on 
non- Bt and Bt maize roots in (a) soilless and (b) soil environments for one and three days [Colour figure can be viewed at wileyonlinelibrary.
com]

F I G U R E  6  Differentially abundant 
genera in the class Gammaproteobacteria 
in Bt- susceptible larvae fed on either Bt 
or non- Bt maize roots in soil environment. 
Significant differences in abundance 
between treatments were calculated 
using a negative binomial distribution in 
a generalized linear model in the DESeq2 
package (R Studio) with a p < .05 [Colour 
figure can be viewed at wileyonlinelibrary.
com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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Previous studies have documented intrusion of midgut luminal 
bacteria into the haemocoel of Bt intoxicated insects leading to sep-
ticaemia (Caccia et al., 2016; Mason et al., 2011). We hypothesized 
this type of disruption would be less evident in resistant insects. 
Bacterial communities of susceptible insects when feeding on Bt 
are disrupted in both the soil and soilless environments (Figure 5). 
Susceptible insects fed Bt harbored a bacterial community signifi-
cantly reduced in richness and diversity in the soil environment. We 
found no such change in the community composition in resistant in-
sects (Figure 4). This lack of change could be the result of reduced 
toxin binding or containment of dysbiosis, but the identification of 
the cause is outside the current scope of this study. However, as evi-
denced in the susceptible insects, Bt can induce dysbiosis in the WCR 
larvae. These changes were probably driven in part by the higher rel-
ative abundance of taxa in the genera Klebsiella, Citrobacter, Serratia, 
and Acinetobacter in Bt- fed insects (Figure 6). Plant- expressed Bt 
toxins do not induce 100% mortality in WCR larvae, and probably 
rely on secondary factors for killing the host (Binning et al., 2010; 
Hibbard et al., 2011). Many of the bacterial genera in higher rela-
tive abundance in susceptible insects feeding on Bt cause disease 
in WCR and other Coleoptera (Hamilton, 1968; Moore, 1971; Pu & 
Hou, 2016). Root herbivory affects the rhizosphere microbial com-
munity (Dematheis, Zimmerling, et al., 2012; Grayston et al., 2001), 
and previous work documents that maize roots infested with WCR 
promote the growth of certain Acinetobacter and Serratia species 
(Dematheis, Zimmerling, et al., 2012; Prischmann et al., 2008). A few 
of these species were isolated from diseased adult Diabrotica and 
can be found in higher relative abundance in intoxicated larvae in 
our study (Benitez et al., 2017; Dematheis, Zimmerling, et al., 2012; 
Prischmann et al., 2008). There exists a rich microbial community in 
the soil and the rhizosphere, and with increased contact with bacte-
ria, WCR are highly likely to encounter species capable of becoming 
pathobionts under certain conditions, particularly those within the 
midguts disrupted by Bt toxins. Whereas it is possible changes ob-
served in the susceptible insect are a result of starvation and not Bt 
intoxication, the presence of chloroplast in susceptible insects alive 
at the time of collection suggests feeding still occurred. Bacteria 
present on the cuticle of the insect could contribute to the hetero-
geneity of the communities seen in the soil, but relative abundance 
of bacteria are generally higher than those of plant associated se-
quences suggesting higher level establishment inside the insect 
(Hammer et al., 2017). Additionally, the differences seen between 
resistant and susceptible insects would more likely reflect changes 
in internal filtering by the insect rather than external since insects 
were reared in identical substrates.

It is clear microorganisms harbored by invertebrates can influ-
ence nutrition, reproduction, insecticide susceptibility and interac-
tions with predators and pathogens (Douglas, 2009; Kikuchi et al., 
2012; Oliver et al., 2005; Salem et al., 2013; Vásquez et al., 2012). 
Selection for resistance to Bt could affect the microbiome in several 
ways. There could be an advantage to harboring a heightened im-
mune system, inducible or constitutive, to reduce potentially patho-
genic bacteria, especially in a continuously selective environment 

(Hamilton et al., 2008). Transcriptomic analyses following Bt in-
gestion have identified genes involved with immunity (Dubovskiy 
et al., 2016; Sayed et al., 2010; Zhao et al., 2019), and suppression 
of immune response can increase host susceptibility (Broderick 
et al., 2010; Caccia et al., 2016; Shrestha et al., 2010). In one cater-
pillar species, Galleria mellonella, resistant insects had constitutively 
higher expression of certain immune response genes, potentially 
priming the insect for ingestion of Bt (Dubovskiy et al., 2016). This 
priming can occur trans generationally in Tribolium castaneum with 
offspring from Bt infected host experiencing increased survival (Tate 
et al., 2017). As components of the immune response are believed to 
be responsible for controlling endosymbiont and gut microbe com-
munities (Login et al., 2011), resistance to Bt could indirectly limit the 
number of species of bacteria and their abundance within the insect.

Selection for Bt resistance could potentially favour bacteria 
known to degrade Cry proteins or alter the gut environment (i.e., 
biofilms, antimicrobials) to reduce binding or competitively exclude 
harmful bacteria (Patil et al., 2013; Shan et al., 2014; Vásquez et al., 
2012). In addition, the harbouring of nutrient- providing or plant- 
digesting bacteria could increase tolerance to Bt as nutritional dif-
ferences in diet correlate to alterations in Bt susceptibility (Deans 
et al., 2017; Ludwick et al., 2018). Previous experiments involving 
combinations of bacterial spray formulations, spores and purified 
crystals, following antibiotic treatment on artificial diet have yielded 
conflicting results (Johnston & Crickmore, 2009; Raymond et al., 
2009). Broderick et al., (2006) used an E. coli strain engineered to 
produce the Bt toxin and demonstrated that toxin alone is not suf-
ficient to induce significant mortality. It is also possible to examine 
the effect of the Cry toxin alone by using Bt crops expressing the 
active toxin. In one such study, axenic insects had marginally higher 
survival compared to nonaxenic ones reared on Bt- expressing maize 
(Hilbeck et al., 2018). In conjunction, they found mortality was de-
layed in axenic insects, a common finding in previous work using 
various sources of Bt other than genetically modified plant mate-
rial (Broderick et al., 2006, 2009; Hilbeck et al., 2018; Johnston & 
Crickmore, 2009; Raymond et al., 2009). Bt has been shown to more 
severely affect younger larvae with evidence of older larvae losing 
binding sites altogether (Ali & Young, 1996; Rausell et al., 2000). By 
simplifying the bacterial community and controlling large fluctua-
tions in community composition, WCR may be able to evade or delay 
Bt induced mortality by outpacing/outgrowing the toxin.

The mode of action of Bt involves complex interactions between 
toxin binding, native bacteria, nutrition and the host immune re-
sponse. We found that resistance to Bt in WCR can result in altered 
bacterial communities between resistant and susceptible insects. 
Furthermore, those communities in susceptible and resistant insects 
varied in their response to Bt. Dysbiosis was induced only in the sus-
ceptible insects after feeding on Bt expressing maize. Studies with 
other animals have shown that dysbiosis frequently precedes dis-
ease states (Kamada et al., 2013; Raymann et al., 2017). Indeed, toxin 
binding/activation is crucial to Bt intoxication, but additional routes 
of resistance are likely. These results add to the growing body of ev-
idence of gut bacterial community involvement in Bt susceptibility. 



5450  |    PADDOCK et Al.

As such, while characterization of the WCR microbiome is increasing, 
elucidation of the biological role of specific taxa is lacking. Further 
investigation into the role of native bacteria in the WCR could deepen 
the understanding of possible resistance mechanisms and provide 
targets for new management strategies for this challenging pest.
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