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ABSTRACT: Biocatalytic pathways for the synthesis of (−)-menthol, the
most sold flavor worldwide, are highly sought-after. To access the key
intermediate (R)-citronellal used in current major industrial production
routes, we established a one-pot bienzymatic cascade from inexpensive
geraniol, overcoming the problematic biocatalytic reduction of the mixture
of (E/Z)-isomers in citral by harnessing a copper radical oxidase
(CgrAlcOx) and an old yellow enzyme (OYE). The cascade using OYE2
delivered 95.1% conversion to (R)-citronellal with 95.9% ee, a 62 mg scale-
up affording high yield and similar optical purity. An alternative OYE,
GluER, gave (S)-citronellal from geraniol with 95.3% conversion and
99.2% ee.
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The acyclic terpene citronellal−which gives off an intense
lemon-, citronella-, and rose-type odor1−is a valuable

molecule for its use in flavors and fragrances2 and is also of
utmost importance as a precursor for the industrial synthesis of
(−)-menthol, one of the chiral compounds with the largest
commercial importance3 and one of the most sold flavors.4

Among the eight stereoisomers of menthol, only (−)-menthol
holds the characteristic “cooling” effect and the peppermint
minty odor, clean of off-flavor.5 Two of the three main
industrial chemical synthesis routes to (−)-menthol (Support-
ing Information (SI) Scheme S1) employ (R)-citronellal
(Scheme S2A) as an intermediate.6,7 In order to improve
process sustainability and to provide access to alternative
feedstock, alleviating the dependency on fossil or unstable
natural resources,8 (R)-citronellal could be advantageously
produced via biocatalytic approaches. Alternative routes
harnessing inexpensive achiral substrates are especially
sought-after.6 An ideal biocatalytic route would be the
production of (R)-citronellal from the available, industrially
relevant citral.9 This reduction reaction can be carried out
using flavin mononucleotide (FMN)-containing ene-reduc-
tases of the old yellow enzyme (OYE; EC 1.6.99.1)
family.10−12 Ubiquitous in Nature, OYEs are found in bacteria,
fungi, plants, cyanobacteria, and recently algae13 and catalyze
the asymmetric reduction reaction of a wide variety of α,β-
unsaturated compounds.14−16 However, such a biocatalytic
route remains challenging,17 since citral is found as a mixture
of two isomers (geranial or (E)-isomer and neral or (Z)-
isomer) (Scheme S2), which greatly influences the enantiose-

lectivity of available OYEs.18 So far, no OYE has been able to
achieve efficient conversion of citral and yield enantiopure (R)-
citronellal with >95% enantiomeric excess (ee),19 as the
enzymes tested were hampered by the presence of both citral
isomers and despite enzyme engineering attempts,17,20,21 only
OYE2p could reach 88.8% ee starting from an E/Z citral
mixture of 10:9.22 To avoid the energetic-costly separation of
citral isomers by distillation and prevent their isomerization,23

a direct approach would be to supply in situ the OYE with the
appropriate E-isomer (i.e., geranial). To this end, we
envisioned that a subfamily of copper radical oxidases
(CROs), so-called CRO-AlcOx, able to oxidize a wide range
of primary activated and unactivated alcohols to the
corresponding aldehydes,24,25 could fulfill this role.
CRO-AlcOx (EC 1.1.3.13; AA5_226,27) are organic cofactor-

free enzymes that recently emerged from the exploration of the
fungal CROs family.24,28,29 CROs are better known through
the archetypal galactose 6-oxidase from Fusarium graminearum
(FgrGalOx; EC 1.1.3.9; AA5_2), extensively studied,30−34

