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Abstract: Inflammatory arthritis, including rheumatoid arthritis (RA) and osteoarthritis
(OA), is a group of degenerative joint diseases that result in reduced mobility and a preva-
lent cause of disability. Despite differing etiologies, both conditions involve inflammation,
affecting only the joints in OA and systemic in RA due to its autoimmune nature. Regenera-
tive medicine offers promising alternatives, with a focus on the therapy with mesenchymal
stem cell (MSC) and their secreted extracellular vesicles (EVs). MSC-derived EVs have
shown great potential in modulating inflammatory pathways and promoting tissue repair
in the preclinical models of RA and OA. Additionally, EVs from immune cells exhibit strong
anti-inflammatory effects, reducing cartilage and bone degeneration. This review highlights
the recent progress in MSC-based and EV-based therapies for OA and RA, discussing the
bioengineering approaches that enhance the therapeutic efficacy, stability, and targeting of
EV. It also addresses the major challenges in translating EV therapy from the laboratory to
clinical practice and discusses strategies to overcome these obstacles in the treatment of
inflammatory arthritis.

Keywords: extracellular vesicles; exosomes; mesenchymal stem cells; osteoarthritis; rheumatoid
arthritis; inflammation

1. Introduction
Rheumatoid arthritis (RA) and osteoarthritis (OA) are heterogeneous diseases in terms

of their etiology and mechanisms of development, leading to significant deterioration in
the quality of life and being common causes of disability [1,2]. RA is a chronic systemic
autoimmune inflammatory disease that causes damage to the joints, connective tissue,
muscles, tendons, and fibrous tissue. The global prevalence of RA is about five cases
per 1000 adults [3,4]. OA is a widespread, progressive, and degenerative joint disease
characterized by degenerative processes in the articular cartilage, subchondral bone, and
inflammation of the synovial membrane, where factors such as age, genetic predisposition,
gender, lifestyle, and joint injuries contribute to the joint destruction and disease progres-
sion [5]. The cost of OA therapy in the USA amounts to $100 billion, and since aging is one
of the main risk factors for the disease, its prevalence will only increase, creating a heavy
burden on the national healthcare systems [6].
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The etiology of both types of arthritis is not fully understood. In RA, the MHC Human
leukocyte antigen (HLA)-DRB1 gene is considered the main risk factor, as well as a high
level of autoantibodies to citrullinated protein found in 80% of patients [7–9]. In the
case of OA, the risk factors may include disturbances in the chondrocyte metabolism and
synthesis and degradation of the extracellular matrix (ECM), inflammation due to aging,
or mechanical stress [10]. Secondary OA often develops after injuries or infections and is
characteristic of younger patients [11,12].

One of the primary triggering factors of OA is the alteration of the chondrocyte
metabolism in response to mechanical damage and aging [13]. Chondrocytes are a popula-
tion of cells with limited regenerative capacity. They play a crucial role in maintaining the
integrity of the ECM [14]. In response to pathological factors, chondrocytes tend to undergo
hypertrophy and secrete catabolic factors, including Runt domain factor-2, collagen 2, and
various metalloproteinases (MMP) [15]. The cartilage degradation during the OA pro-
gression is accompanied by the release of damage-associated molecular patterns (DAMP),
which activate synovial fibroblasts and macrophages [16]. This activation promotes the
pro-inflammatory state characterized by the secretion of inflammatory cytokines, including
tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, and MMP (MMP-1, MMP-3, and
MMP-13) The secretion of these inflammatory factors and proteases creates an inflamma-
tory microenvironment within the knee joint, leading to further cartilage and subchondral
bone damage [16]. This, in turn, exacerbates the clinical manifestations of OA, such as joint
dysfunction [17].

In the RA progression, the synovial membrane thickening and activation of two
synoviocyte populations—macrophage-like synoviocytes (MLS) and fibroblast-like syn-
oviocytes (FLS)—can be observed. Both types of synoviocytes secrete chemokines and
inflammatory cytokines, such as IL-1, IL-6, TNF-α, prostaglandins, and leukotrienes [18,19].
Additionally, FLS produces significant amounts of MMP, contributing to ECM degrada-
tion. These secreted factors stimulate synovial infiltration by macrophages and CD4+
T-cells (Th1 and Th17), which secrete TNF-α, IFN-γ, IL-6, IL-1β, and IL-17 [20]. B-cells
secrete autoantibodies, such as rheumatoid factor, and antibodies against citrullinated
proteins [21,22]. The increased TNF-α secretion enhances B-cell expression of the nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB) ligand (RANKL), promoting
osteoclastogenesis and leading to increased bone resorption [23,24]. The infiltration of
immune cells, along with the proliferation and activation of synoviocytes, results in the
formation of RA-specific pannus, which erodes the cartilage and bone during the later
stages of RA pathogenesis [25]. The common properties, as well as the differences in the
pathogenesis of OA and RA, are presented in Figure 1.
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Figure 1. Comparison of the main features of OA and RA. The figure presents a brief characterization
of the common and specific features of each disease, including differences in etiology, clinical
manifestations, and pathogenic mechanisms for OA and RA [1,26–28].

Modern recommendations for the treatment of RA include symptomatic treatment
and disease-modifying drug therapy, whereas OA therapy is primarily aimed at symptom
relief [29,30]. RA therapy includes disease-modifying antirheumatic drugs (DMARDs),
nonsteroidal anti-inflammatory drugs (NSAIDs), and glucocorticoids, targeting inflamma-
tion and symptoms [31,32]. Although synthetic and biological DMARDs are effective, they
are expensive and have significant side effects [1,33]. There are no drugs available for OA
that affect the pathogenesis of the disease; pharmacotherapy aims at symptom relief using
NSAIDs, glucocorticoids, hyaluronic acid injections, and platelet-rich plasma [29,34,35].
In severe cases, joint replacement with an endoprosthesis is required, which carries high
risks [34,36].

The need for effective therapy for RA and OA with an adequate safety profile has led to
the investigation of cell therapy based on mesenchymal stem cells (MSC) and components
of their secretome—extracellular vesicles (EVs), which have shown efficacy due to their
immunosuppressive and regenerative effects [37–39]. This review will compile the studies
on MSC and MSC-EV therapy for OA and RA, as well as therapies based on other cell
sources. In addition to unmodified EV, attention will be given to various approaches
to modify MSC and EV by altering cultivation conditions, genetic modifications, and
creating combined tissue engineering constructs that incorporate scaffolds and therapeutic
components consisting of EV or MSC. The prospects and challenges of transitioning EV
therapy for OA and RA from bench to bedside will also be discussed. This manuscript
presents a narrative review based on the literature retrieved from bibliographic and abstract
databases, including Scopus, PubMed, Google Scholar, and ClinicalTrials.gov.

2. Cell Therapy
MSCs have garnered significant attention from scientists and clinicians in the context

of treating many diseases, including OA and RA, due to their multimodal regenerative
and immunomodulatory properties [40,41]. MSCs are non-hematopoietic spindle-shaped
cells that adhere to plastic and possess the ability to self-renew and differentiate into the
chondrogenic, osteogenic, and adipogenic lineages [42,43]. Until recently, the human or
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animal bone marrow has been the main source of material for preclinical studies and
clinical trials. Adult stromal cells are found in most tissues and organs, and the following
sources have been used to treat knee osteoarthritis: bone marrow, peripheral blood, adi-
pose tissue, trabecular bone, synovial fluid, and synovial membrane [44–48]. In a recent
systematic review and meta-analysis including 15 studies, Chen et al. showed that MSC
transplantation effectively treats patients with OA, with autologous from bone marrow
mesenchymal stem cells (BMMSC) potentially providing more benefit [49]. The isolation of
mesenchymal stromal cells from adipose tissue is recognized as a potential way to obtain a
large number of autologous cells for the cell therapy of osteoarthritis due to their relatively
easy harvesting and chondrogenic potential. In addition, these cells are less susceptible
to aging and are independent of the patient’s physiologic state, gender, and age [50,51].
According to the International Society for Cellular Therapy, MSCs are characterized by
the expression of the surface markers cluster of differentiation (CD)73, CD105, and CD90,
while lacking the expression of CD34, CD14, CD45, and CD11b [42,52,53]. The studies on
the therapeutic properties of MSC for the treatment of inflammatory and degenerative
diseases have shown that MSCs exert anti-inflammatory effects and stimulate regeneration
through paracrine effects and cell–cell interactions [54–57].

2.1. The Immune-Modulating Effect

In inflammatory diseases of the musculoskeletal system, there is a disruption of
balance in the innate and regulatory immune responses, characterized by an increase in the
proportion of pro-inflammatory M1 macrophages and Th1 and Th17 T-cells, with a decrease
in cells with anti-inflammatory and regulatory phenotypes, such as M2 macrophages and
T-reg cells [58–60].

The immunosuppressive effect of MSC can be mediated through cell–cell contact with
T-cells and natural killer (NK) cells by interacting with the MSC-expressed surface molecule
HLA-G, a non-classical MHC class I molecule that can suppress the action of activating NK
receptors [61,62]. Another mechanism for the receptor regulation of T-cell activity by MSC
is mediated through intercellular adhesion molecules ICAM-1 and ICAM-2, as well as the
surface ligand for programmed death-1 (PD-1), which allows the inhibition of allogeneic
differentiation of T-helper (Th)17 cells [63,64]. Furthermore, MSC inhibits phosphorylation
of extracellular signal-regulated kinases (ERK)1/2 and causes the activation of mitogen-
activated protein kinase p38 (MAPK) in B cells, leading to cell cycle arrest in the G0/G1
phase [65].