engineered,35−41 and broadly applied42−47 since their initial
discovery more than 60 years ago.48 Only recently a few
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studies have started to investigate the characteristics and
application potential of CRO-AlcOx.25,49−51 A better under-
standing of these enzymes is needed to foster their use as
biocatalysts. To date, CRO-AlcOx have never been evaluated
for application in multistep enzymatic reactions, while alcohol
oxidation is a key step in the synthesis route of many valuable
chemicals.52 Similarly, OYEs, despite being known for decades,
have been only marginally used in cascade reactions until
recently.53 Coupling these two enzymatic systems together is
therefore of interest to apprehend their potential in more
complex environments and to probe their robustness and
relevance for biotechnological applications.
In this study, we developed a bienzymatic cascade composed

of the CRO-AlcOx-catalyzed oxidation of the widely available
terpene geraniol,54 to yield specifically geranial further
hydrogenated by an OYE into either (R)-citronellal or (S)-
citronellal (Scheme 1). This work unlocks access to (R)-

citronellal with high optical purity using a wild-type OYE and
establishes for the first time the use of a CRO-AlcOx in a
multienzymatic cascade, contributing to a better understanding
and control of these promising enzymes.
The initial step of the cascade was first considered. While

geraniol had already been described as a good substrate of
CgrAlcOx in a previous study,24 no conversion assay or
product analysis was performed. We therefore evaluated the
ability of CgrAlcOx to convert geraniol (10 mM), starting with
previously established conditions on octan-1-ol,25 which
include catalase (CAT) for in situ H2O2 dismutation, and
horseradish peroxidase (HRP) for CgrAlcOx activation.49 We
observed the facile conversion of geraniol (>99%, turnover
number TON 10,000) in only 15 min (turnover frequency
TOF 11.1 s−1), at mild temperature (23 °C), and the
formation of one isomer of citral (Figure 1, Figures S12 and
S13). This citral isomer was further identified as geranial by 1H
NMR analysis (Figure S17) based on the study of Zeng et al.55

The concentrations of accessory enzymes CAT and HRP were
then further investigated. As expected, both accessory enzymes
are required to sustain the CgrAlcOx activity. A minimum of
0.5 μM HRP (Figure 1A) and 0.5 μM CAT (Figure 1B) were
required to reach the maximum conversion efficiency. At least
1 μM CgrAlcOx was required for total conversion of geraniol in

15 min (Figure 1C). Interestingly, the HRP requirement was
much lower here compared with that for the conversion of
octan-1-ol in our previous study,25 which could be due to the
activated nature of the substrate in this study, rendering its
oxidation easier. While HRP has been used as a CRO activator
for a long time,56 the underlying mechanism remains unclear.
A direct protein−protein interaction between the peroxidase
and the AlcOx could be involved.49

We then investigated the second part of the cascade
(Scheme 1) to establish suitable conditions for the OYE-
catalyzed reduction step, preferably resulting in enantiopure
(R)-citronellal. Given the exceptionally fast formation of
geranial by CgrAlcOx (TOF 11.1 s−1; Figure 1), it was
desirable to identify conditions for a fast reduction by an OYE.
The reduction step was investigated using citral (commercial
mixture of neral and geranial). The supply of redox equivalents
to the OYE was ensured by a NADPH regeneration system
promoted by a glucose dehydrogenase from Bacillus subtilis
(BsGDH). Initially, we investigated the influence of the
concentration of OYE2 from Saccharomyces cerevisiae on the
reduction of 20 mM citral over 5 h (Figure S4). As expected,
increased enzyme concentrations resulted in higher con-
versions, reaching 94.6% in 5 h with 10.67 μM OYE2, giving
a TON of 1,773 and a TOF of 0.10 s−1. However, we observed
that, with higher conversions, the ee of the product (R)-
citronellal decreased (Figure S5). To investigate this decline in
ee, we carried out a time-course monitoring of conversion and
ee values over a 6 h reaction (Figure 2). As previously
observed, with increased conversion over time, the ee
decreased. We expected the OYE-catalyzed reduction of
geranial to occur faster than that of neral,18 changing the
ratio between geranial and neral over time. The consumption
of neral eventually leads to (S)-citronellal, explaining the
decreased optical purity of (R)-citronellal over time, although
we currently lack an explanation why the ratio between the
remaining geranial and neral showed only a small change in a
nonlinear manner (Table S1). Finally, we explored the

Scheme 1. Geraniol Oxidation by a CRO-AlcOx (Here
CgrAlcOx) and Subsequent Geranial Reduction to (R)- or
(S)-Citronellal by an OYEa

aCompounds are (1) geraniol, (2) geranial, (3a) (R)-citronellal, and
(3b) (S)-citronellal.

Figure 1. CgrAlcOx-catalyzed oxidation of geraniol with (A) varying
concentrations of HRP ([CAT] = 0.5 μM), (B) varying
concentrations of CAT ([HRP] = 0.5 μM), and (C) varying
concentrations of CgrAlcOx ([HRP] = 0.5 μM, [CAT] = 0.5 μM).
For panels B and C, CgrAlcOx was used at 1 μM. Error bars represent
standard deviation (s.d., independent experiments, n = 3). The legend
in panel C applies also for panels A and B. All reactions were
incubated for 15 min at 23 °C, under shaking (190 rpm).
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influence of the NADP+ concentration on conversion and
observed that increased concentrations resulted in higher
conversions with 1 mM and 2 mM NAPD+, compared with 0.1
and 0.5 mM (Figure S6).
Based on the parameters we had determined for each

individual enzymatic step, we then carried out the one-pot
bienzymatic (CgrAlcOx and OYE2) cascade, starting from
geraniol as substrate. By providing only geranial to the OYE2
thanks to the oxidation of geraniol by CgrAlcOx, we
anticipated that the OYE2-catalyzed reduction should yield
preferentially the (R)-citronellal.18 Accordingly, we observed
the formation of (R)-citronellal with an ee ≥ 95% in 2.5 h
(Figures 3A and S8). Parallel cascade experiments coupling

CgrAlcOx with OYEs from Thermus scotoductus (TsOYE)57 or
Gluconobacter oxydans (GluER)58 yielded the alternative (S)-
citronellal product, with ≥99% ee (Figure S16) and respective
conversion yields of 37% and 95.3%. Extending the reaction
time from 16 to 24 h for TsOYE did not allow further
improvement of the conversion yield (Figure S9), probably
due to poor substrate affinity of TsOYE toward this β-
substituted substrate.59,60 The use of higher temperature (i.e.,
40 °C) for the conversion of citral by the TsOYE only brought
a minor enhancement (Figure S7). A TsOYE double mutant
with wider substrate specificity, TsOYE-C25D/I67T,61 only
showed a 2-fold increase in conversions compared with the
TsOYE wild type with ≥99% ee (Figure S7); therefore, GluER
remained the best OYE to achieve high yield.
When performing the full cascade in a concurrent one-pot

system, we observed a proportion of geraniol that was not
oxidized (Figures 3A and S14A). We conjectured that in the
conditions we applied, CgrAlcOx could be partly inhibited by
the final citronellal product. Indeed, conversions of geraniol by
CgrAlcOx performed in the presence of exogenously added
citronellal resulted in an incomplete reaction (Figure S10).
Such observation is consistent with a hypothesis formulated
previously on the possible inhibition of CgrAlcOx by hydrated
alkyl-aldehydes.25,49 In the case of geranial, the conjugation
effect stabilizes the molecule in its aldehyde form and disfavors
its hydration, whereas citronellal does not benefit from this
conjugation effect and would partly form geminal-diols upon
hydration of the aldehyde,62,63 likely inhibiting CgrAlcOx.
To avoid initial CgrAlcOx inhibition with citronellal, we

performed a sequential one-pot conversion (with OYE2) by
running first a 15 min reaction with all reagents except BsGDH
and leaving an additional 2.5 h of reaction after addition of

Figure 2. OYE2-catalyzed reduction of citral to citronellal over 6 h.
The pink bars correspond to the concentration of the citronellal
product (R + S enantiomers). The blue plot corresponds to the
enantiomeric excess of (R)-citronellal versus (S)-citronellal. Reaction
conditions: 20 mM citral, 10.67 μM OYE2, 1 mM NADP+, 40 mM
glucose, 6 U/mL BsGDH, 100 mM KPi buffer pH 8.0, incubated at 25
°C and 300 rpm. Products were analyzed on a chiral GC-FID. Error
bars represent standard deviation (s.d., independent experiments, n =
2).