Moreover, the immunosuppressive effect of MSCs is caused by the paracrine mecha-
nism. MSCs enhance the immune tolerance of Tregs and tolerogenic dendritic cells (tDCs)
by inhibiting T-cell proliferation through MSC-secreted indolamine-2,3-dioxygenase (IDO),
which is stimulated by the formation of kynurenine from tryptophan, necessary for T-cell
proliferation [66,67]. Prostaglandin E2 (PGE2) produced by MSC suppresses the IFN-γ
production in NK cells and activates CD4+ T cells, resulting in the attenuation of inflam-
mation induced by Th1 cells [68]. In RA and OA, there is a disruption in the balance
of osteoblast and osteoclast activity, leading to bone destruction and resorption [69]. In-
creased osteoclastogenesis is influenced by M1 macrophages, which secrete TNF-α and
IL-1β; these inflammatory cytokines activate synovial fibroblasts that secrete macrophage
colony-stimulating factor (M-CSF) and RANKL, both necessary for the survival and mat-
uration of osteoclasts [70,71]. Different types of MSC can alleviate the pro-inflammatory
environment in joints in OA and RA by inducing polarization of macrophages into the M2
phenotype in vitro, as well as inhibiting inflammatory activation of synovial macrophages
in vivo [72–74]. Thus, through the production of TNFα-stimulated gene/protein 6, PGE2,
and IDO, MSC attenuates the inflammatory process in inflammatory arthritis by reducing
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M1 macrophage polarization, which is associated with the secretion of TNF-α and IL-1,
and promoting M2 polarization [75]. These changes occur due to the release of TSG-6 in
response to TNF-α produced by activated M1 macrophages. TSG-6 interacts with CD44
on macrophages, reducing Toll-like receptor (TLR)2/NF-κB signaling and consequently
decreasing the secretion of inflammatory mediators (nitric oxide, TNF-α, and IL-1) [75,76].
The effects of TSG-6 have been replicated in an in vivo model of dextran sulfate sodium-
induced colitis. This factor, secreted by adipose-derived MSC, alleviates inflammation
upon intraperitoneal injection by promoting phenotypic switching of macrophages toward
the M2 phenotype [77]. In turn, MSC-derived PGE2 binds to EP2 and EP4 receptors on
macrophages and promotes the production of immunosuppressive IL-10 [78]. MSC therapy
application in RA has shown that MSC can suppress the differentiation and maturation
of mature osteoclasts through MSC-secreted osteoprotegerin, as well as via suppressing
the RANKL-induced osteoclastogenesis, thus reducing the progression of bone tissue
erosion [79].

Among the paracrine factors secreted by MSC that promote regenerative processes in
OA and RA, the purinergic signaling molecule adenosine plays a pivotal role. Adenosine
is produced via the enzymatic activity of CD39 and CD73 (ecto-5′-nucleotidase), both
of which are expressed on MSC [80,81]. This mechanism modulates inflammatory and
apoptotic responses in chondrocytes, resulting in reduced inflammation and catabolism,
and decreased secretion of IL-6, IL-1β, TNF-α, and PGE2, ultimately mitigating cartilage
degeneration in OA and RA [82,83]. Adenosine and CD73 expression also partially mediate
the immunosuppressive and proliferative effects of MSC on human macrophages and
T lymphocytes. Suppression of CD73 or adenosine A2A receptor expression negatively
impacts the immunosuppressive activity of MSC, underscoring the critical role of CD73
in modulating MSC immunoregulatory function [84,85]. MSC-mediated regulation of
adenosine synthesis via CD39/CD73 also modulates osteoclastogenesis in autoimmune
arthritis, such as RA [86,87]. In this context, gingiva-derived MSC inhibits the NF-κB and
p65/p50 expression in vitro and reduces the RANKL expression in the synovial tissue and
osteoclast formation in an in vivo model of autoimmune arthritis in mice [86,87].

The immunomodulatory properties and differentiation potential of MSC can be im-
proved through various approaches. The key approaches include modulation of culti-
vation conditions, such as priming with inflammatory cytokines, and cultivation under
hypoxia [78,88,89]. MSCs are quite sensitive to oxygen fluctuations, particularly to high con-
centrations that induce oxidative stress in MSC, and they show the highest viability when
cultured under reduced oxygen levels [90,91]. Several studies have shown that cultivation
under hypoxia enhances the regenerative potential of MSC by increasing Hypoxia-inducible
factor-1α (HIF-1α)-dependent autophagy [92]. The ability to enhance the immunosuppres-
sive effect in treating diseases associated with inflammation and immune dysregulation has
attracted wide attention from researchers. Cultivation of MSC in the presence of inflamma-
tory cytokines or various growth factors, such as TGF-β and bone morphogenetic proteins
(BMP), can enhance the immunomodulatory properties of MSC. For example, priming
MSC in the presence of IFN-γ can inhibit the effector functions of T-cells, as well as enhance
the polarization of monocytes into the M2 macrophage phenotype, secreting IL-10, which
leads to a reduction in the number of Th17 cells [78,93,94]. Moreover, calcium channels reg-
ulated by physical stimuli also play an important role in the chondrogenic differentiation of
MSC [95]. These channels increase the concentration of intracellular calcium, which leads to
the triggering of signaling pathways that induce the expression of cartilage-specific genes
and promote the synthesis of cartilage-specific proteins (type 2 collagen, type 9 collagen,
aggrecan, and cartilage oligomeric matrix protein) during chondrogenic differentiation [95].
Additional application of various physical stimuli—mechanical, electric, electromagnetic,
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or magnetic fields—can lead to an increase in the calcium concentration and, ultimately, to
the activation of chondrogenic gene expression in MSC [96,97]

2.2. ECM Synthesis

The progressive destruction of the cartilage and bone tissue caused by an imbalance
of the ECM synthesis and degradation is one of the main negative manifestations of both
OA and RA [98,99]. The primary role in the degradation of the ECM in the cartilage,
consisting mainly of different types of collagens and proteoglycans, is played by MMPs,
whose increased expression predominates over the levels of cartilage anabolic markers
such as type II collagen [100,101]. MSC therapy can stimulate the regenerative processes
in the cartilage tissue by reducing the expression of the ECM catabolism factors such as
MMP13 and ADAMTS-5 disintegrins, while increasing the content of tissue inhibitors of
MMPs [102,103]. In addition, Wang et al. showed the feasibility of MSC application in the
therapy of degenerative joint diseases, as they found an increase in Col 2α1 gene expression
in the knee joint cartilage, which encodes the α-1 chain of collagen II, after MSC-based
therapy [104].

2.3. Chondrogenesis

The significant component of the pathogenesis of osteoarthritis is a decrease in chon-
drocyte proliferation, their ability to autophagy, and increased apoptosis [105]. The chondro-
genesis is primarily caused by the chondrogenic differentiation of MSC triggered by some
growth factors or increased activity of chondrocyte progenitors and chondrocytes stimu-
lated by MSC [106]. Thus, UCMSC demonstrated high chondrogenic potential confirmed by
the increased expression of the sex-determining region of the Y-chromosome-transcription
factor 9 (Sox9) as a marker of chondrocyte precursors [107]. BMP is a subfamily of the
TGF-β superfamily responsible for the induction of bone and cartilage formation. Increased
levels of BMP6 promoted the chondrogenesis of mesenchymal stem cells [108]. Overex-
pression of key transcription factors to maintain pluripotency and self-renewal, such as
Nanog and Oct4, also enhanced the chondrogenic properties of cells [109]. Zhang et al.
found that intra-articular injection of MSC from the human umbilical cord blood reduced
the development of joint lesions due to the increased expression of collagen and ki67 in the
articular cartilage [103].

The oxidative stress in human chondrocytes can cause DNA damage and promote
cell aging [110]. Reactive oxygen species (ROS) are significant in the signaling pathways
activated by IL-1β in chondrocytes [111]. Platas et al. investigated the effect of the ROS on
the modification of of adipose tissue MSC (ATMSC)-dependent proteins. In chondrocytes
derived from an osteoarthritis model, IL-1β rapidly induced ROS synthesis and increased
the level of 4-hydroxy-2-nominally modified proteins, while ATMSC promoted a decrease
in their concentration [112]. Aging and stress affect the phenotype of chondrocytes in
osteoarthritis, while age-related mitochondrial dysfunction and associated oxidative stress
may contribute to chondrocyte aging [113]. Studies have shown that mitochondria are
transferred from bone marrow mesenchymal stem cells (BMMSC) to chondrocytes in
osteoarthritis. One study demonstrated that co-culture with mitochondria of MSC increased
the mitochondrial membrane potential compared to chondrocytes that did not receive
mitochondria. Moreover, the activity of mitochondrial respiratory chain enzymes and the
level of adenosine triphosphates significantly increased [114].

2.4. Tissue Engineering and MSC

Tissue engineering is a rapidly developing technology. These approaches enhance the
regenerative potential of MSC by creating the 3D conditions that mimic the natural MSC
niche formed by the ECM, as cultivation in the 2D conditions makes the cell phenotype
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more pronouncedly different from the in vivo conditions, limiting the therapeutic potential
of MSC-based cell therapy [115,116]. The scaffold materials for encapsulating MSC can
include both synthetic and natural polymers, such as biopolymers: fibrin, collagen hydrogel,
silk, chitosan, and various synthetic polymers, enhancing MSC survival and their ability to
undergo chondrogenic and osteogenic differentiation [117–120]. Combining MSC with a
hydrogel reduces the cell component loss during the implantation procedure by decreasing
the mechanical stress [121]. The hydrogel’s ability to retain MSC at the injection site, along
with creating a favorable environment for cell growth and differentiation, results in a longer
therapeutic effect of MSC therapy than administering only the cell component, contributing
to the preservation of the therapeutic effect in OA patients for up to 3 years [122]. In
addition, Gonzalez-Fernandez et al. covalently linked glucose molecules to hyaluronic acid
and used the resulting molecule as a base for the creation of an MSC-enriched hydrogel [123].
During in vitro modeling experiments, it was found that the addition of glucose to the
hydrogel increased the viability of MSC by 71% [123]. The authors explain this result by the
presence of β-glucosidase in the joint cavity, which hydrolyzes glycosidic bonds between
glucose and hyaluronic acid molecules, resulting in the release of glucose molecules that
provide MSC with energy [123].

Due to their high therapeutic potential, MSCs have shown their therapeutic efficacy
in preclinical settings, providing significant therapeutic effects in treating osteoarticular
diseases such as RA and OA. However, despite the high therapeutic potential, MSC-based
cell therapy itself raises several safety concerns. MSC may exhibit undesirable proliferative
and differentiation capabilities and risk of phenotype loss, with the greatest concern being
the risk of tumor transformation [124,125]. Another undesirable factor that can cause an
excessive immune response during allogeneic MSC transplantation in vivo is the expression
of the MSC molecule MHC I, which can trigger an undesirable immune response in the
patient [126]. However, the question of whether MSC provokes the host immune rejection
upon allogeneic transplantation remains under debate. This is due to the fact that MSC
does not express HLA-DR or the co-stimulatory molecules CD80, CD86, and CD40, which
are typically required for the activation of T and B lymphocytes [127,128]. In general, in
the absence of a pro-inflammatory microenvironment, MSC exhibit immunosuppressive
activity toward macrophages, NK cells, T cells, and B cells, and do not typically induce
severe immune reactions following in vivo transplantation [129,130]. Therefore, from a
safety standpoint, therapy by extracellular vesicles from MSC and other cellular sources
looks more promising for OA and RA therapy; research on this topic will be discussed in
the following sections.

3. Therapy of OA and RA with Unmodified EV
One of the promising analogs of cellular therapy for inflammatory joint diseases

is the use of extracellular vesicles (EVs) [131]. EVs have heterogeneous origins and
functions within the body; they include exosomes, microvesicles, and apoptotic bod-
ies [132,133]. Exosomes are nanoscopic particles of endosomal origin with an average
size of 30–150 nm [134,135]. Exosomes are formed by the invagination of clathrin-coated
plasma membrane microdomains, leading to the formation of multivesicular bodies. Dur-
ing exosome biogenesis, they fuse with the plasma membrane, followed by the secretion
of exosomes into the intercellular space [136,137]. Exosomes can be differentiated from
other types of EV using the endosomal markers CD9, CD63, CD81, TSG101, and Alix [138].
According to the MISEV2023 guidelines, it is recommended to use the general term “EV”
instead of “exosomes” or “microvesicles,” unless the biogenetic pathway has been clearly
demonstrated and selective isolation methods have been employed [135]. In this narrative
review, specific terms such as “exosomes” are used only in those studies where the authors
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explicitly identify the EV subtype and provide the characterization of specific EV markers.
Apoptotic bodies are relatively large EVs consisting of subcellular fragments (average size
from 1 to 5 µm); they are formed during apoptotic cell death [139,140]. Microvesicles can
be larger than exosomes with an average size of 100–1000 nm, although their sizes may
overlap with the size of exosomes [141]. This EV subtype is released by the budding of the
plasma membrane and participates in intercellular communication through the local or
paracrine transmission of signaling molecules [139,141].

Currently, the increasing evidence highlights the role of EV in the progression of
diseases associated with the degenerative processes in the cartilage tissue, such as OA and
RA. [142,143]. EVs associated with the pathogenesis of RA and OA differ in their composi-
tion compared to those from healthy patients and tend to accumulate in the bloodstream
and synovial fluid of individuals suffering from these diseases [144–146]. Studying the role
of endogenous EV in OA and RA development contributes to a deeper understanding of
the intricate mechanisms underlying these multifactorial pathologies and allows for the
consideration of these microparticles as potential biomarkers for disease diagnosis [147].
In OA patients, exosomes circulating in the synovial fluid carry elevated levels of inflam-
matory cytokines IL-1β and TNF-α [145]. The inflammatory mediators transported by
EV contribute to the activation of FLS, promoting cartilage ECM degradation and the
formation of an inflammatory microenvironment [144]. The pathological calcification of
the cartilage tissue is considered by researchers as a critical factor in the early pathogenesis
of OA [143]. Calcified EV formed in autophagosomes, containing autophagy-derived
microtubule-associated proteins 1A/1B light chain 3B positive EV, can initiate pathological
cartilage calcification. Regulating the secretion of these EV is regarded as a promising
therapeutic target for OA [143]. Senescent chondrocytes are a source of EV that negatively
affect the ECM deposition and accelerate the aging of surrounding cells. The removal
of senescent chondrocytes has been shown to favorably influence the composition of EV,
slowing degenerative changes in the cartilage tissue [148]. Subchondral osteoblasts secrete
exosomes that disrupt chondrocyte metabolism, enhancing the expression of catabolic-
related genes [149]. In RA patients, the IgM rheumatoid factor has been detected in plasma
EV, and its presence in circulating exosomes has been associated with more severe disease
progression [150]. EV from RA patients has been shown to stimulate the M1 polarization
of macrophages with a pro-inflammatory phenotype and to support the survival of T
and B lymphocytes when co-cultured with these microparticles, modulating the cellular
behavior characteristic of the RA development in vivo [151]. Additionally, the evidence
suggests that exosomes negatively affect T-cell regulation by disrupting the Th17/Treg
balance and promoting increased levels of inflammatory cytokines [142]. Exosomes from
the synovial fluid of RA patients stimulate osteoclastogenesis, and these exosomes can be
detected in RA patients but not in OA patients. This specificity suggests that exosomes
could serve as diagnostic biomarkers for RA [152]. The invasive synovial tissue phenotype
is one of the key attributes of RA pathogenesis [153]. In a study by Frank-Bertoncelj M
et al., it was discovered that exosomes in RA patients contained Toll-like receptor 3 and
polyinosinic-polycytidylic acid. When these EVs interact with synovial fibroblasts, they
induce the pathological phenotype characteristic of RA [154]. Regulating the biogenesis
and cargo of EV represents a promising research direction for identifying the potential
therapeutic targets for the OA and RA treatment.

To date, an increasing number of studies are exploring the potential use of EV-based
cell-free therapies for modulating the inflammatory and dystrophic processes that occur
due to joint inflammatory diseases in OA and RA [155–158]. The application of EVs
derived from MSCs has shown that the effect of EV is not inferior in its effectiveness
to MSC-based cellular therapy [159,160]. MSC-derived EVs, unlike MSCs, are safer due
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to their lower immunogenicity and lower likelihood of a nonspecific interaction with
circulating proteins [157,161,162]. It should be noted, however, that similar to their parent
cells (e.g., MSCs), exosomes derived from these sources may contain small amounts of
MHC-I molecules on their surface [163]. Nevertheless, proteomic analyses have shown
that MSC-derived exosomes do not contain significant levels of MHC-I. Moreover, these
exosomes predominantly exert immunosuppressive effects and do not provoke strong
immune responses in vivo [163,164]. One of the significant risks of MSC-based cellular
therapy is their risk of abnormal differentiation and tumor transformation, while EVs do
not pose such risks since they are not capable of replication [165]. EVs protect their cargo
of biologically active molecules, proteins, and nucleic acids and are also capable of crossing
biological barriers [166,167]. The ability of EVs to interact specifically with target cells,
along with their good safety profile, makes EVs a more optimal delivery tool for both
endogenous molecules that regulate cellular processes and drug molecules loaded into
EVs [168].

One of the key advantages of EV therapy for degenerative joint diseases is the man-
agement of autoimmune and inflammatory processes at both the systemic and local tissue
microenvironment levels, which helps to alleviate pain and inflammation and prevent
destructive processes in the joints [165,169]. Excessive inflammation in RA arises from the
imbalance between regulatory T cells (Treg) and Th1/Th17, with the latter producing in-
flammatory cytokines such as IFN-γ and IL-17, enhancing migration and activation of FLS,
granulocytes, and macrophages in the knee joint [170–173]. Gingival MSC (GMSC) exo-
somes exert their therapeutic effect by inhibiting the IL-17RA-Act1-TRAF6-NF-κB signaling
pathway, reducing the secretion of inflammatory cytokines TNF, IL-6, and IL-1β [157]. The
impact on the IL-17 cytokine secretion is one of the important directions in modifying the
inflammatory process in RA, as this cytokine, through the activation of IL-17RA, trans-
mits a signal via the Act1-TRAF6 pathway, leading to the activation of NF-κB, MAPK,
and PI3K pathways [157,174]. EV from umbilical cord mesenchymal stem cells (UCMSC)
are able to change the Treg/Th17 ratio by increasing the proportion of Treg in RA, while
they increase the secretion of TGF-β in the blood serum, which leads to the inhibition of
pathomorphological changes in the synovial tissue [175]. The immunosuppressive effect
of exosomes derived from BMMSC contributed to a better therapeutic effect compared
with microparticles and parent cells of MSC, effectively reducing inflammation, which was
accompanied by an increase in the number of regulatory B-cells expressing IL-10 in lymph
nodes [176].

Destructive processes in the cartilage, bone, and tendons are among the main signs
of progression of both OA and RA [99,177]. A characteristic sign of RA is changes in the
synovial membrane, which are accompanied by excessive proliferation of FLS and immune
cell infiltration, leading to the formation of synovial hyperplasia [178]. Increased activation
of FLS and immune cells such as lymphocytes and macrophages enhances the expression
and secretion of inflammatory cytokines, growth factors, and adhesion molecules TNF-α,
IL-6, IL-1β, VEGF, CAM-1, VCAM-1, creating a pro-inflammatory microenvironment in
the synovial membrane in RA, which contributes to the cartilage tissue resorption and
increased activation of neovascularization [179–181]. One of the main destructive factors
for both OA and RA is the increased production of proteases MMP by metabolically active
chondrocytes and FLS, induced by pro-inflammatory cytokines IL-1β and TNF-α, which
degrade the ECM components of hyaline cartilage such as MMP-1, -3, and -13 [182,183].
The action of BMMSC)-exosomes can mitigate the effects of inflammatory cytokines, such
as TNF-α and IL-6, as well as proteases MMP1 and MMP13 in FLS treated with IL-1β,
with one mechanism of this effect being the suppression of the NF-κB signaling pathway,
leading to the reduced expression of these pathological factors [184,185]. Suppression of
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NF-κB signaling is relevant in both OA and RA, as there are cross-effects between the
increased intracellular signaling via NF-κB, leading to the induction of MMPs, whose
excessive secretion creates a catabolic microenvironment associated with more pronounced
destruction of the ECM components in the cartilage tissue [186,187]. Exosomes secreted by
MSCs contain active CD73 and may mediate the paracrine immunosuppressive activity of
MSCs toward macrophages by promoting M2 polarization. These exosomes enhance the
adenosine production, which, through the activation of adenosine A2A and A2B receptors,
induces phenotypic changes in macrophages via AKT/ERK-dependent signaling pathways,
leading to the development of the M2 phenotype characterized by the increased expression
of M2-associated markers such as arginase-1, IL-10, IL-1RN, and CD206 [188]. Small EV
from adipocyte MSC (ADMSC) can improve the inflammatory and catabolic environment in
chondrocytes and synoviocytes by suppressing the secretion of pro-inflammatory cytokines
IL-1β, IL-6, IL-8, and monocyte chemoattractant protein 1 (MCP-1) in both cell types by
suppressing NF-κB, whose expression was induced by IL-1β [155].