Figure 3. Bienzymatic conversion of geraniol to citronellal by CgrAlcOx and OYEs. (A) Concurrent one-pot cascade reaction in 2.5 h with OYE2
to (R)-citronellal. (B) Sequential one-pot cascade reaction using either OYE2 (to (R)-citronellal) or GluER (to (S)-citronellal): first step
(CgrAlcOx conversion of geraniol to geranial) performed in 15 min; second step (OYE conversion of geranial to citronellal) performed in 2.5 h.
Analysis by GC-FID (error bars show s.d. independent experiments, n = 3). Note: the y axis displayed in panel A applies for panel B. Reaction
conditions: 1 μM CgrAlcOx, 0.5 μM catalase, 0.5 μMHRP, 10.67 μMOYE2 or 8 μM GluER, 6 U/mL BsGDH, 40 mM glucose, 1 mM NADP+, pH
8.0 (50 mM NaPi buffer), 1% v/v acetone. Reactions were incubated at 23 °C, under shaking (200 rpm). For the reactions displayed in panel B, all
reagents except for BsGDH were present at the first step; the second step was initiated by the addition of BsGDH to the reaction mixture.
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BsGDH. Under these conditions, >99% of geraniol was
converted and 95.1% of the intermediate geranial was
converted to (R)-citronellal with 95.9% ee (Figures 3B and
S14B).
Encouraged by the enantioenriched (R)-citronellal obtained

with CgrAlcOx and OYE2, we carried out the bienzymatic
cascade reaction at a larger scale, i.e. in a 20 mL reaction
volume, with a starting concentration of geraniol of 20 mM
(corresponding to 62 mg). To ensure the completion of the
cascade, the reaction times were increased to 1 h for the
alcohol oxidation step (catalyzed by CgrAlcOx), followed by 5
h for the conjugated alkene reduction step (catalyzed by
OYE2). Additionally, prior to starting the reaction, the
headspace and reaction media were saturated with pure
oxygen to circumvent potential oxygen limitation in the first
step. The resulting (R)-citronellal was simply extracted with
ethyl acetate without further purification and characterized by
chiral GC (Figure S15) and NMR spectroscopy (Figures S18
and S19). Conversion of the geraniol was 98% with a final
isolated yield of 72% with 44.3 mg of (R)-citronellal with
95.1% ee. 1H NMR showed a highly pure product after
extraction with ethyl acetate (Figure S18). Comparison of the
catalytic efficiencies of the enzymes showed a TON of 17,458
(TOF 4.85 s−1) for CgrAlcOx and 1,636 (TOF 0.09 s−1) for
OYE2. Considering that class III OYEs such as TsOYE afford
the (S)-enantiomer exclusively,14 it is possible that the
incomplete enantioselectivity observed with OYE2 (class II)
may be due to kinetic differentiation.
To increase the catalytic efficiency of our system, small-scale

experiments were carried out at higher substrate concen-
trations. Under the same reaction conditions as above,
CgrAlcOx was able to convert 91% (±6.7%) of 50 mM
geraniol in 2.5 h. The conversion was most likely hampered by
lack of oxygen in the medium. Further upscaling of the
reaction would require another reactor design to ensure
sufficient oxygen supply to the CgrAlcOx. A possible solution
to overcome the oxygen limitation would be the use of a
segmented flow reactor that has recently been implemented in
biocatalysis.64,65 We have previously demonstrated higher
substrate concentrations for the OYE-catalyzed reaction along
with others,66,67 and we do not foresee any limitations for
further scale-up.
In conclusion, we established a one-pot bienzymatic cascade