There is a correlation between the increased production of ROS, oxidative stress,
and DNA damage in chondrocytes and the synovial membrane, which induces cellular
apoptosis. Therefore, managing oxidative stress represents a promising therapeutic target
for arthritis [110,189]. Exosomes from human UCMSC affect ROS production, which
causes damage to chondrocytes, alleviating oxidative stress through the suppression of
exosomal miR-100-5p, which inhibits the NOX4 expression [190]. Exosomes from UCMSC
can suppress inflammation by reducing the levels of Nod-like receptor family pyrin domain
containing 3 (NLRP3) in macrophages through the inhibition of METTL3 via miR-1208,
leading to decreased production of inflammatory cytokines [191]. EVs from MSCs provide
a high therapeutic potential for the treatment of inflammatory and degenerative joint
diseases, preserving the therapeutic effects of EV-producing cells while ensuring a better
safety profile. This allows for the consideration of unmodified EVs as an alternative cell-free
platform for delivering paracrine factors of stem cells to the damaged joint area, providing
a therapeutic effect locally.

In addition to exosomes and microvesicles from MSCs, the components of the ECM
of mucosal soft tissues have been identified relatively recently as donors of EV with
immunomodulatory properties, termed matrix-bound nanovesicles (MBVs) [192]. MBVs
obtained from the ECM UCMSC have a significantly different composition from exosomes
in the proteome and are enriched with clusters of leukocyte activation, cell migration, and
ECM component formation [193]. MBV carries miRNA125b-5p, 143-3p, and 145-5p and can
manage the inflammatory process by altering the macrophage polarization, promoting the
increase in M2 macrophage populations with anti-inflammatory and immunoregulatory
profiles [194]. In the treatment of acute and chronic RA, MBV at the level of standard
methotrexate therapy contributed to better bone tissue remodeling in mice and increased
the population of M2-like macrophage phenotypes [195].

In addition to MSCs, EVs (exosomes, microvesicles, apoptotic bodies) derived from im-
mune cells, including M2 polarized macrophages, neutrophils, and granulocytic myeloid-
derived suppressor cells (G-MDSC), can regulate the inflammatory process in RA and
OA [196–199]. Controlling the macrophage phenotypes is one of the therapeutic targets
for OA and RA, and EVs derived from M2 macrophages can facilitate the reprogram-
ming of macrophages in situ by increasing the population of M2 macrophages with an
anti-inflammatory profile in the synovial tissue in RA [196]. Exosomes derived from
monocytes differentiated into IL-4 M2 macrophages can stimulate the differentiation and
ECM production by chondrocytes through the transfer of mRNA and Sox9 protein, which
ensures the differentiation of chondrocytes from precursor cells [199,200]. In addition to
exosomes, apoptotic bodies have shown outstanding therapeutic potential in OA. Apop-
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totic bodies from M2 macrophages enriched in miR-21-5p, unlike pro-inflammatory M1
macrophages, can modulate the macrophage phenotype in the synovial tissue, reducing
inflammatory cytokines IL-1β, IL-6, TNF-α, IFN-γ, and preserving the cartilage tissue
structure in OA [201].

Microvesicles from neutrophils can positively affect the cartilage degradation in RA by
influencing chondrocyte homeostasis, preventing their apoptosis by reducing the secretion
of prostaglandin E2 and IL-8, as well as by reducing the inflammatory activation of FLS
and M1 macrophages [198,202]. Exosomes from G-MDSC have immunomodulatory prop-
erties in RA through their diverse exosomal cargo of miR-29a-3p and miR-93-5p nucleic
acids [158,197]. The presence of miR-29a-3p and miR-93-5p in G-MDSC exosomes can
influence another aspect of the RA autoimmunity by reducing the elevated Th1 and Th17
levels in RA, which is accompanied by a decrease in inflammatory cytokines IFN-γ and
IL-17A [197]. Immune cells can be an effective alternative source of EV with tropism to cells
with high phagocytic activity, such as resident macrophages, making them a promising
therapeutic agent for cell modification in OA and RA [203]. Detailed studies are needed to
compare EVs from various sources in terms of safety and therapeutic efficacy. However,
there are several challenges to advancing therapy based on unmodified EVs that need to be
considered. First, there are risks of high variability in the EV cargo content since cultured
cells can undergo aging and exposure to external cultivation factors. There are also con-
cerns regarding the specificity and targeting of therapeutic EVs to target cells. These issues
highlight the need for approaches that ensure the modification of EV-producing cells and
the EVs themselves to preserve the signaling molecules with therapeutic potential within
EVs for OA and RA, as well as surface modification of EVs using various technologies to
ensure specific interactions with target cells.

4. Modified Extracellular Vesicles
Although extracellular vesicles from unmodified parent cells demonstrate the ther-

apeutic efficacy in in vitro and in vivo models of OA and RA, the application of bioengi-
neering approaches can enhance the therapeutic efficacy, improve the pharmacokinetic
properties, increase the EV stability, and increase their ability to target specific cells [204,205].
The existing EV modification methods can be divided into approaches applied before the
EV isolation, targeting EV-producing cells through genetic manipulation and alteration
of cultivation conditions, as well as post-isolation approaches involving the addition of
therapeutic molecules to EV or surface modification of EV using various chemical meth-
ods [206–208]. Indirect EV modification approaches include modifying the cultivation
conditions, culturing cells under hypoxia, and conditioning cells with various inflamma-
tory cytokines, antioxidants, and growth factors [209,210]. Additionally, culturing cells in
3D conditions can significantly improve the therapeutic efficacy of EV [211].

4.1. Hypoxic Method

Culturing under low oxygen conditions is one of the common methods to enhance the
therapeutic potential of MSCs and EVs they secrete [212]. Low oxygen levels in the envi-
ronment enhance the MSC stemness and migration, with increased expression of HIF-1α
playing a crucial role in boosting the therapeutic potential of the MSC secretome [213,214].
The studies on EV from MSC cultured under hypoxic conditions have shown enhanced pro-
liferation and migration of chondrocytes due to the increased expression of miRNA-181c-5p,
which suppresses the chondrocyte apoptosis through the miRNA-18-3P/JAK/STAT sig-
naling pathway [212]. Despite the increased effectiveness of hypoxia in enhancing the
therapeutic potential of MSC-derived EV, some researchers believe that priming MSC with
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growth factors is a more effective approach to modifying the therapeutic potential of MSC,
which may also impact EV secreted by these cells [215].

4.2. Preconditioning with Pro-Inflammatory Factors and 3D Cultivation Conditions

One approach to modifying the content of MSC-derived EVs to increase their yield
and composition involves modifying the cultivation conditions using the 3D culture en-
vironments. These methods create mechanical conditions for the cells that are closer to
the natural conditions in terms of spatial and mechanical organization, maintaining the
stemness of MSCs. One of the simplest approaches is the 3D cultivation of MSCs in the
form of spheroids [211,216,217]. The use of spheroids as sources of EV significantly influ-
ences the therapeutic properties of EV, enhancing the immunosuppressive and regenerative
effects of EV derived from cells cultured in the 3D conditions compared to the 2D condi-
tions [211,218]. Exosomes from 3D cultures demonstrate higher regenerative potential in
treating OA, enhancing chondrocyte migration and proliferation, and reducing cartilage
tissue degeneration in animal models of OA [211].

MSC conditioning is a widely used strategy to modify both MSCs and EVs. It in-
volves adding various pro-inflammatory cytokines, TLR agonists, and growth factors to
MSCs [219,220]. Numerous studies have shown that IFN-γ, TNF-α, and IL-1β promote the
formation of more therapeutically effective exosomes from MSCs for OA therapy [210,221].
Exosomes from ADMSC pre-treated with IFN-γ, TNF-α, and IL-1β influenced the se-
cretion of exosomes carrying miR-24-3p, miR-222-3p, miR-34a-5p, and 146a-5p, which
possess immunomodulatory properties affecting the macrophage polarization, promoting
the formation of anti-inflammatory M2 macrophages, and positively influencing the decel-
eration of the ECM degradation processes [210,221]. EV from MSC preconditioned with
lipopolysaccharide (LPS) more effectively suppressed the OA development, enhancing the
chondrocyte proliferation and migration, and preventing the reduction in aggrecan and
COL2A1 levels through the let-7b carried by EV [208]. Besides using pro-inflammatory
molecules, MSC cultivation with growth factors and antioxidants is a strategy to enhance
the regenerative potential of MSC-derived EV [222]. Priming BMSC with TGF-β1 led to
exosomes with increased expression of miR-135b, which targeted MAPK6 to suppress the
inflammatory process in mice with OA, enhancing the M2 macrophage polarization [223].

Summarizing the information from this section, altering the cultivation conditions of
EV source cells could become a promising direction in EV modification. However, detailed
studies are needed to understand the mechanisms enhancing the therapeutic potential
of EV when the parent cells are exposed to various chemical and physical stimuli. The
reliability and reproducibility of these effects also need further investigation. Additionally,
more thorough research is required to compare EVs obtained through genetic modification
of EV-producing cells with those obtained by modifying cultivation conditions.

4.3. Genetic and Drug Modifications

Genetic engineering is currently a common method to modify both MSCs and their
secreted EVs to improve the therapeutic efficacy and targeting capabilities. Genetic engi-
neering allows for the induction of stable expression of specific proteins, growth factors, cy-
tokines, and various non-coding RNA molecules (miRNA, long non-coding RNA (lncRNA),
circular RNA (circRNA)). Genetic engineering includes transfection using liposomes, elec-
troporation, and other carriers, as well as viral vectors. Viral vectors are widely used to
modify MSC and other cell cultures to obtain EVs with specific therapeutic properties for
OA and RA therapy [224,225]. Viral vectors are characterized by a high transfection rate
and high stability of gene synthesis, although the efficiency of viral transfection depends on
the specific virus chosen and its ability to infect a particular target cell [226,227]. Lentiviral
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and adenoviral vectors are most commonly used, demonstrating a good safety profile and
high transfection efficiency in MSC [228–230]. Lentiviral modification of BMSC increased
the overexpression of lncRNA NEAT1, which alleviated OA manifestations in both in vitro
and in vivo models [225]. NEAT1 binds to miR-122-5p, leading to the activation of the
Sesn2/Nrf2 axis, positively affecting chondrocyte survival by enhancing proliferation and
autophagy while inhibiting apoptosis [225]. Sesn2 levels decrease in tissues during OA
development, reducing the ability to maintain chondrocyte survival, and its increased
expression positively affects mTOR-dependent autophagy modulation [231].

In a study by Hong-Yan Meng et al., an adenoviral vector was used to obtain EV
from MSC overexpressing miRNA-124a [232]. Modified exosomes with miRNA-124a tar-
geted the suppression of FLS migration and proliferation by blocking the TNF-α-activated
Ras-Erk1/2 pathway [232,233]. In addition to MSC, other cell sources are genetically en-
gineered with viral vectors to obtain therapeutic exosomes carrying specific therapeutic
molecules for RA therapy [224,234]. In a study by Paul D. Robbins et al., the immunosup-
pressive effect of exosomes derived from DC was enhanced by transducing DC with an
adenovirus to overexpress IL-10 in the exosomes, which suppressed macroscopic changes
in collagen-induced arthritis (CIA) in mice [224]. However, despite the effectiveness of
viral modification methods, certain concerns remain because viruses can replicate in cells,
potentially causing immune reactions, and the complexity and high costs of scaling this
technology are significant limitations [235].

For the modification of MSC and other EV-producing cells for OA and RA therapy,
non-viral methods such as the application of liposomes, polymeric carriers, electroporation,
and ultrasound are often used [236,237]. Various small RNA molecules like miRNAs [238],
circRNAs [239], and lncRNAs [240] are used as main cargos for EV modification. These
molecules influence the biological functioning of recipient cells by interacting with target
mRNAs or microRNAs, blocking the expression of genes related to immune regulation,
inflammation, and enhanced cartilage tissue catabolism [241,242]. Excessive angiogenesis
in RA promotes the synovial tissue’s hyperplasia and pannus formation, facilitating the
migration of immune cells and amplifying inflammation, making it a key therapeutic tar-
get [243,244]. MiR-150-5p is significantly reduced in RA patients compared to OA patients.
This microRNA is involved in angiogenesis regulation, and its deficiency influences the
increased angiogenesis in RA patients [245]. Modification of BM-MSC exosomes by trans-
fecting miR-150-5p suppresses the angiogenesis and hyperplasia of FLS in RA patients by
reducing the expression of MMP-14 and vascular endothelial growth factor (VEGF) [246]. In
RA, FLS can survive under high ROS conditions and exhibit abnormal proliferation under
the oxidative stress caused by the induction of ferroptosis, characterized by iron-dependent
lipid peroxidation [247]. The study by Zhiguo Lin et al. showed that EV from synovial MSC
transfected with miR-433-3p could suppress angiogenesis by reducing the VEGF expression
in human dermal microvascular endothelial cells, where angiogenesis was induced by EV
from FLSs with elastin-induced ferroptosis [247]. Lipid nanoparticles were utilized to load
synovial MSC for obtaining exosomes overexpressing miR-155-5p [248]. These exosomes
stimulated chondrocyte migration and ECM secretion by targeting Runx2 via miR-155-5p,
which increases synovial tissue in OA [248,249]. An alternative strategy for OA therapy
involves stimulating the osteoblast survival, enhancing calcification, and increasing the
secretion of osteogenesis markers such as osteocalcin and bone morphogenetic protein 2 by
introducing exosomes from BM-MSC overexpressing miR-206 [250]. MiR-206 in exosomes
targets the expression of the E74-like factor 3, a marker of inflammation and cartilage
catabolic state in OA patients, and regulating its level may become one of the therapeutic
strategies for OA therapy [250–252].
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Transfection and transduction of miRNAs are widespread for genetic manipulation
of cell recipient EV, but other types of nucleic acid cargos, such as circRNA [239,253] and
lncRNA [240] are also used. The gene expression regulation mechanism of these molecules
differs from miRNAs. circRNA represents a family of covalently closed ncRNA molecules
and directly targets miRNA targets, allowing for a restricted inhibitory effect [254,255].
Exosomes from chondrogenically differentiated BM-MSC overexpressing circRNA_0001236
enhance anabolic processes in chondrocytes by targeting miR-3677-3p and Sox9, mitigating
OA destructive processes in a DMM mouse model [256]. RA therapy with exosomes from
MSC enriched with circFBXW7 can significantly suppress the inflammatory response of RA-
FLS by absorbing miR-216a-3p, which releases histone deacetylase-4 activation, playing an
inhibitory role in the RA inflammation progression [239]. Another circEDIL3 overexpressed
in SMSC-EV inhibited the pathological angiogenesis in RA by reducing synovial VEGF
expression induced by the IL-6/sIL-6R complex and suppressing the STAT3 activity, which
plays a crucial role in the RA progression [257].

lncRNAs can regulate the development of OA and RA, acting similarly to circRNAs
and inhibiting miRNAs that are overexpressed in these inflammatory arthritides, such as
microRNA-29a-3p and miR-143-3p [258,259]. Besides reducing the destructive processes
in the cartilage tissue in OA, an important direction in therapy is pain management.
lncRNA H19 was enriched in exosomes from UCBMSC, and these EVs helped suppress
pain syndrome and central sensitization in OA by targeting the lncRNA H19/miRNA-29a-
3p/FOS axis [258]. Promising results were obtained in a study by Yuhua Su et al., where
exosomes from MSC expressing HAND2-AS1 suppressed inflammation, proliferation, and
induced cell death in RA-FLSs by inactivating the NF-κB pathway through the miR-143-
3p/TNFAIP3 axis [259]. Despite the advances in genetic engineering of MSC to produce
EV with predictable and specified therapeutic parameters, questions still remain regarding
the stability of regulatory ncRNA expression and their ability to effectively reach recipient
cells via therapeutic exosomes.

Stimulating the expression of regulatory ncRNAs is the most common strategy for
modifying EV-producing cells and the exosomes themselves. Researchers also use other
approaches, in which donor cells of EVs are stimulated to produce EVs with enhanced ex-
pression of immunoregulatory proteins. There are approaches where therapeutic molecules
are loaded into EVs to increase their therapeutic efficacy and reduce unwanted side ef-
fects [204,260]. In a study by Seon Hee Kim et al., EVs from DC genetically modified
to produce IL-4, which has both secreted and membrane-bound forms, were used [261].
Exosomes from IL-4-modified DC modulate the activity of antigen-presenting cells and
T-cells in vivo through the MHC class II and partially via the Fas-ligand/Fas-dependent
mechanism, positively affecting the progression of collagen-induced arthritis in vivo [261].
One approach to enhancing the synergistic chondrogenic effect of exosomes is their loading
with kartogenin (KGN). This heterocyclic molecule is a promising candidate for stimu-
lating chondrogenesis and anabolic processes in chondrocytes [262,263]. The addition of
KGN to ADSC-derived exosomes has been shown to enhance the ADSC’s chondrogenic
differentiation, reduce apoptosis, and suppress the expression of genes associated with the
ECM degradation, including MMP-3, ADAMTS4, and ADAMTS5 [262]. Another approach
to regulating inflammation in RA was targeting macrophage repolarization from M1 to
M2. In this study, exosomes from M2 macrophages were additionally modified with a
plasmid encoding IL-10 and betamethasone sodium phosphate [264]. This therapeutic
system based on modified M2 macrophage- exosomes showed a powerful therapeutic effect
in both in vitro and in vivo RA models, with EV having a good safety profile [264]. Table 1
provides more detailed information on the EV modification methods and their therapeutic
effects in animal and cell models of OA and RA.
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Table 1. Approaches to EV modification and their therapeutic effect on in vitro and in vivo models of OA and RA.

Type Arthritis
Model of
Arthritis/Type of
Animal

Source EV Cargo
The Cells
Modification/EV
Approach

Method of
Administration,
Concentration

Therapeutic Effects
Mechanism Ref.

↑ ↓

OA DMM and ACLT BMSC hsa-miR-181c-5p,
hsa-miR-18a-3p Hypoxic conditions

Intraarticular injections,
100 µg protein per 100 µL
PBS

Chondrocyte
proliferation and
migration

Apoptosis in
IL-1β-treated
chondrocytes
OARSI scores

miRNA-18-
3P/JAK/STAT or
miRNA-181c-
5p/MAPK pathways

[212]

OA MLI BMSC miR-135b Stimulation with
TGF-β1

Intraarticular injections,
1 × 1011 exosome
particles/mL 100 µL PBS

EV-BMSC: Arg-1 and
iNOS in
macrophages

EV-BMSC-TGF-β1:
IL-1β, PGE2, COX-2,
COX-1, and NO in
serum

EV-BMSC-TGF-β1:
overexpression of
miR-135b, M2
macrophage
polarization via the
MAPK6 pathway

[223]

RA CIA, mice BMSC miR-205-5p Chondrogenic
differentiation

Tail vein injections, 200 µL
PBS -

TNF-α, IL-6, MMP1,
and MMP13 in
IL-1β-treated FLSs.
MDM2, IL-1β, IL-6,
and TNF-α in the
serum

miR-205-5
expression, MAPK,
and NF-κB pathways
inhibition through
MDM2

[184]

OA CIOA BMSC miR-92a-3p Chondrogenic
differentiation

Intraarticular injections,
15 µL of EV in PBS
(500 µg/mL).