starting from inexpensive geraniol to specifically yield (R)-
citronellal in high optical purity ≥95% ee, overcoming the
problematic reduction of the mixture of (E/Z)-isomers in citral
by OYEs.20 This cascade is tunable, by switching the OYE to
produce the alternative enantiomer, and scalable, retaining the
high optical purity. Together these results provide a
biocatalytic method for the production of the key intermediate
(R)-citronellal in the synthesis of (−)-menthol, the most sold
flavor worldwide.4 We anticipate our biocatalytic cascade to
provide an alternative route to achieve enantiopure (R)-
citronellal and to expand the use of CRO-AlcOx as platform
enzymes for multienzymatic reactions.
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Engineering Enzyme Specificity Using Computational Design of a
Defined-Sequence Library. Chem. Biol. 2010, 17, 1306−1315.
(42) Pedersen, A. T.; Birmingham, W. R.; Rehn, G.; Charnock, S. J.;
Turner, N. J.; Woodley, J. M. Process Requirements of Galactose
Oxidase Catalyzed Oxidation of Alcohols. Org. Process Res. Dev. 2015,
19, 1580−1589.
(43) Parikka, K.; Master, E.; Tenkanen, M. Oxidation with Galactose
Oxidase: Multifunctional Enzymatic Catalysis. J. Mol. Catal. B Enzym.
2015, 120, 47−59.
(44) Birmingham, W.; Toftgaard Pedersen, A.; Dias Gomes, M.;
Bøje Madsen, M.; Breuer, M.; Woodley, J.; Turner, N. J. Toward
Scalable Biocatalytic Conversion of 5-Hydroxymethylfurfural by
Galactose Oxidase using Coordinated Reaction and Enzyme
Engineering. Nat. Commun. 2021, 12, 4946.
(45) Yuan, B.; Debecker, D. P.; Wu, X.; Xiao, J.; Fei, Q.; Turner, N.
J. One-Pot Chemoenzymatic Deracemisation of Secondary Alcohols
Employing Variants of Galactose Oxidase and Transfer Hydro-
genation. ChemCatChem 2020, 12, 6191−6195.
(46) Vilím, J.; Knaus, T.; Mutti, F. G. Catalytic Promiscuity of
Galactose Oxidase: A Mild Synthesis of Nitriles from Alcohols, Air,
and Ammonia. Angew. Chem., Int. Ed. 2018, 57, 14240−14244.
(47) Xu, C.; Spadiut, O.; Arauj́o, A. C.; Nakhai, A.; Brumer, H.
Chemo-enzymatic Assembly of Clickable Cellulose Surfaces via
Multivalent Polysaccharides. ChemSusChem 2012, 5, 661−665.
(48) Cooper, J. A. D.; Smith, W.; Bacila, M.; Medina, H. Galactose
Oxidase from Polyporus circinatus, Fr. J. Biol. Chem. 1959, 234, 445−
448.
(49) Forget, S.; Xia, F. R.; Hein, J. E.; Brumer, H. Determination of
Biocatalytic Parameters of a Copper Radical Oxidase Using Real-Time
Reaction Progress Monitoring. Org. Biomol. Chem. 2020, 18, 2076−
2184.
(50) Ribeaucourt, D.; Bissaro, B.; Lambert, F.; Lafond, M.; Berrin, J.-
G. Biocatalytic Oxidation of Fatty Alcohols into Aldehydes for the
Flavors and Fragrances Industry. Biotechnol Adv. 2021, 107787.
(51) Ribeaucourt, D.; Saker, S.; Navarro, D.; Bissaro, B.; Drula, E.;
Oliveira Correia, L.; Haon, M.; Grisel, S.; Lapalu, N.; Henrissat, B.;
O’Connell, R. J.; Lambert, F.; Lafond, M.; Berrin, J.-G. Identification
of Copper-Containing Oxidoreductases in the Secretomes of Three
Colletotrichum Species with a Focus on Copper Radical Oxidases for
the Biocatalytic Production of Fatty Aldehydes. Appl. Environ.
Microbiol. 2021, 87, e01526−21.
(52) Liu, J.; Wu, S.; Li, Z. Recent Advances in Enzymatic Oxidation
of Alcohols. Curr. Opin. Chem. Biol. 2018, 43, 77−86.
(53) Schrittwieser, J. H.; Velikogne, S.; Hall, M.; Kroutil, W.
Artificial Biocatalytic Linear Cascades for Preparation of Organic
Molecules. Chem. Rev. 2018, 118, 270−348.
(54) Chen, W.; Viljoen, A. M. Geraniol  A Review of a
Commercially Important Fragrance Material. South Afr. J. Bot. 2010,
76, 643−651.
(55) Zeng, S.; Kapur, A.; Patankar, M. S.; Xiong, M. P. Formulation,
Characterization, and Antitumor Properties of trans- and cis-Citral in
the 4T1 Breast Cancer Xenograft Mouse Model. Pharm. Res. 2015,
32, 2548−2558.