COL2A1, aggrecan MMP13 miR-92a-3p by
targeting WNT5A [265]

OA DMM BMSC NEAT1
Transduction with a
lentivirus for NEAT1
overexpression

Intraarticular injections,
10 µg protein per dose

Chondrocyte
proliferation and
autophagy

Apoptosis
Binding miR-122-5p,
activating the
Sesn2/Nrf2 axis

[225]

OA Intraarticular injections
of cold water (4 ◦C) SMSC miR-155-5p

Transfection of
miR-155-5p using
Lipofectamine 2000
(Invitrogen; Thermo
Fisher Scientific, Inc.,
Carlsbad, CA, USA).

Intraarticular injections,
30 µL; 1011 exo
particles/mL PBS

Proliferation,
migration, and ECM
secretion in
chondrocytes;
number of
chondrocytes

OARSI scores By targeting Runx2 [248]

OA ACLT BMSC miR-206

Transfection of miR-206
using Lipofectamine
2000 (Invitrogen;
Thermo Fisher Scientific,
Inc., Carlsbad, CA, USA)

Intraarticular injections,
1011 EV/mL, 100 µL PBS

OCN and BMP2,
alkaline phosphatase
activity, calcium
deposition

Apoptosis in OA
osteoblasts

miR-206-
overexpression by
downregulating the
E74-like factor 3

[250]

OA MIA UCMSC miR-223

(1) Transduction with a
lentivirus encoding
CTP-Lamp2b
(2) exosome loading with
miR-223 by
electroporation

Intraarticular injections,
1010 particles/mL, 50 µL
PBS

Col II and Sox9 in
chondrocytes

MMP13, NLRP3,
IL-1β, MMP2, IL-1β,
TNF-α, and PGE2

via the
miR-223/NLRP3/
pyroptosis axis

[238]
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Table 1. Cont.

Type Arthritis

Model of
Arthritis/Type of
Animal Source EV Cargo

The Cells
Modification/EV
Approach

Method of
Administration,
Concentration

Therapeutic Effects
Mechanism Ref.

↑ ↓

OA DMM BMSC circRNA_0001236
Transfection of a plasmid
encoding
circRNA_0001236

Intraarticular injections,
500 µg/mL EV
circRNA_0001236, 10 µL
PBS

Col2a1 and Sox9 in
human chondrocyte
cartilage tissues

MMP13

circRNA_0001236
through the
miR-3677-3p/Sox9
axis

[256]

OA ACLT (iPSC) derived MSC -

Surface charge by
polyethylene distearoyl
phos-
phatidylethanolamine
incorporation

Intraarticular injections,
modified and unmodified
EV at a particle
concentration of
(1 × 109 particles/mL;
1 × 1010 particles/mL)

Chondrocyte uptake,
Col2, aggrecan

IL-1β-induced
apoptosis
MMP13 and
ADAMTS5

- [266]

RA CIA BMSC FGL-1

Transfection with an
FGL1 plasmid using
Lipofectamine 2000
(Invitrogen; Thermo
Fisher Scientific, Inc.,
Carlsbad, CA, USA)

- -

Apoptosis in FLSs.
MMP-9, IL-8, IL-1β,
and IL-17 levels in
serum

By inhibiting the
NF-κB transduction [185]

OA DMM IPFP miR-100-5p -
Intraarticular injections,
10 µL MSC-IPFP-EV
(1010 particles/mL)

Col2

ADAMTS5 and
MMP13
IL-1β-induced
apoptosis in
chondrocytes

miR-100-5p inhibits
the
mTOR-autophagy
pathway

[267]

OA ACLT BMSC miR-361-5p miR-NC and miR-361-5p
by electroporation

Intraarticular injections,
Exo-miR-NC and
Exo-miR-361-5p
concentration of
250 ng/5 µL of PBS

-
iNOS, MMP-3,
MMP-13, IL-18, IL-6,
and TNF-α

miR-361-5p inhibits
NF-κB signaling by
suppressing DDX20

[268]

RA CIA DC Indolamine-2,3-
dioxygenase IDO

Transduction with
adenovirus expressing
IDO

Intravenous injections,
DC-Exo/DC-Exo-IDO
concentration 1 µg
protein in 20 µL of PBS

- The arthritis index The costimulatory
molecules B7 [234]

RA CIA BMMSC miR-34a

Transfection with
miR-34a inhibitor using
Lipofectamine 2000
(Invitrogen; Thermo
Fisher Scientific, Inc.,
Carlsbad, CA, USA)

Intravenous injections,
BMMSC-EV 75 µg/mL of
PBS

RA-FLS apoptosis

TNF-α, IL-6, and IL-8
mRNA in synovial
tissue and synovial
fluid.
RA-FLS proliferation
and increased

By inhibiting the
Cyclin I/ATM/ATR/
p53 signaling
pathway

[269]

RA CIA GMDSC miR-29a-3p and
miR-93-5p

Transfection with
miR-29a-3p and
miR-93-5p with
Entranster-R
(Engreen Biosystem Co.,
Ltd., Beijing, China)

Intravenous injections,
GMDSC-EV
100 µg/mouse

-

the mean arthritis
index
IFN-γ and IL-17A in
the serum Th1 and
Th17 differentiation
in vitro

- [197]
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Table 1. Cont.

Type Arthritis
Model of
Arthritis/Type of
Animal

Source EV Cargo
The Cells
Modification/EV
Approach

Method of
Administration,
Concentration

Therapeutic Effects
Mechanism Ref.

↑ ↓

RA CIA BMMSC miR-320a

Transfection with
miR-320a plasmids using
Lipofectamine 2000
(Invitrogen; Thermo
Fisher Scientific, Inc.,
Carlsbad, CA, USA)

Intravenous injections,
BMMSC-EV 100 µg/day - IL-1β, IL-6, and IL-8

in RA-FLSs

Overexpressed
miR-320a by
suppressing CXCL9
expression

[270]

OA ACLT/MCLT BMMSC miR-9-5p

Transfection with mimic
and inhibitors miR-9-5p
using Lipofectamine
2000 (Invitrogen;
Thermo Fisher Scientific,
Inc., Carlsbad, CA, USA)

Intraarticular injections,
BMMSC -EV, or liposomes
containing miR-9-5p
mimic/inhibitor

-

IL-1, IL-6, TNF-α,
and CRP
oxidative stress
indicators (NO,
iNOS, COX2, and
SOD)
MMP-13 and OCN in
synovial fluid

Regulation of the
expression of
syndecan-1

[271]

OA ACLT M2-Mφ miR-21-5p -
Intraarticular injections,
M1-AB and M2-AB
10 µg/10 µL

M2-AB: IL-4 and
IL-10 in M1
macrophages
M1-ABs: CD-86 in
synovial tissue,
cartilage thickness

M2-Ab: IL-1β, IL-6,
IL-17, TNF-α, IFN-γ,
and MCP-1
CD206 in synovial
tissue

- [201]

Abbreviations used in the table. ↑—increase; ↓—decrease: AB—apoptotic bodies; ACLT—Anterior Cruciate Ligament Transection; BMP2—bone morphogenetic protein 2; BMSC—
bone mesenchymal stem cells; CIA—collagen-induced arthritis; CIOA—collagenase-induced osteoarthritis; FGL1—fibrinogen-like protein 1; IPFP-MSC—infrapatellar fat pad MSC;
Mφ—macrophage; MCLT—medial and collateral ligament transection; MIA—Monosodium Iodoacetate; OARSI—Osteoarthritis Research Society International.
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4.4. Surface Modification of EV

In recent years, various attempts have been made to develop therapeutic EVs as plat-
forms for delivering their own therapeutic cargo and various drug molecules. However,
there are several limitations, including a short half-life of EV up to 6 h with systemic
administration and a tendency for EVs to accumulate in the liver and spleen, where they
are metabolized [272–274]. The surface of EVs or EV-producing cells can be modified
with various functional fragments by introducing surface proteins, peptides, enzymes,
or chemical ligands that can covalently or non-covalently bind to proteins overexpressed
in diseased or damaged tissues, increasing the targeting of EV to the desired therapeutic
area [207,275,276]. One approach to cell surface modification is metabolic glycoengineering.
In this method, cell metabolic pathways are modulated by introducing monosaccharide
analogs into the cell’s metabolic pathways, resulting in the modification of the glycoca-
lyx on the cell membrane surface, allowing for the creation of functional groups on the
membrane surface [277,278]. This method has found wide application in immunotherapy
and can also be applied to modify the surface of nanoparticles, enhancing their stability
and targeting ability for EV cargo delivery [279–281]. Combining approaches in cell and
EV surface modification with bioorthogonal chemistry and click chemistry with metabolic
glycoengineering is effective. This method allows the addition of chemical groups to cell
glycans [282]. Glycoengineering combined with bioorthogonal click chemistry has also
been used to modify exosomes derived from ADSC for RA therapy. Surface modification
of ADSC involved introducing an azide group via the metabolic glycoengineering path-
way, followed by modifying the azide group with dibenzocyclooctyne dextran sulfate,
enhancing exosome targeting to macrophages, and promoting their M2 polarization via the
modulation of the JAK-STAT signaling pathway [205]. These modified exosomes had a ten
times more pronounced therapeutic effect on the CIA treatment than unmodified ADSC
exosomes did [205].

One important parameter in OA therapy using EVs is delivering the therapeutic
cargo directly to chondrocytes. However, the dense ECM, significantly thicker in humans
compared to small rodents often used as OA therapy models, poses a limitation for EVs
reaching target cells [283]. Yujie Liang et al. developed modified EVs from DC, where
they transfected a plasmid encoding a peptide’s affinity to chondrocytes associated with
lysosomal membrane glycoprotein 2b. Additionally, these EVs were loaded with miR-
140 via electroporation [284]. These genetically engineered EVs showed excellent results,
demonstrating good distribution and therapeutic effect in the joint area, maintaining the
presence for an extended period [284]. The therapeutic properties of UCMSC-derived EV
were enhanced through dual engineering by increasing the expression of a peptide on
the vesicle surface targeting collagen II, significantly improving the ability of these EVs
to penetrate the dense cartilage ECM [238]. Isolated vesicles were further modified with
miR-223 targeting NLRP3, the inhibition of which in OA and RA contributes to reduced
secretion of IL-1β, TNF-α, and IL-18 by macrophages [238]. Various surface modification
approaches are highly promising, potentially making EV therapy for OA and RA more
effective, achieving therapeutic effects with significantly fewer EV injections into the joint
area, a major advantage for patients with these pathologies.

4.5. Application of Tissue Bioengineering Approaches in EV Modification for Inflammatory
Arthritis Therapy

EV therapy has shown promising results in cell and animal models of OA and RA.
However, a key obstacle is the relatively low stability of EV upon systemic administration;
for instance, intravenously administered exosomes accumulate in the liver and are rapidly
cleared from the body [285,286]. A simple solution to this problem is injecting EV directly
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into the cartilage area. However, the efficacy and retention duration of vesicles in the
cartilage area require detailed study. Some researchers are developing complex combined
therapeutic systems that include not only exosomes but also nanocarriers or various
scaffolds, which can enhance the targeting ability of exosomes to act on target cells and
retain exosomes in the therapeutic area, ensuring uniform particle release, ultimately
aiming to reduce the frequency of painful intra-articular injections [207,287]. In another
study, hybrid nanoparticles mimicking exosomes were used as the therapeutic agent. These
were obtained from M2 macrophages via extrusion, after which the membranes of these
particles were fused with the membrane of M1 macrophages. This combination allowed the
nanoparticles to retain the anti-inflammatory properties of M2 macrophages while the M1
macrophage membrane contained cytokine receptors for binding inflammatory factors [288].
To enhance the therapeutic effect, these nanovesicles were loaded with black phosphorus
nanosheets, which, upon near-infrared irradiation, induced the death of inflammatory cells.
This combined solution significantly suppressed inflammation while ensuring nanoparticle
accumulation in the joints of mice with CIA [288]. To create a therapeutic system with
enhanced accumulation and activation ability in the damaged organ area, systems sensitive
to low pH, high enzyme activity (e.g., MMP), and ROS can be used [276]. In creating an EV
carrier with enhanced targeting ability for RA therapy, researchers considered the elevated
ROS levels in inflammatory joint diseases [207,289]. This system ensures a high potential
for accumulation in the joint area upon intravenous administration to mice with CIA, due
to the high ROS content. Tolerogenic DC-derived EV is released from a polyethylene glycol
carrier in the joint area, creating an anti-inflammatory environment in the joint by reducing
IL-6 levels and increasing CD4 + CD25 + Foxp3 + regulatory T-cells, providing a more
pronounced immunoregulatory effect than non-modified EV [207].

Tissue engineering is a promising direction in therapy, combining biomaterials and
exosomes to restore the cartilage structure, enhancing the therapeutic effect of EV through
slow release and retention in the joint area [290]. Biomaterials of a natural origin, such as
various hydrogels and scaffolds based on gelatin, chitosan, hyaluronic acid, peptides, and
decellularized cartilage matrices, are the most widely used for the therapy of degenerative
joint diseases [291,292]. Hydrogels provide a gradual exosome release during polymer
swelling and subsequent degradation, allowing exosomes to easily diffuse through the
dense extracellular matrix, a process facilitated by aquaporin-1 on the surface of EV, ensur-
ing better distribution in the dense ECMs, such as the cartilage tissue, compared to synthetic
nanoparticles [293,294]. Combining a gelatin methacryloyl scaffold with MSC-derived
nanoparticles mimicking exosomes, obtained through MSC extrusion, demonstrated an
outstanding retention time of EV in the joint area for more than seven days, promoting
cartilage matrix restoration and creating an anti-inflammatory environment in vivo by
enhancing macrophage polarization to the M2 phenotype [295]. A promising therapeutic
strategy for treating degenerative cartilage diseases involves a combined system incorporat-
ing MSC-derived nanoparticles treated with KGN to amplify their therapeutic effect. When
combined with 3D-bioprinted hydrogels, this system may enhance the synergistic effects
of exosomes by providing immunomodulation and stimulating chondrogenesis via the
exosomal cargo. Additionally, hydrogels can optimize the pharmacokinetics of EVs [296].
High therapeutic efficacy has been demonstrated for BMSC-derived exosomes treated
with KGN, in combination with sodium alginate-based hydrogel and gelatin sponges, in
modulating tendon regeneration. This approach enhanced the fibrochondral tissue regen-
eration [297,298]. The combination of exosomes with gelatin sponges allowed the in vivo
retention of exosomes at the injury site for up to two weeks, while sodium alginate-based
hydrogels extended retention to one week [297,298]. The integration of exosomes with
kartogenin and an efficient exosome-release system promoted tendon healing and cartilage
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repair by enhancing the expression of glycosaminoglycans and collagen II, supporting
enthesis regeneration. This combined approach has potential applications in cartilage
repair for OA and RA [298].

Cationic modification of MSC-EV with the cationic amphiphilic macromolecule
polyethylene distearoyl phosphatidylethanolamine allowed the construction of positively
charged EV with efficient cartilage penetration, enhancing chondrocyte adsorption and
achieving OA suppression with fewer injections compared to unmodified EV [266]. An-
other study created an innovative photoinduced imine cross-linked hydrogel adhesive,
which retained up to 90% of exosomes within the gel for 14 days post-injection, enhancing
the cartilage tissue regeneration and presenting a potential OA therapy that does not re-
quire frequent invasive joint interventions [299]. A promising approach involves creating
a tissue-engineered construct incorporating MSC-derived exosomes and a decellularized
cartilage matrix scaffold. This scaffold not only provides a favorable environment for
endogenous chondrocyte migration but also delivers a rich cargo of miRNAs from MSC
exosomes, suppressing cartilage inflammation and synergistically enhancing hyaline car-
tilage regeneration due to the favorable immune environment [291]. Tissue engineering
approaches are highly promising alongside genetic and metabolic engineering of MSC
sources to obtain modified exosomes. Combined approaches can ensure the success of
clinical trials of these biological drugs, leading to the adoption of these technologies in
clinical practice. The overview of approaches in OA and RA therapy using EV and cell
therapy is presented in Figure 2.

Figure 2. Summary of the approaches in OA and RA therapy discussed in this review, focusing on
the use of EV and cell therapy.Blocks 1 and 2 describe the approaches to MSC and EV modification.
Block 1 includes methods based on altering chemical and physical cultivation conditions, as well
as key genetic engineering methods for modifying EV-producing cells. Block 2 outlines strategies
for modifying cellular components or EV through the combination with various biomaterials. Block
3 shows the targets modified by EV and MSC in OA and RA treatment. Block 4 presents the
main sources of unmodified EV and the classes of EV discussed in this review, depending on their
biogenesis pathway.
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5. Challenges and Prospects of Cell Therapy and MSC-Derived EV
Therapy on the Path to Clinical Practice

In recent decades, a significant amount of data has been accumulated on the successful
application of EV from various sources and MSC-based cell therapy, demonstrating thera-
peutic effects in cell and animal models of degenerative and inflammatory diseases such as
OA and RA [175,184,300]. Unlike EV, MSC-based cell therapy for OA and RA is actively
tested in clinical trials, with 52 trials for OA and 20 for RA (https://clinicaltrials.gov) [301].
Most clinical trials are in phase I/II, and at this stage, MSC injections have shown a good
safety profile with a minimal incidence of side effects, mainly mild to moderate, such as
arthralgia and joint swelling, which were resolved within a week [302–304]. In several
studies, MSC administration in patients with RA and OA showed trends of clinical im-
provement, pain reduction, improved motor activity, and histological improvements in the
cartilage tissue [305–307]. Thus, in a pilot study by Orozco et al., a single intra-articular
injection of autologous bone marrow-derived MSC in knee OA patients led to a significant
65% improvement in WOMAC scores and MRI evidence of cartilage volume stabilization
over 12 months [303]. Similarly, Garay-Mendoza et al. reported that autologous bone
marrow MSC injections resulted in statistically significant improvements in both VAS pain
scores and knee function scores, sustained over 6 months [305]. Bastos et al. conducted
a double-blind clinical trial comparing MSC with and without PRP and found that both
interventions significantly reduced knee pain and symptoms, though the addition of PRP
did not confer a clear added benefit [307]. For RA, Shadmanfar et al. performed a random-
ized, triple-blind, placebo-controlled Phase I/II trial in patients with knee involvement
and found that intra-articular MSC injections led to a marked decrease in DAS28 scores
from 5.1 to 3.5 over 12 weeks, compared to a smaller reduction in the placebo group (5.0 to
4.5) [306]. Additionally, Álvaro-Gracia et al. demonstrated that intravenous administration
of allogeneic adipose-derived MSC resulted in 65% of patients achieving ACR20 response
at 12 weeks, versus 33% in the placebo group, along with a favorable safety profile [304].
Together, these trials consistently show that MSC therapy offers clinically meaningful
benefits in both OA and RA patients, although the differences in the study design, MSC
source, and treatment regimens underscore the need for standardized protocols and further
comparative trials.