(56) Kwiatkowski, L. D.; Kosman, D. J. On the Role of Superoxide
Radical in the Mechanism of Action of Galactose Oxidase. Biochem.
Biophys. Res. Commun. 1973, 53, 715−721.
(57) Opperman, D. J.; Piater, L. A.; van Heerden, E. A Novel
Chromate Reductase from Thermus scotoductus SA-01 Related to Old
Yellow Enzyme. J. Bacteriol. 2008, 190, 3076−3082.
(58) Richter, N.; Gröger, H.; Hummel, W. Asymmetric Reduction of
Activated Alkenes Using an Enoate Reductase from Gluconobacter
oxydans. Appl. Microbiol. Biotechnol. 2011, 89, 79−89.
(59) Opperman, D. J.; Sewell, B. T.; Litthauer, D.; Isupov, M. N.;
Littlechild, J. A.; van Heerden, E. Crystal Structure of a Thermostable
Old Yellow Enzyme from Thermus scotoductus SA-01. Biochem.
Biophys. Res. Commun. 2010, 393, 426−431.
(60) Nett, N.; Duewel, S.; Schmermund, L.; Benary, G. E.;
Ranaghan, K.; Mulholland, A.; Opperman, D. J.; Hoebenreich, S. A
Robust and Stereocomplementary Panel of Ene-Reductase Variants
for Gram-Scale Asymmetric Hydrogenation. Mol. Catal. 2021, 502,
111404.
(61) Nett, N.; Duewel, S.; Richter, A. A.; Hoebenreich, S. Revealing
Additional Stereocomplementary Pairs of Old Yellow Enzymes by
Rational Transfer of Engineered Residues. ChemBioChem 2017, 18,
685−691.
(62) Mallat, T.; Baiker, A. Oxidation of Alcohols with Molecular
Oxygen on Solid Catalysts. Chem. Rev. 2004, 104, 3037−3058.
(63) Hutchings, M. G.; Gasteiger, J. Correlation Analyses of the
Aqueous-Phase Acidities of Alcohols and gem-Diols, and of Carbonyl
Hydration Equilibria Using Electronic and Structural Parameters. J.
Chem. Soc. Perkin Trans. 2 1986, No. 3, 455−462.
(64) Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H. The
Hitchhiker’s Guide to Flow Chemistry. Chem. Rev. 2017, 117,
11796−11893.
(65) Santis, P. D.; Meyer, L.-E.; Kara, S. The Rise of Continuous
Flow Biocatalysis − Fundamentals, Very Recent Developments and
Future Perspectives. React. Chem. Eng. 2020, 5, 2155−2184.
(66) Reß, T.; Hummel, W.; Hanlon, S. P.; Iding, H.; Gröger, H. The
Organic−Synthetic Potential of Recombinant Ene Reductases:
Substrate-Scope Evaluation and Process Optimization. ChemCatChem
2015, 7, 1302−1311.
(67) Tischler, D.; Gädke, E.; Eggerichs, D.; Baraibar, A. G.; Mügge,
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