However, not all clinical trials demonstrate homogeneous and statistically significant
clinical effects of MSC therapy for inflammatory joint diseases. Patients exhibited a positive
trend in reducing clinical symptoms, but the effect was not statistically significant [308].
Regarding clinical trials of EV-based therapy for inflammatory diseases, this is still a
relatively new field of research with a limited number of studies. Currently, there are no
clinical trials using exosomes for RA [309]. Recent clinical investigations are exploring
the potential of EVs as therapeutic agents for OA, highlighting a growing interest in
their regenerative and immunomodulatory properties. Three Phase I trials are currently
evaluating the safety and preliminary efficacy of EV in OA management (NCT06431152,
NCT06463132, NCT04223622, NCT06937528). One study investigates dosage safety and
joint function improvements (NCT06431152), while another examines safety, tolerability,
and analgesic effects, focusing on pain reduction and enhanced mobility (NCT06463132). A
third trial focuses on the safety and functional outcomes, particularly joint mobility and
pain relief (NCT04223622). The clinical trial registered under ClinicalTrials.gov identifier
NCT06937528 investigated the efficacy and safety of PMSC-EV in treating knee OA. All
trials involve adults with knee OA, excluding those with systemic inflammatory conditions
or recent joint interventions. The outcomes of these studies are anticipated to provide
valuable insights into the therapeutic potential and clinical applicability of EVs for OA
management.

https://clinicaltrials.gov
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MSC and MSC-derived EV therapy for OA and RA have shown successful results in
animal and cell models of these diseases. However, clinical trials have yielded inconsis-
tent results, often failing to achieve statistically significant therapeutic effects. Systematic
reviews and meta-analyses have concluded that MSC therapy positively impacts the well-
being of OA patients, but caution is warranted due to the low reliability of results [310,311].
Based on this result, several limitations and challenges on the path to clinical implementa-
tion of MSC and MSC-derived EV therapies need to be highlighted. Some problems lie at
the level of clinical trial organization. Due to limited funding, several studies are conducted
at single centers with small patient samples. Approximately half of the studies lacked a
control group and did not employ patient “blinding.” Moreover, over 30% of the studies did
not include patient randomization [312,313]. There are also concerns regarding preclinical
studies, which predominantly use cell models and small laboratory animal models (mostly
rats and mice). There are limited studies involving larger laboratory animals. This is
crucial as the histological structure of large animal cartilage is closer to that of humans
due to its greater thickness, affecting the parameters of vesicle and MSC biodistribution,
requiring deeper ECM penetration, longer recovery periods, and different concentrations
and frequencies of therapeutic agent administration [314]. Additionally, it is essential to
understand that laboratory models of OA and RA may not reflect the full complexity of the
diseases’ pathogenesis, leading to a lack of reproducibility of laboratory results in patients.

A common challenge for both MSC-based cell therapy and EV therapy derived from
these cells is the problem of selecting the source of these cells. MSCs are highly heteroge-
neous among different donors, affecting their proliferation, differentiation, and therapeutic
properties due to variations in gene expression, regulatory RNA cargo, and proteins se-
creted by MSC-EV [315,316]. An important parameter is the age of the donor, particularly
for autologous MSCs, as they will differentiate into aging chondrocytes, which are less
resilient to the pathological environment in OA and RA, since OA and, to a lesser extent,
RA predominantly occur in the elderly [317,318]. The older age of the donor can also
negatively affect MSC proliferation capacity, limiting these cells for EV production, as
significant quantities of cells are required to achieve the therapeutic concentrations of EV,
complicating large-scale EV production. MSCs have a limited number of passages, and
with increased passages, they change their phenotype during prolonged passaging, which
affects the composition of the exosomes they secrete [319].

The limited or absent proliferative capacity of immune cells used to obtain EV restricts
their potential beyond the laboratory, despite their pronounced therapeutic effect in the
RA and OA treatment [198,320]. Currently, there are no definitive standards for doses and
frequency of EV and MSC administration to patients with degenerative joint diseases. An
important direction is to determine the optimal doses for maximum efficacy and safety, as
systemic administration of MSCs carries risks of thrombosis and embolization [321,322].
Exosomes and other EVs have fewer safety issues due to their lack of proliferative capacity
and a lower risk of immune response [323,324]. However, their lower stability and smaller
size affect their biodistribution and pharmacokinetics, necessitating careful evaluation of the
dosage and modification of EV to enhance the stability and targeting efficiency of recipient
cells. MSCs and EVs can be modified to improve their properties. Promising approaches
combine genetic engineering and biomaterials with EV or MSC, enhancing the therapeutic
cargo and pharmacokinetics. Standardizing protocols for cell cultivation, exosome isolation,
and storage is essential. Clinical trials and large-scale production must consider the low
stability of EVs. Optimal storage conditions are −80 ◦C for EV and −196 ◦C for cells,
which incurs additional costs [325,326]. Low temperatures do not affect the therapeutic
properties of EV, but MSCs require 24 h of cultivation post-cryopreservation to restore their
therapeutic properties, complicating their preparation in a clinical setting [327].
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The lack of research into the clinical application of extracellular vesicles is also associ-
ated with a number of challenges that need to be addressed to facilitate their introduction
into medical practice [328]. A primary concern is the lack of standardized protocols for
EV production, which complicates the assurance of product quality and consistency [329].
The International Society for Extracellular Vesicles has established a Regulatory Affairs
Task Force to develop international standards and reporting guidelines for EVs, aiming to
harmonize practices and ensure product reliability [330]. Assessing the safety and efficacy
of EV-based therapies presents another significant challenge. Traditional preclinical and
clinical evaluation methods may not fully capture the complexities of EV interactions
within the human body. Innovative assessment techniques are necessary to accurately
evaluate these therapies [331]. Regulatory agencies, such as the U.S. Food and Drug Ad-
ministration (FDA), have recognized the need for clear guidelines concerning EV-based
products [332]. For instance, the FDA has issued a public safety notification highlighting
the lack of FDA-approved exosome products and warning against unapproved exosome
therapies [332]. Additionally, the FDA has provided guidance on the regulatory consid-
erations for human cells, tissues, and cellular and tissue-based products, which may be
relevant to the development and approval of EV-based therapies [333].

Furthermore, the production and logistical complexities associated with EV-based
therapies present significant challenges [334]. One of the major obstacles is the lack of
standardized protocols for isolating and purifying EVs, which results in variability in their
composition and functional properties [335]. The methods employed to isolate EV, such as
ultracentrifugation, size-exclusion chromatography (SEC), filtration, and immunoaffinity-
based approaches, each present distinct advantages and limitations that impact the consis-
tency and quality of the vesicles [335,336]. Ultracentrifugation, the most commonly used
method for EV isolation, is widely regarded as the “gold standard” due to its ability to
generate high yields of EVs [337]. However, it requires specialized equipment and results
in the co-isolation of contaminants, such as lipoproteins and protein aggregates, which can
compromise the purity of the final EV preparation [338]. Additionally, the high g-forces
involved in ultracentrifugation may lead to structural damage to the vesicles, thereby
altering their biological activity and therapeutic potential [339]. SEC represents another
commonly employed technique for EV isolation, particularly favored for its scalability
and reproducibility. SEC separates vesicles based on their size and can be used to purify
EVs from a variety of biological fluids [340]. This method is relatively gentle compared to
ultracentrifugation, preserving the integrity of the EV. However, SEC typically results in
lower yields than ultracentrifugation, and the separation process may not be sufficiently ef-
ficient for isolating vesicles from complex biological samples, leading to a less homogenous
product [341]. The scalability of SEC is also limited by the need for specialized columns and
the relatively high cost of materials, making it less practical for large-scale production [342].
Filtration is a simple and cost-effective technique for EV isolation, particularly for smaller
volumes. Filters with defined pore sizes can capture EV while allowing smaller particles
and contaminants to pass through [343]. While filtration is straightforward, it is not as
efficient in terms of purity as more specialized techniques like SEC [335]. In addition, this
method may not adequately capture the full spectrum of EVs, particularly those of varying
sizes and densities, leading to less comprehensive isolation of vesicles [343]. Another sig-
nificant challenge associated with filtration is the risk of membrane clogging, particularly
when processing biological fluids with elevated concentrations of proteins and cellular
debris [343]. Immunoaffinity-based isolation methods, which use antibodies targeting
specific surface markers of EV, offer a highly targeted approach to isolating specific sub-
populations of EV [344]. However, it is limited by the availability of suitable antibodies,
and the technique can be time-consuming and expensive. Additionally, the reliance on
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specific markers may lead to the selective isolation of only certain subsets of EV, potentially
missing important therapeutic components present in other populations of vesicles [344].

Large-scale production of MSC and EV preparations requires overcoming several
challenges. For example, most research on MSC-derived EVs has been conducted using
2D models, which are unsuitable for large-scale production due to their low productivity,
risk of contamination, and complexity in manufacturing organizations [345]. Promising
approaches include using 3D cultures combined with scaffolds in hollow-fiber bioreactors,
which can achieve a 100-fold increase in the exosome yield [211,346,347]. Hollow fiber biore-
actor (HFB) systems, in particular, offer a promising platform for continuous, high-yield
EV harvesting under controlled, GMP-compliant conditions. Gobin et al. demonstrated
that MSC-derived EV produced in HFB systems retained a consistent particle size, im-
munophenotype, and functional characteristics over extended culture periods, supporting
their clinical-grade reproducibility [348]. Similarly, Garcia et al. showed that immortalized
MSCs maintained stable EV output and quality during prolonged bioreactor culture [349].
Moreover, the ability to modulate bioreactor environments, as shown by Ludlow et al.,
allows for selective tuning of the EV surface profiles, enhancing therapeutic customiza-
tion [350]. The limited proliferative capacity of MSCs can be circumvented by replacing
them with MSCs derived from induced pluripotent stem cells (iPSCs). iPSC-derived MSCs
exhibit a younger phenotype and a high proliferative capacity of over 50 passages [351,352].
The use of iPSC-derived MSCs for exosome production is advantageous due to the inability
of EVs to replicate; however, additional research is required to standardize the therapeutic
cargo of exosomes. Combining these systems with iPSC-derived MSCs—which exhibit
high proliferative potential and stable phenotypes—can offer a renewable, standardized
source for EV production. An essential condition for industrial exosome production is the
method of isolation. In laboratory settings, ultracentrifugation is commonly used, but it has
a low yield and frequency of exosome recovery. Tangential flow filtration allows processing
large volumes of the culture medium with a lower risk of losing the therapeutic properties
of exosomes, making it advantageous for large-scale production [353].

6. Conclusions
The last two decades of research on MSCs and MSC-derived EVs have demonstrated

high therapeutic potential for treating degenerative and inflammatory joint diseases. How-
ever, the complexity of cultivation and production, as well as the low stability of these
sources for OA and RA therapy, has so far prevented MSCs and EVs from entering clinical
practice. Despite many challenges, these therapeutic approaches are gradually progressing
through clinical trials, with exosomes only taking their first steps. Despite all difficulties,
there is confidence that EV-based preparations for OA and RA therapy will reach the
market in the next 10–15 years. However, researchers still need to address several tasks,
including creating optimized protocols for the cultivation, isolation, and storage of EVs, as
well as selecting optimal therapeutic parameters at the patient level for RA and OA.
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